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Vaccination intervention on epidemic dynamics in networks
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Vaccination is an important measure available for preventing or reducing the spread of infectious diseases.
In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments
is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The
epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention
is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold
is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution.
Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world
networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic
treatment upon diseases in structured populations.
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I. INTRODUCTION

Mathematical characterization of infectious diseases has
contributed greatly to getting insight on transmission patterns
of a disease in host populations, as well as on public health
policies to prevent, reduce, and possibly eradicate the disease
[1–3]. Classical epidemic models usually assume that either
individuals do not have immunity to infection [the susceptible-
infected-susceptible (SIS) model] or experience infection with
permanent or temporary protection against it [susceptible-
infected-recovered (SIR) and susceptible-infected-recovered-
susceptible (SIRS) models]. However, there is increasing
evidence that most infections, such as pertussis and tuber-
culosis, can provide only partial immunity and spread among
seropositive individuals, regardless of a reduced transmission
rate. In view of this fact, vaccination was introduced into math-
ematical compartmental models, which is often represented by
a transfer between the susceptible and removed classes [4–9].
Whether vaccination is inoculation or education, typically it
reaches only a fraction of the susceptible populations and is
not perfectly effective. Thus, a backward transfer must be
considered because vaccinated individuals may return to being
susceptible or become directly infected. When these aspects
are included in the model, rich dynamical behaviors may arise,
such as backward bifurcation and bistability [5,6].

Previous studies of mathematical models incorporating
vaccination either ignore the population structure or treat
populations as distributed in a regular medium, that is, all the
individuals have the same probability of contacting the others.
Recently, classical epidemic models have been extended in
many ways (e.g., to study the disease spreading in a population
divided into subgroups which may influence each other [10]).
An especially great source of inspiration to mathematical
epidemiology has been provided by the network theory, whose
nodes represent individuals and links stand for interactions
among them [11–14]. The structure of the underlying network
(e.g., the degree distribution) may strongly influence spreading
dynamics [15–27]. For instance, in scale-free (SF) networks,
characterized by degree distributions with power-law behavior
P (k) ∼ k−γ , the statistical relevance of hubs makes the

network highly permeable to disease propagating [16]. This
radical change in the behavior of the processes suggests that
the standard epidemiological frameworks should be carefully
revisited.

The mathematical compartmental theory focuses on epi-
demic equilibria and their stability. The network-based mod-
eling, however, pays much attention to the underlying contact
structure among individuals. The goal of this paper is to
investigate the influence of vaccination on disease spreading.
Different from the classic study of the SIS model with
vaccination by the compartmental theory which focuses on
the stability of equilibria [5], the present work revisits the
model on Watts-Strogatz (WS), Barabási-Albert (BA), and
random SF networks concentrating on the epidemic threshold
and prevalence. The choice of this model is based on three
factors as follows. (i) The SIS epidemic framework has
been widely used in modeling disease spreading within a
population. Each individual is simply assumed to have only
one of the two states: susceptible (S) and infected (I). Each
susceptible individual gets infection with a transmission rate
α once it contacts an infected one. Meanwhile, infected
individuals recover and become susceptible again with a
recovery rate β. Then the process of disease transmission flows
as S → I → S. (ii) Immunization of a population through
vaccination strategy is an important and feasible practice with
obvious implications for the public health. At the population
level, it is interesting to determine the critical vaccination rate
necessary for eradicating diseases or preventing infection, and
to investigate how vaccination affects the epidemic prevalence
in the steady state on different networks. In this paper, to
study possible effects of vaccination on epidemic dynamics
in different networked populations, a vaccinated (V) state is
introduced into the SIS model by vaccinating the susceptible
individuals with a vaccination rate ϕ, corresponding to the
transition S → V. (iii) In the real world, there are various types
of vaccines. Some may offer temporary immunity, some may
not possess 100% efficacy (leaky vaccines) [28], and finally,
as on most occasions, vaccination may cover only a fraction of
susceptible individuals. Therefore, the vaccinated individuals
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return to the susceptible class with a resusceptibility rate φ as
the vaccine wears off or directly get infected with a reduced
transmission rate δα, where δ denotes the degree to which
the vaccine-induced protection against infection is inefficient.
Thus, the vaccinated class flows in two directions S ← V → I.

To study the SIS model with vaccination on networks,
both analytical calculations and numerical simulations are
carried out. Depending on network structures, two types of
epidemic thresholds and corresponding prevalence behavior
are obtained. For WS networks, there is a nonzero threshold
similar to that obtained in the classic compartmental model.
Whereas for SF networks, the threshold is quite different,
which is strongly related both to the vaccination rate and to the
node-degree distribution. While the disease is endemic in the
network, it is found that vaccination intervention contributes
to linearly reducing the prevalence in WS networks, whereas
in SF networks it functions exponentially.

The rest of the paper is arranged as follows. In Sec. II the
SIS model with vaccination is introduced. Then the model is
studied on WS, BA, and random SF networks in Secs. III, IV,
and V, respectively. Finally, conclusions are given in Sec. VI.

