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Yield strain in shear banding amorphous solids
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In recent research it was found that the fundamental shear-localizing instability of amorphous solids under
external strain, which eventually results in a shear band and failure, consists of a highly correlated array of
Eshelby quadrupoles all having the same orientation and some density p. In this paper we calculate analytically
the energy E(p,y) associated with such highly correlated structures as a function of the density p and the external
strain y. We show that for strains smaller than a characteristic strain yy the total strain energy initially increases
as the quadrupole density increases, but that for strains larger than yy the energy monotonically decreases
with quadrupole density. We identify yy as the yield strain. Its value, derived from values of the qudrupole
strength based on the atomistic model, agrees with that from the computed stress-strain curves and broadly with

experimental results.
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I. INTRODUCTION

Amorphous solids are obtained when a glass former is
cooled below the glass transition [1-3] to a state which on
the one hand is amorphous, exhibiting liquidlike organization
of the constituents (atoms, molecules, or polymers), and on the
other hand is a solid, reacting elastically (reversibly) to small
strains. There is a large variety of experimental examples of
such glassy systems, and theoretically there are many well-
studied models [4-6] based on point particles with a variety of
interparticle potentials that exhibit stable supercooled liquids
phases which then solidify to an amorphous solid when cooled
below the glass transition. Typically all these materials, both
in the laboratory and on the computer, exhibit a so-called
yield stress above which the material fails to a plastic flow. In
previous research [7-10] it was pointed out that depending on
the protocol of cooling to the glass state, the plastic response
of the system can be either via homogeneous flow or via shear
bands. The former obtains typically when the quenching to
the glass state is “fast,” whereas the latter when the quench is
“slow.” In the latter case when the stress exceeds some yield
stress, the sample, rather than flowing homogeneously in a
plastic flow, localizes all the shear in a plane that is at 45° to the
compressive stress axis, and then breaks along this plane [1].

In recent work [11] it was argued that the fundamental
instability that gives rise to shear bands is the appearance
of highly correlated lines of Eshelby quadrupoles (and see
below for precise definition) which organize the nonaffine
displacement field of an amorphous solid such that the shear is
highly localized along a narrow band. How this fundamental
instability results in macroscopic shear bands, why these
appear in 45° to the principal stress axis, and what determines
the difference in plastic response between fastly and slowly
quenched glasses are all subjects of this paper. We will also
present an ab initio calculation of the yield stress at which an
amorphous solid is expected to response plastically with shear
localization.

In Sec. II we review briefly the type of numerical simula-
tions that we do and explain the basic facts about plasticity
of amorphous solids. Section III exhibits the fundamental
solution of an Eshelby quadrupolar plastic event. This section
is not particularly new but is important for our purposes in
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setting the stage and the notation for Sec. IV in which we
compute the energy of A/ such Eshelby quadrupoles in the
elastic medium. We show explicitly that as a function of the
external strain (or the resulting stress) there is a threshold
value at which a bifurcation occurs. Below this value only
isolated Eshelby quadrupoles can appear in the system, leading
to localized plastic events. Above this threshold a density of
such quadrupoles can appear, and when they do appear they
are highly correlated, preferring to organize on a line at 45° to
the principal shear direction. In Sec. V we present the analytic
estimate of the yield strain, and demonstrate a satisfactory
agreement with the numerical simulations. Finally, in Sec. VI
we provide a summary of the most important results of the
paper and offer a discussion of the road ahead.

II. PLASTICITY IN AMORPHOUS SOLIDS
AND SIMULATIONS

As a background to the calculations in this paper we need
to briefly review recent progress in understanding plasticity
in amorphous solids [5,6,12—14]. Below we deal with two-
dimensional systems composed of N point particles in an area
A, characterized by a total energy U(ry,r,, ...r,) where r;
is the position of the ith particle. Generalization to three-
dimensional systems is straightforward if somewhat technical.
The fundamental plastic instability is most cleanly described in
athermal (7' = 0) and quasistatic (AQS) conditions when an
amorphous solid is subjected to quasistatic strain, allowing
the system to regain mechanical equilibrium after every
differential strain increase. Higher temperatures and finite
strain rates introduce fluctuations and lack of mechanical
equilibrium which cloud the fundamental physics of plastic
instabilities with unnecessary details [12].

In our AQS numerical simulations we use a 50-50 binary
Lennard-Jones mixture to simulate the shear localization
discussed in this work. The potential energy for a pair of
particles labeled i and j has the form,

oii\12 [0i;\6
Uij(rij) =46ij[(f) - (—) + Ao

rij rij
rij rij 2
+ A (E5) + a4 (22)], )
O','j O',‘j
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FIG. 1. (Color online) (Left panel) The localization of the nonaffine displacement onto a quadrupolar structure which is modeled by an
Eshelby inclusion; see right panel. (Right panel) The displacement field associated with a single Eshelby circular inclusion of radius a; see
text. The best fit parameters are a &~ 3.4 and €* ~ 0.09, with a Poisson ratio of v = 0.363. To remove the effect of boundary conditions, the

best fit is generated on a smaller box of size (x,y) € [25.30,75.92].

where the parameters Ag, Aj, and A, are added to smooth
the potential at a scaled cutoff of r/o =2.5 (up to the
second derivative). The parameters o44, 0pp, and o4 were
chosen to be 2sin(;r/10), 2sin(/5), and 1, respectively,
and €44 = €gp = 0.5,645 = 1(see [15]). The particle masses
were taken to be equal. The samples were prepared using
high-temperature equilibration followed by a quench to zero
temperature (7' = 0.001) (see [9]). For shearing, the usual
athermal-quasistatic shear protocol was followed where each
step comprises an affine shift followed by an nonaffine
displacement using conjugate gradient minimization. The
simulations were conducted in two dimensions (2D) and
employed Lees-Edwards periodic boundary conditions. This
implies that a square sample of size L? remains so also after
strain. Samples were generated with quench rates ranging from
3.2 x 107% to 3.2 x 102(in LJ units), and were strained to
greater than 100%. Simulations were performed on system
sizes ranging from 5000 to 20000 particles with a fixed
density of p = 0.976 (in LJ units). The simulations reported
in the paper have 10000 particles and a quench rate of 6.4 x
1075 (in LJ units).

We choose to develop the theory for the case of external
simple shear since then the strain tensor is traceless, sim-
plifying some of the theoretical expressions. Applying an
external shear, one discovers that the response of an amorphous
solid to a small increase in the external shear strain §y (we
drop tensorial indices for simplicity) is composed of two
contributions. The first is the affine response which simply
follows the imposed shear, such that the particle positions
r; = x;,y; change via

xXi = x;i + 38y yi = x|,
, ()
Yi = Yi =)

This affine response results in nonzero forces between the
particles (in an amorphous solid) and these are relaxed
by the nonaffine response u; which returns the system to
mechanical equilibrium. Thus in total r; — r; 4+ u;. The
nonaffine response u; solves an exact (and model-independent)

differential equation of the form [5,16],

du,-
— _H =,
= e 3)
2 e . . .
where H;; = % is the so-called Hessian matrix
ior;
92 “es .
and ; = LYTLrn) g known as the nonaffine force. The

dydr;
inverse of the ﬁessian matrix is evaluated after the removal
of any Goldstone modes (if they exist). A plastic event occurs
when a nonzero eigenvalue Ap of H tends to zero at some
strain value yp. It was proven that this occurs universally
via a saddle node bifurcation such that Ap tends to zerolike
Ap ~ /y¥p — ¥ [14]. For values of the stress which are below
the yield stress the plastic instability is seen [5] as a localization
of the eigenfunction of H denoted as Wp which is associated
with the eigenvalue A p, (see Fig. 1 left panel). While at y = 0
all the eigenfunctions associated with low-lying eigenvalues
are delocalized, Wp localizes as y — yp (when Ap — 0)
on a quadrupolar structure as seen in Fig. 1 left panel for
the nonaffine displacement field when the plastic instability
is approached. These simple plastic instabilities involve the
motion of a relatively small number of particles (say 30—
40 particles) but the stress field that is released has a long tail.
When the strain increases beyond some yield strain, the
nature of the plastic instabilities can change in a fundamental
way [10]. The main analytic calculation that is reported in
Sec. IV shows that when the stress built in the system is
sufficiently large, instead of the eigenfunction localizing on
a single quadrupolar structure, it can now localize on a series
of NV such structures, which are organized on a line that is at
45° to the principal stress axis, with the quadrupolar structures
having a fixed orientation relative to the applied shear. Figure 2
shows the nonaffine field that is identical to the eigenfunction
which is associated with this instability, clearly demonstrating
the series of quadrupolar structures that are now organizing the
flow such as to localize the shear in a narrow strip around them.
This is the fundamental shear banding instability. Note that this
instability is reminiscent of some chainlike structure seen in
liquid crystals, arising from the orientational elastic energy
of the anisotropic host fluid [17], and ferromagnetic chains of
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FIG. 2. (Color online) (Left panel) The nonaffine displacement field associated with a plastic instability that results in a shear band.
(Right panel) The displacement field associated with seven Eshelby inclusions on a line with equal orientation. Note that in the left panel
the quadrupoles are not precisely on a line as a result of the finite boundary conditions and the randomness. In the right panel the series of
N = 7 Eshelby inclusions, each given by Eq. (18) and separated by a distance of 13.158, using the best fit parameters of Fig. 1, have been

superimposed to generate the displacement field shown.

particles in strong magnetic fields [18]. The reader should note
that the event shown in Fig. 2 will move the particles only a
tiny amount, and it is the repeated instability where many such
events hit at the same region which results in the catastrophic
event that is seen as a shear band in experiments. Nevertheless
this is the fundamental shear localization instability and in the
sequel we will have to understand why repeated instabilities
hit again and again in the same region. We should stress that
this is not inevitable; for samples that are prepared by a fast
quench these instabilities appear at random places adding up to
what seems to be a homogeneous flow. For further discussion
of this point see Sec. VL.

III. DISPLACEMENT IN 2D FOR A
CIRCULAR INCLUSION

As said above, the shear localizing instability appears only
when the stress exceeds a threshold. To explain why, we turn
now to analysis. As a first step we model the quadrupolar stress
field which is associated with the simple plastic instability as
a circular Eshelby inclusion [5].