II. THE SIS MODEL WITH VACCINATION

The vaccination scheme has always been a very important
and effective way for preventing or controlling infectious
diseases. In reality, vaccines hardly cover the whole popu-
lation, only remain effective for a finite period of time, and
come with no guarantee of perfect protection from infection.
Taking all these points into consideration, Kribs-Zaleta and
Velasco-Hernández introduced a vaccinated state into the SIS
model to theoretically study the possible effects of vaccination
on epidemics [5]. The mathematical compartmental model
in Ref. [5] neglects the population structure and assumes
all individuals have the same contact rate. Therefore, it is
intriguing to inspect the vaccination program for different
network structures.

In this paper the SIS model with vaccination is formulated
on the static network framework, where nodes represent
individuals and links stand for the contacts among individuals
along which a disease can spread. At each time step, each node
exists in only one of the three states: susceptible, infected,
and vaccinated. A disease spreads in the network following
mechanisms below (as shown in Fig. 1): A susceptible node
will be infected with the transmission rate α once it is
connected to an infected one; an infected node is cured and
becomes susceptible again with the recovery rate β; according
to the random vaccination strategy, each susceptible node gets
vaccinated with the vaccination rate ϕ and each vaccinated
node returns to the susceptible class at the resusceptibility rate
φ as the vaccine wears off; due to the imperfect immunity,
a vaccinated node will be infected with a reduced infection
rate δα, where the parameter δ measures the inefficacy of
the vaccine-induced protection against infection (δ = 0 and 1
respectively represent completely effective and utterly invalid,
but 0 < δ � 1 holds for most cases [28]). In the present work
it is always assumed that δ is sufficiently small. The epidemic
dynamics is determined by five parameters, α, β, ϕ, φ, and δ.
For convenience, two ratios λ, η are particularly denoted as
λ = α/β and η = ϕ/φ [29].

FIG. 1. Flowchart of the SIS model with vaccination. Susceptible
nodes are infected by their infected neighbors at a per capita rate α

and are vaccinated at a per capita rate ϕ. Infected nodes recover
to be susceptible at a per capita rate β. Vaccinated nodes become
susceptible at a per capita rate φ and are infected at a per capita rate
δα due to imperfect vaccination.

In the theoretical study of epidemiology, there are two
paramount indicators. One is to formulate the epidemic
threshold, which determines whether the infection breaks out
in the population and results in an endemic equilibrium (EE) or
dies out eventually corresponding to a disease-free equilibrium
(DFE) [30]. The other is to predict the epidemic prevalence.
The present work makes a comprehensive study of the SIS
model with vaccination on WS, BA, and random SF networks,
employing the mean-field (MF) approach and computational
simulations. As seen below, vaccination indeed has a great
influence on the epidemic dynamics over such networks.

III. THE MODEL ON WS NETWORKS

The WS network [31], as a reference of homogeneous
networks, can be constructed as follows. Start from a ring
of N nodes, where each node is connected symmetrically with
its 2K nearest neighbors. Then, every link connected to a
clockwise neighbor is rewired to a randomly chosen node with
probability p. After the whole sweep, a WS network with the
average connectivity 〈k〉 = 2K is generated.

The WS network is a typical example of networks char-
acterized by a narrow degree distribution, in which each
node’s degree closes to 〈k〉. Let s(t), ρ(t), and v(t) be the
densities of susceptible, infected, and vaccinated individuals at
time t , respectively. Obviously, they satisfy the normalization
condition s(t) + ρ(t) + v(t) = 1. Therefore, a set of coupled
differential equations can be established following the MF
approach [17]:

d

dt
ρ(t) = −βρ(t) + α〈k〉s(t)ρ(t)

+ δα〈k〉[1 − ρ(t) − s(t)]ρ(t), (1a)
d

dt
s(t) = βρ(t) − α〈k〉s(t)ρ(t) +φ[1 − ρ(t) − s(t)] − ϕs(t).

(1b)

The first term on the right-hand side (rhs) in Eq. (1a) accounts
for the recovery process from the infected class, which is
proportional to the recovery rate β and the average density
ρ(t) of infected nodes. The second term on the rhs in Eq. (1a)
denotes the newly infected nodes transferred from susceptible
ones. It is proportional to the density s(t) of susceptible nodes,
the transmission rate α, the average number of neighbors 〈k〉,
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and the probability ρ(t) that a randomly chosen neighbor
is infected. Similarly, the third term on the rhs in Eq. (1a)
considers the probability that a node is vaccinated [1 − ρ(t) −
s(t)] and gets infection. The probability of this last process is
proportional to the vaccine-reduced transmission rate δα, the
average number of neighbors 〈k〉, and the probability ρ(t) that a
randomly chosen neighbor is infected. On the rhs in Eq. (1b),
the third term accounts for the increment in the susceptible
class result from the transition V → S, which is proportional
to the resusceptibility rate φ, and the fourth term accounts for
the probability of the vaccination process S → V, which is
proportional to the vaccination rate ϕ.

It should be stressed that the MF approach [Eqs. (1a)
and (1b)] is equivalent to the mass-action law (system (1) in
Ref. [5]) with the adaptation of the reaction rates to include the
average connectivity 〈k〉. Thus, one can obtain similar results
for the epidemic threshold and equilibrium stability. It is due
to the homogeneity of the WS network, which is also the case
for the SIS model in Ref. [17]. In accordance with the results
in Ref. [5], there is either a forward bifurcation or a backward
one, depending on the epidemiological parameters: (1) In case
of the model exhibiting the forward bifurcation, there is only
one globally stable EE as the transmission rate is above the
epidemic threshold, below which the DFE is the only attractor;
(2) in case of the presence of the backward bifurcation, there
are multiple endemic equilibria (MEE)—meaning that there
are two or more EEs in the steady state—existing between a
subthreshold and the epidemic threshold; meanwhile both the
DFE and the lower EE are locally stable.

In the following, much attention is paid to the epidemic
prevalence in the steady state. Imposing the stationary condi-
tions d

dt
s(t) = 0 and d

dt
ρ(t) = 0 yields

ρ = (1 − β)ρ + δα〈k〉(1 − ρ)ρ + α〈k〉(1 − δ)
(β − φ)ρ2 + φρ

α〈k〉ρ + ϕ + φ

= f (ρ) (2)

for density of infected nodes in steady states. Notice that
f (0) = 0 and f (1) < 1, Eq. (2) has a nonzero solution on
the interval (0,1) only if f ′(ρ)|ρ=0 > 1, which defines the
epidemic threshold

λc = ϕ + φ

δϕ + φ

1

〈k〉 = η + 1

δη + 1

1

〈k〉 . (3)

On the other hand, Eq. (2) can be rewritten as

F (ρ) = Aρ2 + Bρ + C = 0, (4)

with coefficients

A = δα〈k〉,
B = δϕ + φ + δβ − δα〈k〉,
C = −

[
(δϕ + φ) − 1

λ〈k〉 (ϕ + φ)

]
.

The solutions to Eq. (4) correspond to equilibria of system (1)
for given λ.

(i) λ > λc. In this case, C < 0 always holds. Since F (0) =
C < 0 and F (1) = A + B + C = δβ + (ϕ + φ)/(λ〈k〉) > 0,

system (1) has a unique EE,

ρ =
√

B2 − 4AC − B

2A
. (5)

In contrast to special solutions obtained in Ref. [5], this
expression is general. As λ → λc, C closes to 0. From Eq. (5),
it follows that ρ → 0. Ignoring the second order term of ρ in
Eq. (4), one has

ρ ≈ δϕ + φ

δϕ + φ + δβ − δα〈k〉 · λ − λc

λc
∼ (λ − λc). (6)

In fact, as given in Appendix A, applying Taylor series
expansion to the square root part of the first term at δ = 0
and omitting the higher order correction in δ, Eq. (5) can be
simplified to

ρ ≈ 1 − 1

〈k〉
η + 1

λ
. (7)

(ii) λ < λc. In this case, it is difficult to obtain the general
solution of the epidemic prevalence. Following the parametric
analysis in Ref. [5], one finds that there are two different EEs
in the regime λb < λ < λc on the premise of λa < λb, where
λa = δ(β+ϕ)+φ

〈k〉δβ corresponds to the condition B = 0, and λb =
1

〈k〉 (1 − δϕ+φ

δβ
+ 2

δβ

√
βδ(1 − δ)ϕ) corresponds to B2 − 4AC =

0. This finding suggests that under the condition λa < λb,
which is equivalent to

(δϕ + φ)2 < βδ(1 − δ)ϕ, (8)

there emerges a subthreshold λb (the persistence threshold,
above which an already established epidemic can persist [32])
and an epidemic threshold λc (the invasion threshold, which
still denotes the critical parameter value for invasion of new
diseases). In the bifurcation diagram, this subthreshold corre-
sponds to a saddle-node bifurcation and the epidemic threshold
corresponds to a forward bifurcation, and consequently these
two thresholds together exhibit first order transitions between
the healthy phase (without disease) and the endemic phase
(with disease) [see Fig. 2(c)]. This reveals the hysteresis
effect caused by the introduction of vaccination into the
infectious disease. However, in other cases, there is only the
invasion threshold, and hence only the forward bifurcation [see
Figs. 2(a) and 2(b)].

Clearly, whether the interval (λb,λc) is a bistable region
or not in the bifurcation diagram of ρ as a function of λ is
completely determined by the condition (8), which can be
rewritten as

δ2η2 +
[

2 − β

φ
(1 − δ)

]
δη + 1 < 0. (9)

Only if β

φ
(1 − δ) > 4 can the inequality have solutions on the

interval (η1,η2) ⊂ (0,∞), which indicates that δmax = 1 − 4 φ

β
.

On the contrary, there is only one single stable state if β/φ � 4.
Figure 3 gives an illustration. In case of β = 0.002 and
φ = 0.0002, the ratio is β/φ = 10. To ensure β

φ
(1 − δ) > 4,

it demands δ < 0.6. In particular, at δ = 0.001, the upper and
lower bounds of η are 127.18(1) and 7892.81(6), respectively.
On the other hand, given η = 5.0, only if 0.02(7) < δ <

0.51(1) can system (1) experience the bistable states. From
calculation in Appendix B, η reaches the minimum 2/3 at
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FIG. 2. (Color online) Bifurcation diagrams of ρ as a function
of λ in the WS network with the average connectivity 〈k〉 = 10 for
various δ: 0.001 (a), 0.01 (b), and 0.1 (c). In each chart, black (solid)
and red (dotted) curves, respectively, represent stable and unstable
branches of system (1). Parameter values: β = 0.002, ϕ = 0.001,
and φ = 0.0002.