A. Circular inclusion

We consider a 2D circular inclusion that has been strained
into an ellipse using an eigenstrain or a stress-free strain €
which we take to be traceless, i.e., e;y =0 [19]. Here and
below repeated indices imply a summation in two dimensions.
A general expression for such a traceless tensor can be written
in terms of a unit vector /i, and a scalar €* as

“4)

We also assume that a homogenous strain €55 acts globally
(which in our case also triggers the local transformation
of the inclusion). This strained ellipsoidal inclusion both
feels a traction exerted by the surrounding elastic medium
resulting in a constrained strain e(f[ﬁ in the inclusion, and
itself exerts a traction at the inclusion-elastic medium interface
resulting in the originally unstrained surroundings developing
a constrained strain field egﬂ(;( ). Here and below X stands

E;ﬂ = 6*(2ﬁaﬁlg — Saﬂ)-

for an arbitrary Cartesian point in the material which for this
purpose is approximated as a continuum.

A fourth-order Eshelby tensor Sqg,s can be defined which
relates the constrained strain in the inclusion €., to the
eigenstrain €, Viz.

&)

Now for an inclusion of arbitrary shape the constrained strain
€4p> Stress 0,4, and displacement field u, inside the inclusion
are in general functions of space. For ellipsoidal inclusions,
however, it was shown by Eshelby [20-22] that the Eshelby
tensor and the constrained stress and strain fields inside the
inclusion become independent of space. We work here with
a circular inclusion which is a special case of an ellipse and
hence for such an inclusion, the Eshelby tensor is [20-22]

4v —1 3—4v
8(1 —v) 8(1—v)

c *
Eaﬁ = Saﬂy8€y5~

(8as0py + 08504y ),
(6)

where v is the Poisson’s ratio. Note that this is the Eshelby
tensor for an inclusion in two dimensions. It is the same as a
cylindrical inclusion in three dimensions under a plane strain
[22]. From Egs. (5) and (6), we obtain

Sapys = Sapdys +

L T st Y (5usSsy + b | €
€3 = , o @ €
af 8(1 _ V) BOys 8(1 _ U) 0By BéCay 1Z)
3—-4v . .
= ———€,5 foratraceless eigenstrain. (7
4(1—-v)

The total stress, strain, and displacement field inside the
circular inclusion is then given by

J 3—4v

€ap = €ap T €ap = —4(1 — U)E;‘ﬂ + €055
Uofﬂ = Uofﬁ — Uo’fﬂ + 0'52 = Cypys (6;5 - 6;5 + 6;’?3), )

3—4v
4(1 —v)

Here the superscript / indicates the inclusion and the o)
denotes the eigenstress which is linearly related to the

=
Il

! u2+u§°=|: ezﬂ—i—ef‘l‘;}xﬁ.
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eigenstrain by 0,5 = Cupys€,5, and which for an isotropic
elastic medium simplifies further using
Copys = Abupdys + 1(8aySps + 8usdpy ), )
to
Oup = 21k€05 + A€, Sup
Ev
= e, 4+ € Sup,
T+v " (A +v)(1—2v) M
where A and p are the Lame’s parameters. One can either
choose the two Lame’s coefficients or £ and v as the two

independent material parameters. The relations between them
are given by

(10)

-t & (1)
F=5a+y "Ta+vnd—2v
PG T (12)
P 20+

These relations are correct in three dimensions with plane
strain conditions and therefore also in two dimensions [22].
The stress in the inclusion can now be written
down in terms of independent variables using Eq. (10)
by
I .
Oup = Capys (€5 — €55+ €53)
Ev
= €, + ()
T+v 7 (A 4v)(1—2v) ™
E &
- e+ €, 13
14v 14y % (13)
as e;f s and e;g are traceless. Note that Eq. (7) implies that for a
traceless eigenstrain, the constrained strain inside the inclusion
viz. e;ﬁ is also traceless and thus we obtain from Eq. (13),

1 5 EC g €*+ 5 6oo
o = — [
S T T T
E 3—-4 & o E o
= € — € €
l4vd(d—v) ¥ 140 ¥ 14 P
— &
= —ezﬂ + —egg. (14)

40 +v)d —-v) I+v

B. Constrained fields in the elastic medium

In the surrounding elastic medium the stress, strain, and
displacement fields are all explicit functions of space and can
be written,

e&”ﬂ()?) = e;ﬂ()}) + €55
o (X) = 055(X) + 055, (15)
up (X) = uf(X) + u(X).

In order to compute the displacement field ug(f() in the

isotropic elastic medium we need to solve the Lame-Navier
equation,

£ 3%us, £ 3%u
+ —=0, (16)
21+ v)(1—2v) 8X,0X,  2(1+v) dXz0X,

as there are no body forces present in our calculation. The
constrained fields in the inclusion will supply the boundary

PHYSICAL REVIEW E 87, 022810 (2013)

conditions for the fields in the elastic medium at the inclusion
boundary. Also as » — oo the constrained displacement field
will vanish.