δ = 3/8. The presence of such a bistable region highlights an
important but unexpected influence of vaccination on disease
spreading. The bifurcation diagrams in Fig. 2 correspond to
three different values of δ (= 0.001, 0.01, and 0.1) for η = 5.0.
At δ = 0.1 the system exhibits the bistable phenomenon, and in

FIG. 3. (Color online) Illustration of the dynamic behavior on the
δ-η plane with parameters β = 0.002 and φ = 0.0002, showing the
necessary condition for bistability in the WS network with 〈k〉 = 10.
The white (gray) region corresponds to the single stable state (bistable
states). The blue (red) line is upper (lower) bound of η for given δ.
Only if η is inside the range between the upper and the lower bounds
can the MEE occur. Otherwise, there is only one attractor (either the
DFE or the EE).

FIG. 4. (Color online) Infected densities ρ in the WS networks
as functions of λ (a), 1/λ (b), and η (c), respectively. Solid lines
are analytical solutions to Eq. (5). Dashed lines are theoretical
prediction by Eq. (7). Parameters values: β = 0.002, φ = 0.0002,
and δ = 0.001.

order to wipe out the disease, one must ensure that λ < 0.37(4)
rather than λ < 0.4.

The emergence of MEE gives rise to complexity in the
vaccination intervention. In the real world, it is interesting
to study the effective vaccination and its influence on the
epidemic prevalence. To do that, one can consider system (1)
with the proper choice of β, φ, η, and δ, respectively, ensuring
that only the forward bifurcation occurs. In the following, δ is
fixed at a relatively small value δ = 0.001 with β/φ = 10 and
η < 127.18(1), where only a globally stable EE exists if λ > λc

or a globally stable DFE arises if λ � λc. According to the
model definition, λ and η are comparably important parameters
which affect the global spread of the infection. In Fig. 4 both
analytical and numerical results of ρ as a function of λ and η

in the WS network are present, respectively. Simulation of the
SIS model with vaccination on the WS network is carried out
with parameters N = 105 and p = 0.1. The fraction of initial
infectious seeds is 0.1% and the prevalence ρ in the steady state
is averaged over 10 different realizations of the model on each
of 10 different initial network configurations. Each realization
goes through 2 × 104 time steps. The thresholds λc in Fig. 4(a)
are 0.77(4), 0.62(5), and 0.52(3), corresponding to the average
degrees 〈k〉 = 8, 10, and 12, respectively, which agrees with
the prediction of Eq. (3). Moreover, linear behaviors are shown
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TABLE I. Simulation values of D0, D1 calculated by applying
the Levenberg-Marquardt algorithm [33] to the least squares curve
fitting on the simulation data plotted in Figs. 4(b) and 4(c), with the
general function in the form of ρ = D0 − D1

η+1
λ

. The quantitative
comparison is also demonstrated, which shows a good agreement
between the numerical simulation and the analytical prediction by
Eq. (7).

D0 D1

Simulation Analytical Simulation Analytical

〈k〉 = 8 1.07(2) 1 0.14(5) 0.125
Fig. 4(b) 〈k〉 = 10 1.06(1) 1 0.11(4) 0.1

〈k〉 = 12 1.06(7) 1 0.09(6) 1/12

λ = 0.6 1.01(3) 1 0.11(0) 0.1
Fig. 4(c) λ = 0.7 1.00(7) 1 0.10(8) 0.1

λ = 0.8 1.00(3) 1 0.10(4) 0.1

from both the simulation results and the theoretical predictions
in Figs. 4(b) and 4(c).

To examine the accuracy of analytical prediction by Eq. (7),
a quantitative comparison is made in Table I, where the
Levenberg-Marquardt algorithm is applied to the least squares
curve fitting on the simulation data, with the general function
in the form of ρ = D0 − D1(η + 1)/λ, where D0 and D1 are
positive constants. In Table I, the numerical value D0 ranges
from 1.00(3) to 1.07(2), matching the theoretical prediction
D0 = 1; and the numerical D1 is also in good agreement with
the prediction D1 = 1/〈k〉. Thus, given all the epidemiological
parameters, the larger the average node degree 〈k〉, the harder
for disease to break out, and if it prevails, the higher the level
of infection ρ forms (as shown in Fig. 4). On the other hand,
in a fixed WS network, as the ratio (η + 1)/λ increases, ρ

linearly diminishes. This implies that the competition between
the transmission process and the vaccination campaign leads to
a linear decrease of the prevalence in networks with a narrow
degree distribution, as shown in Fig. 4(c). Notice that for
sufficiently small δ, as assumed in the present work, Eq. (7)
turns into ρ ≈ 1 − λc/λ. In form, this scaling behavior of
ρ resembles that in the SIS model without vaccination [17],
where the threshold is λc = 1/〈k〉. This similarity, however,
reveals that the linear effect of vaccination on the prevalence
is in essence due to the fact that a vaccination program
increases the epidemic threshold by η times. To get further

FIG. 5. (Color online) 1/λc vs 1/(η + 1) in the WS networks for
different connectivities. Solid lines correspond to solutions of Eq. (3).
Parameter values: β = 0.002, φ = 0.0002, and δ = 0.001.

information, the inverse of λc as a function of the inverse of
η + 1 is depicted in Fig. 5. Since Eq. (3) can be rewritten
as 1/λc = 〈k〉[(1 − δ)/(η + 1) + δ], simulation results verify
this linearity. Hence, the more effectively the vaccination
intervenes on the disease, the more difficulty it has in causing
outbreaks.

IV. THE MODEL ON BA NETWORKS

The BA network [34], as a prototype of heterogeneous
networks, can be built as follows. Start from a a set of m0

nodes, which are completely connected. At each time step, a
new node is added to the existing network, bringing m(�m0)
new links connecting to old nodes with degree preference.
After iterating this procedure a sufficient number of times,
a BA network is obtained, consisting of N nodes with the
node-degree distribution P (k) = 2m2k−3 and the mean node
degree 〈k〉 = 2m.

The heterogeneity of the connectivity distribution inherent
to BA networks induces strong fluctuations, so systems (1)
should be modified accordingly. Denoting by sk(t), ρk(t),
and vk(t) the relative densities of susceptible, infected, and
vaccinated nodes with degree k at time t , respectively, which
satisfy the normalization condition sk(t) + ρk(t) + vk(t) = 1,
the MF equations now read as

∂

∂t
ρk(t) = −βρk(t) + αksk(t)�(ρ(t))

+ δαk[1 − ρk(t) − sk(t)]�(ρ(t)), (10a)
∂

∂t
sk(t) = βρk(t) − αksk(t)�(ρ(t))

+ φ[1 − ρk(t) − sk(t)] − ϕsk(t). (10b)

The first term on the rhs in Eq. (10a) considers that a node
of degree k is in the infected state with probability ρk(t) and
recovers from infection at the recovery rate β. The second
term on the rhs in Eq. (10a) considers the probability that a
node with k links is in the susceptible state sk(t) and gets
infection via a neighbor. The probability of this last event
is proportional to the transmission rate α, the number of
neighbors k, and the probability �(ρ(t)) that any given link
points to an infected node. Similarly, the third term on the rhs
in Eq. (10a) considers that a node with k neighbors is in the
vaccinated state with probability [1 − ρk(t) − sk(t)] and gets
infection via a neighbor at the vaccine-reduced transmission
rate δα. On the rhs in Eq. (10b), the third term considers that a
node with degree k is in the vaccinated state with probability
[1 − ρk(t) − sk(t)] and returns to the susceptible class at the
resusceptibility rate φ, and the fourth term considers that a
node of degree k is susceptible with probability sk(t) and
gets vaccinated at the vaccination rate ϕ. For uncorrelated
networks, the probability � is [17]

� =
∑

k

kP (k)∑
s sP (s)

ρk. (11)

Since SF networks have no correlations under the constraint
that the maximum possible degree has a cutoff scaling at most
as kc(N ) ∼ N1/2 [35]. In order to ensure an uncorrelated BA
network, this restriction on the maximum degree is imposed in
present work. Imposing the stationary conditions ∂

∂t
ρk(t) = 0
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and ∂
∂t

sk(t) = 0 yields

ρk = αk�(δϕ + φ + δαk�)

αk�(δϕ + φ + δαk�) + β(ϕ + φ + δαk�)
. (12)

Combining Eqs. (11) and (12), one obtains a self-consistency
equation,

� = 1

〈k〉
∑

k

kP (k)αk�(δϕ + φ + δαk�)

αk�(δϕ + φ + δαk�) + β(ϕ + φ + δαk�)

= g(�). (13)

Obviously, there is a trivial solution � = 0, which leads to ρ =
0. Notice that not only g(0) = 0 and g(1) < 1, but also g′(�) >

0, and g′′(�) < 0 in the limit δ → 0, only if g′(�)|�=0 > 1
can Eq. (13) have a nontrivial solution on the interval (0,1),
which yields

λc = ϕ + φ

δϕ + φ

〈k〉
〈k2〉 = η + 1

δη + 1

〈k〉
〈k2〉 . (14)

In infinite-sized BA networks, the second moment of the
connectivity distribution is unbounded, i.e., 〈k2〉 → ∞, which
induces λc = 0. So the infection can always prevail among the
population, no matter what the effective transmission rate is.
Whereas for finite-sized BA networks, there exists a maximum
degree kc, which controls the bound of the connectivity
fluctuations, inducing a nonzero threshold [15,18]. From now
on, the size of the BA networks is assumed to be finite, and all
the possible values of node degrees are k = m,m + 1, . . . ,kc.

By computing the Jacobian matrix of the DFE {(ρk =
0,sk = φ

ϕ+φ
)}kc

k=m of system (10), one finds that the basic

reproductive number [1] is R0 = λ
δη+1
η+1

〈k2〉
〈k〉 = λ/λc, which

denotes the expected number of secondary infections caused
by a single infected individual in a completely susceptible
population. Accordingly, the DFE is locally asymptotically
stable if λ < λc, while unstable if λ > λc, meaning invasion
is always possible. As long as λ > λc there exists a positive
solution ρ ∈ (0,1) corresponding to the EE which is locally
asymptotically stable.