All solutions of Eq. (16) also obey the higher order
biharmonic equation,

*u¢
0Xp0XpdXy0Xy

= V2V = 0. (17)

Thus our objective is to construct from the radial solutions
of the bi-Laplacian equation Eq. (17) derivatives which also
satisfy Eq. (16). Note that Eq. (17) is only a necessary (but not
a sufficient) condition for the solutions and Eq. (16) still needs
to be satisfied. The calculation is presented in Appendix A,
with the final result,

3 €* a\’ a\?
0= 30 <7> [2(1 m <7> }
o)
21 —v)\r
a\ 2 - X)?
(e e as
r r

C. Fit to the data

X [2Agn - X — Xo] +

Armed with this analytic expression we return now to our
numerics, cf. Fig. 1, and fit the two parameters in Eq. (18) to the
data of the displacement exhibited by a single localized plastic
event. The result of this procedure is a = 3.4 and €* = 0.09.
The quality of this fit can be judged from the right panel
of Fig. 1 where we exhibit the form of Eq. (18) with the
parameters fitted to the displacement field in the left panel.
In addition, the value of a appears reasonable since it means
that about wa” ~ 36 particles are involved in the core of the
relaxation event. On physical grounds this is about the right
order of magnitude.

We will keep these parameters fixed in all our calculations
below. The reader should note that this is an approximation
when there are multiple quadrupoles in the system, since they
influence each other and the solution leading to Eq. (18) should
be repeated in the presence of many quadrupoles. We expect,
however, that the changes in the parameters should not be large
when the density of the quadrupoles is small. We will always
work in the small density limit N'/L < 1.

IV. THE ENERGY OF A/ ESHELBY INCLUSIONS
EMBEDDED IN A MATRIX

A. Notation

Having the form of a single quadrupole, Eq. (18), we
turn now to the calculation of the energy associated with
N quadrupoles embedded in an elastic matrix, see Fig. 3.
Once computed, we will show later that for large strains the
minimum of this energy is obtained for a line of quadrupoles
all having the same orientation. From now on we use the
notation that uy g = % The energy of N Eshelby inclusions
embedded in a linear elastic medium (or matrix) N, is given
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FIG. 3. Schematic of four Eshelby inclusions embedded in a

[ L)

matrix “m”.

by the expression,

N
1 t/' @ (0 1 /" (m)_(m)
E=- Oup€apdV + = Oup €qp AV,
22 5y o
(19)

where the superscript i indicates the index of the inclu-
sion and m indicates the matrix. We evaluate Eq. (19) in
Appendix B. The result can be expressed in terms of four
contributions: E.,; which is the contribution of the strained
matrix, £ which is the energy of the N qudrupoles in
the external strain, Eq, Which represents the self-energy of
the V' quadrupoles (their cost of creation), and lastly Ejn.

PHYSICAL REVIEW E 87, 022810 (2013)

represents the energy of interaction between the inclusions.
Explicitly,

1 VEY?
_ L (00 (), _ 1 (00) (00) _ 4
Ena = 5%ap €pa V=Vo ey = 010 (20)
1 N N
— (00) Dy 0 ) 2 __(c0) (%,1)
E® = ~5%p (Zeﬁa Vo ) = —ma‘o,; Zeyx
i=1 i=1
wa*lye* A (i) Al
= Tixn 2 .

i=1
1 & 1Y
— () __(c,i) /() Ce,0) _Cx,0) y ()
Een==32 € 0w Vo' +5 D€ 0us Vo
i=1 i=1

612

N

|
IO

(x,1) (¢, i)\ Gk,i)
(%ﬁ — Oug )eﬁa s (22)
1

=0

1 o .
Eine = —5 6(*’”"5')(2052’”(&]-))
i=1 J#i
na (.0) _(c,)) ) _(c.i)
=—— [eﬁa' O’ (Rij) + €52 0,5 (Rip]-

(i)
(23)
The above expressions are specific to 2D, for a global strain
corresponding to simple shear under the linear approximation.
Thus e;’;’, = % here, and the traceless eigenstrain takes the form
65;’) =2e*nVn®.
The form of Ej, is not final, and we bring it to its final
form in Appendix C. The final result is

E(e*)2ma? : 2 i , , 4
Eine = _M Z (Ri) |:—8{(1 —2v)+ (Ri> }(4(ﬁ(l) - AVDYHD f-ij)(ﬁ(J) ) — 207 . f'ij)z — 209 . f.ij)z +1)

8(1 —v?) ) ij ij

2 2
+4(2(1 —2v) + <Ri) )(2(1‘1(” DY 1) — 8(1 — 2(%) )(2(ﬁ<i> £ — DRAYD )7 — 1)

ij

ij

2
a A) & va() & val) A NO NOR
+32<1 - (R_> >((n(’) )@Y @AY - AY) — @O - 1P R - rij)z):|» 24
ij
where f.ij = );g—:j

Our task is now to find the configuration of ' Eshelby quadrupoles that minimize the total energy. Obviously, if the external
strain y is sufficiently large, we need to minimize E*° separately, since it is proportional to y. The minimum of (21) is obtained

for

ng) :n(y[) = —

Substituting this in Eq. (23) simplifies it considerably:

1
. 25
7 (25)

Ep = TCEVE 3 <i>2{—8[(1 —20)+ (i)z] +4[2(1 — o)+ (iﬂ
me = 8(1 _ ])2) (l]> R” Y R” Y R”
a 2 a 2
- 8|:1 - 2(-) }[2@ ) — 1+ 32[1 - (—) ][(n R — (i .f,,)“} } (26)
Rij Rij
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We can find the minimum energy very easily. Denote x;; = (# -
#;:)?, and minimize the expression A[2x;; — 17 - B[x,J

2] . The minimum is obtained at x;; = x = 1/2, meaning
that all the #;; = # and this unit vector as an angle with
cos¢ = +/1/2. We thus conclude that when the line of
correlated quadrupoles forms under shear, this line is in 45°
to the compressive axis, as is indeed seen in experiments.
Of course there are two solutions for this, perpendicular to
each other. Note that for other external strains which are not
consistent with a traceless strain tensor (or in three dimensions)
this conclusion may change.