Since � approaches 0 as λ closes to λc, and by neglecting all
higher order corrections in �, Eq. (12) is in form analogous
to Eq. (8) in Ref. [17], and hence one expects the similar
critical behavior given by Eq. (14). Compared with the SIS
model on BA networks [16,17], the presence of vaccination
has the effect of multiplying the epidemic threshold by a factor
(η + 1)/(δη + 1), i.e., enlarging by nearly η times (as δ → 0).
This suggests that vaccination might play a significant role in
preventing or reducing the infectious disease. The greater the
vaccination rate is, the bigger the epidemic threshold is, and
hence the harder the disease erupts.

Neglecting the second order term in �, Eq. (12) can be
simplified as

ρk ≈ λ�k

λ�k + η + 1
. (15)

Given the epidemiological parameters, a node with higher de-
gree is more likely to get infected. Substituting this expression
into Eq. (13) and treating k as a continuous variable yields

� ≈ mλ�

∫ kc

m

1

k

dk

λ�k + η + 1
, (16)

FIG. 6. (Color online) Densities of infectious nodes ρ in the BA
networks: (a) as a function of 1/λ for η = 5.0 and various m; (b) as
a function of η for λ = 0.4 and various m. Solid lines are theoretical
prediction by Eq. (18). The other parameters are β = 0.002, φ =
0.0002, and δ = 0.001.

which gives rise to the solution

� ≈ (η + 1)e−(η+1)/λm

λm
[1 − e−(η+1)/λm]−1. (17)

Finally, at lowest order in λ, the epidemic prevalence related
to the EE is

ρ =
∑

k

P (k)ρk ≈ 2e−(η+1)/λm. (18)

Computational simulations for the epidemic model are
performed on the BA networks with the network size N = 105.
Each of the simulation data is obtained by averaging over
10 different realizations of the model on each of 10 different
network configurations. Each realization goes through 2 × 104

time steps. As shown in Fig. 6, there is a deviation between the
simulation results and the analytical calculations, especially in
the large prevalence regime. It is due to the fact that Eq. (12)
is simplified by neglecting the highest order in �. As ρ is
relatively large, �2 is actually not negligible. Despite this, the
simulation supports the calculation by the same exponential
decaying in the scaling behavior, i.e., ρ ∼ e−E0(η+1)/λ, where
E0 is a constant. The numerical comparison is also made
between the fitting value E0 and the analytical estimation
1/m in Table II, showing a relatively small variance. For BA
networks, both in simulation and in theory, the prevalence
decays exponentially, i.e., ρ ∼ e−(η+1)/λm. Vaccination has an
effect of accelerating by η times the exponential decreasing
of the prevalence. This finding suggests that the vaccination
intervention on a disease can efficiently reduce an endemic to
a lower level, though the heterogeneity in degree distribution
causes a vulnerability to disease outbreak in BA networks.

V. THE MODEL ON RANDOM SF NETWORKS

In this section, the analysis for the SIS model with
vaccination on BA networks will be generalized to random SF
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TABLE II. Simulation value of E0 calculated by applying the
Levenberg-Marquardt algorithm to the least squares curve fitting on
the simulation data plotted in Figs. 6(a) and 6(b). The quantitative
comparison is also demonstrated, between the fitting value E0 and
the analytical prediction 1/m by Eq. (7).

E0

Simulation Analytical

m = 5 0.18(4) 0.2
Fig. 6(a) m = 7 0.12(7) 1/7

m = 9 0.09(8) 1/9
m = 5 0.17(7) 0.2

Fig. 6(b) m = 7 0.11(9) 1/7
m = 9 0.09(3) 1/9

networks with arbitrary exponent γ > 2. Following the idea
proposed by Newman et al. [36], the random SF networks
can be generated as below. First, a priori random integers
sequences, each of which represents the degree of a node,
drawn from a normalized distribution

P (k) =
{

(γ − 1)mγ−1k−γ , if k � kc,

0, otherwise,
(19)

where m and kc, are respectively assumed to be the minimum
and the maximum values of the degree among all the nodes,
and kc � m. Notice that in order to get uncorrelated random SF
networks, the restriction on the maximum degree [35] kc(N ) ∼
N1/2 is imposed. Then, node i with degree ki is picked out
randomly from the sequence and connected to others until its
degree quota ki is realized. Duplicate connections are avoided.
This process is repeated throughout all the elements of the
sequence, and finally a network is chosen uniformly at random
from the set of all graphs with that degree sequence. Assuming
k changes continuously and the average connectivity is thus

〈k〉 =
∫ kc

m

kP (k)dk ≈ γ − 1

γ − 2
m. (20)

For any connectivity distribution in random SF networks,
one can employ directly the analytical treatment in BA
networks. That is to say, the MF results in the BA network are
applicable to the random SF network. According to Eq. (14),
the epidemic threshold is zero if γ � 3 in the thermodynamic
limit for random SF networks. Whereas for γ > 3, substituting
Eq. (20) into Eq. (14) yields a nonzero threshold

λc ≈ (η + 1)(γ − 3)

m(δη + 1)(γ − 2)
. (21)