The physical meaning of this analytic result is that it is
cheaper (in energy) for the material to organize N quadrupolar
structures on a line of 45° with the compressive stress, all
having the same orientation, than any other arrangement of
these A/ quadrupoles, including any random distribution.
This explains why such a highly correlated distribution
appears in the strained amorphous solid, and why it can only
appear when the external strain (or the built-up stress) are
high enough. This fact, in addition to the observation that
such an arrangement of Eshelby quadrupoles organizes the
displacement field into a localized shear, explains the origin

PHYSICAL REVIEW E 87, 022810 (2013)

A. Expression for E,

The energy term E.g, was given by Eq. (22) which can be
rewritten as

- Ze(*')caﬁya (e55? — el(fgi))

i 3—4v i
(x,0) (Cx,0) (x,1)
— E:e;a Ca,gya< € —4(1_U)ey§ ) cf. Eq. (7).

i=1
N (*,)

a (1)
= S 0 s 27
2 2 Ceprig @7

For an isotropic matrix, using Eq. (9), we have

caﬂy(;e W = xaaﬂsyae D 10(8ay 8ps +5a55ﬂy)e;*;”

i E
_ (CHIN (*1)
—Z/Léaﬂ _1+U af (28)
for a symmetric traceless eigenstrain. Using Eq. (28)
for circular inclusions each of radius a in 2D, we
obtain

. . oy 2 N
of this fundamental instability. E Ta £ L) ) 29)
ST & €po Cap -
V. ESTIMATE OF YIELD STRESS AND NUMBER OF Now,
ESHELBY QUADRUPOLES g€l = (€220 — 84p) (24540 — 854)

In this section we turn to estimate the yield stress and
the associated density of Eshelby quadrupoles. To this aim
we need to compute one other energy term that was not
needed until now, namely E.g,, which was the same for all
the configurations of the quadrupoles.

= 2(e™ )2, (30)
For all eigenstrains equal (i.e., € = €*), we have
Ema’ N (e*)?

41 —v2) D

esh =

B. E;, for a line of equidistant quadrupoles with the same polarization

At this point we need to compute the energy term Ej,. for the special configurations of A/ quadrupoles that are equidistant
and with the same polarization, organized in a line. In this case we have

0¥ =h, F=f

Starting from Eq. (26) we specialize to the present situation,

S(e*)zna

Einc =
=1 j,j>i

and R =|j—i|R. (32)

SR L @ gl o (@ g e - () g

a\? 1 o A ) a2 1 A a2 n ad
_8[1—2(5) (j_—i)z][z(n.r) 1 +32[1_<E) (j_i)z}[(n.r) —(n.r)]}. (33)

For (i - )> = 1/2, the above expression reduces to

. E(e*)*n azNl N a\’ a\* 1
T 2 12[]—1)2( > _3<§) <j—i)4]' oY
We have
N-1 N 1 N—-1N—-i 1
Z —— = —~N¢@s) for N> 1, (35
i=1 j=i+l G=0 -
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-0.05F

FIG. 4. (Color online) The total plastic energy for the creation of
an array of quadrupoles with line density p for three values of y:
y=% —01,y=y —005andy =y,.

where ¢ (s) is the Riemann zeta function. Thus we obtain

E(€ma’ N a\’ a\*
S [2(5) co-a(5) ) @

At this point we realize that the distance R between
the quadrupoles is not determined. We will choose R by
demanding that the line density of the quadrupoles remains
invariant in the thermodynamic limit, or R = L/A/. Thus, with
o = N/L, the energy density in the strip L x a reads

Einc _ S(e*)znap
La  2(1—1?)
Similarly from Eq. (31), we obtain

Eeqv  Ema(e*)?

Eine =

[2(ap)*¢(2) — 3(ap)*¢@®)].  (37)

=—— " p. 38
La ~ 41—n»)" (38)
From Eq. (25) we have
E>® malye*
Z 777 . 39
La = 20+v"” G
Thus the plastic energy density is given by
E(P,V) _ E® + Eesh + Einc
La La
En(e*)? )4 3 5
= —F|A(1— — —B C ,
20— ) ” pa (pa)” + C(pa)
(40
where A = 1,B = 4¢(2), and C = 6{(4). y, is defined as
6*
=—. 41
T 41)

Equation (40) is plotted, using the numerical values of the
parameters found in our numerical simulations in Fig. 4 for
various values of y. For y < y, the minimum of the expression
is attained always at p = 0, and the shear localization cannot
occur. Only at ¥ > y, a new solution opens up to allow a
finite density of the Eshelby quadrupoles. Therefore y, is by
definition the yield strain.

VI. SUMMARY AND CONCLUSIONS

We have presented a theory of the fundamental instability
that leads to shear localization and eventually to shear

PHYSICAL REVIEW E 87, 022810 (2013)

bands. One remarkable observation is that the natural plastic
instability that occurs spontaneously in our simulations results
in a displacement field that is surprisingly close to the one
made by an Eshelby circular inclusion (see Fig. 1). The best fit
for the parameter a, of the order of 3.4 is in agreement with the
intuitive belief that shear transformation zones involve 30-40
particles, as wa”® would predict. Basing our analysis on this
similarity we could develop an analytic theory of the energy
needed to create N\ such inclusions, whether scattered in the
system randomly or aligned and organized in highly correlated
shear localized structure. We discover that the latter becomes
energetically favorable when y exceeds y, = ﬁ In our
system v & (0.363, and with our best fit €* ~ 0.09 we predict
¥, ~ 0.07 which is right on the mark as one can seen from
Ref. [11].

While we believe that our calculation of the energy of
N quadrupoles is accurate for densities such that pa’ <
1, the interaction between the quadrupoles become much
more involved for higher densities, and we avoided this
complication. The consequence is that we cannot predict a
priori the critical density of our quadrupoles, and we leave
this interesting issue for future research. Another issue that
warrants further study is whether the parameters a and €* are
material parameters which are determined by the small-scale
structure of the glass, and if so, how to estimate them a priori.
In addition, are these parameters dependent on the way the
system is stressed, i.e., via shear or via tensile compression, etc.

Next we need to discuss the difference in behavior of
glasses that were quenched relatively quickly and those that
were quenched relatively slowly. In our simulations we find
that the latter exhibit the fundamental shear localization
instability again and again along approximately the same
line, accumulating displacement that develops into a shear
band. On the other hand the former tends every time to have

-19900 - B

-20000

-20100

-20200— B
1 . 1 .
0.06 0.08 0.1 0.12

0.5]

FIG. 5. (Color online) Repeated shear localization instabilities in
the case of slow quench. (Upper panel) The energy vs strain and the
instabilities that were chosen for display in the lower panel. (Lower
panel) The average nonaffine displacement fields up to the instabilities
that are marked in the upper panel. The point to notice is that the insta-
bility falls repeatedly on the same band, accumulating to a shear band.
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plastic instabilities at different places, sometimes localized
and sometimes more correlated, and on the average this then
appears like a homogenous flow. This difference is stressed in
Fig. 5 where the case of slow quench is exhibited. It appears
that rapidly quenched systems may have plastic instabilities
almost everywhere, and there is no special preference for one
line or another. Slowly quenched systems are initially harder
to shear localize, but once it happens in a particular (random)
line it is likely to repeat again and again along the same
line. Making these words quantitative is again an issue left
to future research. In particular, it is interesting to find what is
the precise meaning of fast and slow quenches, fast and slow
compared to what, and how this changes the microscopic local
structure.

Finally, the effects of temperature and finite strain rates
on the present mechanism constitute a separate piece of work
which, of course, is of the utmost importance. Like the other
open subject mentioned above, it will be taken up in future
research.
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APPENDIX A: THE DISPLACEMENT FIELD OF
AN ESHELBY CIRCULAR INCLUSION

1. Solutions of the Lame-Navier equation

We look for linear combinations of derivatives of the radial
solutions of Eq. (17) which are linear in the eigenstrain €/ 5 and
go to zero at large radii. In addition, the terms must transform
as components of a vector field. Such a solution can be written
down as

B , dlnr N P lnr
Uy = A€gg——— €y oo
0Xp Y9X,0Xp0X,
L Cer 332 Inr) (Al)
€ —
PY 9X,0X40X,

where X, is the o component of the position vector with the
origin at the center of the Eshelby quadrupole, and r = | X|.
It can be checked that any other terms are either zero, do not
g0 to zero as r — 00, or do not transform as components of a
vector. We re-write Eq. (16) as

1 Ous, 9u
+ =0, (A2)
1—2v) 8X,0X, = 0X0Xg

which is the equation for the constrained displacement field in
the elastic matrix subject to appropriate boundary conditions.
From Eq. (A1), we obtain

d%u’ L, 0 02 . 93 a2 . 3 02 )
——— =A¢,,— | === Inr | + Be,, Inr |+ Ce, rilnr| . (A3)
0Xg0Xg 13X, | 0Xs0Xg 7"9X,0X,0X; [ 0X50Xp " 9X,0X,0X; [0Xp0Xp
We need the following identities:
2
—(Inr) =0, ———(*Inr) =41 4. A4
Xp0%, ) ax,0x, M) =dlnrd Bd)
Thus we obtain from Eq. (A3),
d%u’ . 33 Inr
e _gper 0N (AS)
0Xg0Xg 7" 9X,0X,0X;
Similarly, the expression for
9%us, 92 [ , dlnr .,  &nr . 3¢ Inr) }
= € — € T €Y v av
0X,0X, 0X,0X, "aX, "9X,0X,0X, 0X,0X,0X,
d , 9Inr . d*Inr . 3*(r*Inr)
— | AC o 4 Bely e Cefy D (A6)
Xy 0X,0X, 0X,0X,0X,0X, 0X,0X,0X,0X,
which can be rewritten (noting that the second and third terms involve the Laplacian for which we have identities from Eq. (A4)]
as
9%us, d , 9*Inr +Cer 9% (4Inr +4)
= € € ————
XX, 93X, | 7"9X,0X, ™ 9X,0X)
(A+40) e, o107 (A7)
= €, ———————————.
™ 9X 00X, X,
Plugging expressions (A5) and (A7) in Eq. (A2), we thus obtain
A+4C 2’1 3’1 A %1 A
(4 + )e"‘A r + Ce*kizo + E*A$:O:>C=——. (A8)
1-2v "03X,0X,0X, " 9X,0X,0X, 2v 7"9X,0X,0X, 8(1 —v)
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We can thus rewrite Eq. (A1) as