Since ∂
∂η

λc = (1−δ)(γ−3)
(δη+1)2(γ−2)m < 0 for any δ ∈ (0,1), enhancing

the effective vaccination rate can prevent epidemics from
spreading through the population. For any exponent γ in
random SF networks, combining Eqs. (13) and (20), one has

� = λ′�(γ − 1)mγ−1

〈k〉
∫ kc

m

k2−γ

λ′�k + 1
dk, (22)

with

λ′ = λ

η + 1
. (23)

Due to the existence of the parameter γ , it is difficult to obtain
the explicit solution of Eq. (22). However, one can roughly
estimate � and ρ using the first mean value theorem. In this
way, one has

� = λ′�(γ − 2)mγ−2

1 + λ′�1

∫ kc

m

k2−γ dk, (24)

where 1 is a finite constant, m < 1 < kc. Thus, the
solution is

� ≈
⎧⎨
⎩

1
λ′1

[
λ′(γ−2)mγ−2k

3−γ
c

3−γ
− 1

]
if 2 < γ � 3,

1
λ′1

[
λ′(γ−2)m

γ−3 − 1
]

if γ > 3.
(25)

The prevalence ρ can also be written as

ρ =
∫ kc

m

P (k)ρkdk ≈ m(γ − 1)

2(γ − 2)

(
1 − 1

1 + λ′�2

)
, (26)

where 2 is a finite constant, m < 2 < kc. According to
Eq. (25), the behavior of ρ depends on γ .

(i) 2 < γ � 3. In this case, for any λ � 0, λ′�2 � 1.
Implementing logarithm operation on Eq. (26) yields

ln ρ ≈ ln
m(γ − 1)

2(γ − 2)
− 1

1 + λ′�2
. (27)

Combining this with Eq. (23), one has

ρ ∼ e−v1(η+1)/λ, (28)

where v1 is a constant, defined by

v1 = 1(3 − γ )

2mγ−2k
3−γ
c (γ − 2)

. (29)

(ii) γ > 3 while γ �� 3. According to Eqs. (21) and (25),
for any λ � λc, λ′�2 � 0. One can obtain the prevalence
similar to case (i)

ρ ∼ e−v2(η+1)/λ, (30)

where the coefficient v2 reads as

v2 = 1(γ − 3)

2m(γ − 2)
. (31)

(iii) γ � 3. In this case, the connectivity distribution decays
so fast that it tends to a homogeneous networks. One would
expect to obtain the similar qualitative behavior as in Sec. III.

FIG. 7. (Color online) Effective transmission threshold λc as a
function of (γ − 3)/(γ − 2) in the random SF network. The full
line corresponds to the analytical calculation of Eq. (21). Parameter
values: η = 5.0, β = 0.002, φ = 0.0002, and δ = 0.001.
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FIG. 8. (Color online) Semilog plots of the persistence ρ in
random SF networks as a function of 1/λ (with η = 5.0) (a) and η

(with λ = 0.5) (b) for various values of γ : 2.5, 3.5, and 4.5 (from top
to bottom). The insets of (a) and (b), respectively, display the linear
dependence of ρ as a function of 1/λ and η for γ = 40. Parameter
values: β = 0.002, φ = 0.0002, and δ = 0.001.

Simulations of the SIS model with vaccination on random
SF networks are performed to compare with the theoretical
analysis. The simulated networks range from N = 105 to
N = 106 and the minimal degree of nodes is m = 5. Figure 7
shows the epidemic threshold λc as a function of the alge-
braic expression (γ − 3)/(γ − 2). Closed squares represent
numerical data and the solid line corresponds to the prediction
of Eq. (21). One notices the good agreement between the
computer simulation and the analytical calculation. Figure 8
depicts the behaviors of ρ as a function of 1/λ [Fig. 8(a)]
and as a function of η [Fig. 8(b)], respectively. It is clear that
either for λ � 0 (the case of 2 < γ � 3) or for λ � λc (the
case of γ > 3 and γ �� 3), the stationary density ρ of infected
nodes in the random SF networks decays exponentially, i.e.,
ρ ∼ e−v(η+1)/λ, where v is a positive constant, which is
determined by Eq. (29) or Eq. (31). On the contrary, at γ = 40,
as shown in the inset of Fig. 8, ρ decreases linearly similar to
the behavior observed from WS networks.

VI. CONCLUSION

The study of vaccination in populations has to take into
consideration not only vaccine-related parameters, but also
social risk behaviors that may alter the expected predictions.
To our knowledge, however, very few works addressed this
problem. The present research integrated both factors and
studied a networked SIS model with vaccination, where
vaccines that attempt to reduce susceptibility to infection is
characterized by three parameters in the model: coverage
(represented by ϕ), waning period (represented by φ), and
efficacy (represented by δ). Since δ is intrinsically related to

the quality of the vaccine, much attention has been paid to the
parameter η (the ratio of ϕ to φ) in the vaccination intervention
on infectious diseases, as well as the role of the ratio λ (the
ration of α to β) in epidemic spreading. With the frameworks
of the MF approach and elementary means, the model has been
studied on WS, BA, and random SF networks. The analysis of
thresholds and prevalence demonstrated the significant effects
of the vaccination on the epidemic dynamics as well as the
structures of the underlying networks.

In the WS networks, since the MF model is equivalent to the
classic compartmental model in Ref. [5] with the adaptation
of reaction rates by the average connectivity, the threshold
behavior and equilibrium stability are similar to the literature.
The threshold λc is defined by Eq. (3), above which there is
only one globally stable EE and below which the model may
exhibit MEE for certain epidemiological parameters. As to
the prevalence, rather than special solutions obtained in the
compartmental model, this paper gives the general one for
the steady endemic state, which scales as ρ ∼ −(η + 1)/λ.
Thus, the effective vaccination can linearly decrease the
endemic level in homogeneous networks, although vaccination
intervention may give rise to the backward bifurcation in these
networks.

In the SF networks, however, the system shows very
different behavior. The threshold λc is defined by Eq. (14).
Only for the SF network with the power-law distribution
exponent 2 < γ � 3 in the thermodynamic limit can λc be
zero. Otherwise, the system has a nonzero threshold for the SF
networks with any γ > 3. In comparison with the WS network
at the same average connectivity 〈k〉, λc in the SF network is
smaller than that in the WS network. For any λ > λc, the
prevalence in the SF network scales as ρ ∼ e−v(η+1)/λ. Thus,
the vaccination can exponentially decrease the endemic level
in heterogeneous networks.

All these results are on the presumption that the underlying
networks are static. For some diseases which spread too fast
in comparison with change of the population structure, the
present work may provide a preliminary theory for vaccine
control of infection. For other diseases, however, individual
responses to infection play an important role in either reduc-
ing the transmission rate or changing the contact structure
[37–39]. Hence, it is interesting to study vaccination in
adaptive networks, which is left for future research.
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APPENDIX A: SIMPLIFICATION OF EQ. (5) TO EQ. (7)

Since the inefficacy rate of vaccine δ is assumed to be
sufficiently small, it is possible to simplify the complex square
root part in Eq. (5) via Taylor series expansion at the point
δ = 0. First of all, rewrite Eq. (5) as

ρ = ρ1 + ρ2, (A1)
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where

ρ1 = 〈k〉αδ − (ϕδ + βδ + φ)

2〈k〉αδ
, (A2)

and

ρ2 = h(δ)

2〈k〉αδ
, (A3)

accompanied with

h(δ) = [h1(δ)]1/2, (A4)

h1(δ) = (δϕ + φ + δβ − δα〈k〉)2 + 4δα〈k〉(δϕ + φ)

− 4δβ(ϕ + φ). (A5)

So, rearranging each term, one has

h1(δ) = aδ2 + bδ + φ2, (A6)

where

a = (ϕ + β − 〈k〉α)2 + 4〈k〉αϕ,
(A7)

b = 2〈k〉αφ + 2ϕφ − 2βφ − 4βϕ.

Since the first order derivative of h(δ) can be calculated as

h′(δ) = 1
2 [h1(δ)]−1/2(2aδ + b), (A8)

one has

h′(0) = 〈k〉αφ + ϕφ − βφ − 2βϕ

φ
. (A9)

Therefore, by employing Taylor series expansion at δ = 0 for
h(δ) with regard to δ, one gets

h(δ) = h(0) + h′(0)δ + ◦(δ2)

≈ φ + 〈k〉αφ + ϕφ − βφ − 2βϕ

φ
δ. (A10)

Combining Eq. (A10) with Eqs. (A1), (A2), and (A3) gives
rise to

ρ ≈
2〈k〉αδ − 2βδ − 2β

ϕ

φ
δ

2〈k〉αδ
, (A11)

which implies the simple relationship

ρ ≈ 1 − 1

〈k〉
η + 1

λ
. (A12)

APPENDIX B: CALCULATION OF THE MINIMUM
LOWER BOUND OF η

Let x = β/φ and substitute it into inequality (9), one
obtains

δ2η2 + [2 − x(1 − δ)]δη + 1 < 0, (B1)

which has positive solutions if and only if

{[x(1 − δ) − 2]2 − 4}δ2 > 0, ⇐⇒ x(1 − δ) > 4. (B2)

The solutions of inequality (B1) read

η1(δ) < η < η2(δ), (B3)

where

η1(δ) = [x(1 − δ) − 2] −
√

[x(1 − δ) − 2]2 − 4

2δ
, (B4)

η2(δ) = [x(1 − δ) − 2] +
√

[x(1 − δ) − 2]2 − 4

2δ
. (B5)

The derivative of the lower bound η1(δ) is

dη1

dδ
= 1

2δ2

{
x(x − 4) − x(x − 2)δ√

[x(1 − δ) − 2]2 − 4
− (x − 2)

}
. (B6)

Let dη1

dδ
= 0; it follows that

x[x − 4 − (x − 2)δ] = (x − 2)
√

[x(1 − δ) − 2]2 − 4, (B7)

which gives the extreme point

δ∗ = x − 4

2(x − 2)
=

β

φ
− 4

2
(

β

φ
− 2

) . (B8)

Substituting δ∗ into Eq. (B4) yields the minimal lower bound

η1min = 4

x − 4
= 4

β

φ
− 4

. (B9)
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