. , 0lnr ., 0’lnr A, ¢*Inr)
u, = Aeyg—— + Beg — €5 . (A9)
dXg VX, 0X50X, 8(1—v) PY3X,0Xs0X,
The following identities are now required:
dlnr _ ﬁ
8X/3 }’2 ’
PInr  =2r*(Xadpy + Xpday + Xy 0ap) + 8Xo X4 X, (AL0)
0X,0Xp0X, ro ’
O (r?Inr)  2r’(Xodp, + Xpday + X, 84p) — 4Xo X4 X,
0X,0Xp0X, r ’
Using these relations we can rewrite Eq. (A9) as
. . Xp . [—2r2(XoSpy + XpSay + X, 8ap) + 8Xa Xp X,
u, = Aewﬂr—2 + Beg, [ 3
AL 2r2(Xo8py + Xpday + X, 8ap) — 4Xa Xp X,
8(1—v) 7 r4
A Xp |28, 4 * (Xo8gy + Xg60y + X, 80) + L S P (A11)
= € p— — | — € o o o —r € o .
R I S It A A O IR YO WY, P

Remembering that the eigenstrain is traceless,we find that €, (Xadp, + Xpday + X, 8ap) = 2€,5 X p using which we can simplify
Eq. (A11) to obtain

. [A 4B A N L Nt Xx
U, =|—-———————|€ — 4+ —— | X4€
S R YOI, Ve N T Y R P R
Alz 4Bl |34 Xoeh, X5X (A12)
=|5————|¢€ — 4+ —— | X,€ .
P YT N A P YO RS P R ot

At r = a (the radius of the circular inclusion), the form of expression Eq. (A12) must match the form of the constrained
displacement field of the inclusion which from Eq. (7) is 43(1_1‘3) e;ﬂ Xg. Thus the coefficient of the second term in expression (A12)
must go to zero at the inclusion boundary, which gives us

8B n A

a®  2(1 —v)a*

=>B=——. (A13)

Thus we have

. [A1-20 4 —a?A 7, 8 —a’A A
”“Z[722(1—1))_r_416(1—u)]eaﬁxﬁ+[r_616(1—v)+2(1—u)r4
:L[z(l—sza—z}e*x +L|:l—£i|X€*XX.
4r2 (1 —v) r2 TP T (1 =) p2 | CeTBr R pty

}Xae;;yxﬂxy

(Al14)
And the value of u, at r = a should match the value obtained from Eq. (7), implying

34y A g 3 _AG—a) A1)
d0—v 40-na Y T i0-w _d0-va —a

The expression for u{, becomes

e 1 a’ a*\7 . 1 a’ a*\7 ., XoXpX,
=iy () 2020 (5) Janmes s ()1 ()] 285 oo

From Eq. (4), we have ezﬂ = €*(2f4fig — Sup) and thus

s Xp = €20 - X) — Xal.  Xpep, X, = € XpQgh, — 85,)X, = €*[2(0 - X)? — r?], (A17)
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allowing us to write the final vectorial expression for the displacement field:

o€ (a a? s [a? a®\1[2@ - X)? -
) N [N ) e

We can also derive expressions for the constrained stress and strain fields. Noting that

af(r) Xp BR-X)
e —f() —f(r)r, 5%, =

(A19)

we obtain

ug, ol €* a’ a’
- = 55 Lo = ()20 -2+ (55 e - xa
€* a? ] a? 2(ﬁ-X)2 1y
+2<1—v><r_2>{ ‘(72)” A } }
< st = (EY) —a(“V prui - %) - xu1x Y DY a
‘4(1—v>{_ - ‘”(74) ( >}{ el ) = Xed ”4(1_\,){ - ”)(r_2>+<r_4>}
o € 2a> 4a*\ ) [2@8 - X)?
< iois =+ 55| (57 + (5 )T - 1 e
€ a> AR - Xng 4R X)X € a 2 - X)2
+2(1—v>{<r_2>_<r4>” = = }X+2(1—v){< >_<_4>H }8“’3
G, € a* a? LX) X, Xp o [d? 2
=5 =m0 ()57 - 2 () -2+ () o -
a? a®\ | [2G- X) XoXg a? A\ [@-X)ng (- X2 Xp) Xe
(SN (- N -2
a? a*\ ) (2@ - X)?
25 )= ()N 1) =

3
"")13

Thus the expression for €., = 2(8 X T

¢ oo a> a A-X\ (AeXp  ApXy XoXp
=i (e GNP 57 5]
a > a? 2(f - X)? XoXp
+2<—2) 2(1—2v)+( >}{2nan5 aﬂ}—s(r—z) { 1} =
a a A-X\ [ Xop  Xpha A X)?2 X, X
() [ (N5 (e ) ]
2 - X)?
(-GS w2t

allowing us to write the final expression for the constrained strain in the matrix,

N a? a? B-X\ (A Xpg  ApXe\  XoXp
o0 =g (o GO+ 257) - 52
2 2 2
() - () s s o)1 22 25 - |5
f-X\ ([ Xoip  Xpha (h - X)? XoXp
e O (G [ G R
2
(){ (%)}{—Z(“rzx) 1}54. (A22)
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The trace of €, is not zero in the elastic medium and is given by

. e* a? a? fi-X\?
g - G -
a? a®\) (2@ - X) a? a*\ | (2@ X)
SN e (RPN )] o
B €* a? a’ A X\? a*\ (a 2(i X)2
== o () (IRCT) (5P ]
\ 1-2 2\ [2(h - X)?
()R

We are now in a position to calculate the constrained stress in the elastic medium due to the deformed inclusion. It is given
by the expression,

£ Ev Ee* Eve* [a®\ (26 - X)
£ — ¢ € Sqp = ——[.0n. - — |1 ——— — 1 {dup, A25
T T U — ™™ T aa =] (1—v2)( 2){ r2 } ’ (A25)

where [.....] is the expression inside the square brackets in Eq. (A22).

2. Constrained displacement field—Cartesian components

It proves useful to have the explicit Cartesian components of the displacement field for computational and graphical purposes.
If we consider the unit vector 7 making an angle of ¢ with the positive direction of the x axis, then the Cartesian components of
Eq. (A18) are

*

€ a’ a? .
uy = < >|:2(1—2v)+< )i|[2COS¢(XCOS¢+ys1nq’))_x]
4(1 —v)
S ()[R
1{x
2(1—v) )
2
= = 4(1_v)< )[2(1—2v)+<“ ):|[x0032¢+ysm2¢]
f) 1 — ( > (x2 — y?)cos 2¢p + 2xy sin 2¢
2(l—v) r2 [ ][ 2 :|,
c aZ Clz
uy = 4(1 — <—2> |:2(1 —2v)+ ( >:| [2sin¢ (x cos¢ + ysing) — y]
a’ 1— 2 (x cos ¢ + ysin¢)? 1
i () |l
¢ a- 2(1 = 2v) Cl2> 5 2
R 4(1—v) 2)[ (1=2v +< }[xsm ¢ — ycos2¢]

a? (x2 — y?) cos 2¢ + 2xy sin 2¢
e (_2> [1 ( >][ 2 }y' (A20

APPENDIX B: CALCULATION OF THE ENERGY OF N QUADRUPOLES

Equation (19) can be rewritten using €, = 1/2(uq,g + g o) as

N
_ 1 (1) (1) @) 1 (m) (. (m) (m)
E_Zg/. apf “’3+uﬂ°‘)dv+2/‘/_z{v_lvgn%ﬂ(aﬂ+uﬂa)dv (B1)
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Using the symmetry of the stress tensor, we obtain

1
(t) @) (m) (m)

2 OupllpodV + 5 / Oy Uy QdV. (B2)
/ P 2 Jy sy, v T

We also have the identity,

OupUB.a = (Gaﬂuﬂ),a — OgB,alp = (Gaﬁuﬁ),av (B3)

if there are no body forces. Thus we can write Eq. (B2) as

1
(i) (:) AV 4~ (m), (m) B4
Z /(’) aﬂuﬁ * 2 ~/‘~/Z;N=1 Véi) ( O‘ﬂ /3 ) O‘dv. Y
Using Gauss’s theorem to convert these volume integrals into area integrals, we obtain
Z /S o uDa0as Z / ol Alds + 5 /S UV, (B5)

where A and A are unit normal vectors both pointing outwards, respectively, from the inclusion volume V; and the matrix
boundary. Equation (B5) can be rewritten as follows:

1 )
_ (m) ) A~ (00) @) (@) (m) (m)\ A (i)
E = 2[3«) A, dS + = E /;m Oupll — Ogp Ug )na ds

1 .
= g% () 5 @, @ _ 5 m), (m)y s
= E =205, /S( ) AC9ds + 1 § / Oapily — Oy ug")AYdS

1
D, @) (m) (m) (@)
= E = JogenV + 5 Z/m oy — ol uf")alds. (B6)
Thus we can write using the expressions earlier written down in Eq. (15):
N
e (X) = ey + Z i), oy (X) =05 + Z og5"(X), ulP(X) = ulOX) + > ul(X), (B7)
i=1

where e;;;i)(f( ) indicates the constrained strain at location X in the matrix due to the Eshelby labeled with the index i, etc. We
also have for locations X inside the inclusions,

(l)(X) = EL%O) + ZG(C,j)()?) + Eg}gi) _ E;;'i), (l)(X) (OO) + ZU(C j)(X) + O_(L 4 (*,[),

J# JF#
oo - . A (B8)
uD(X) = ul® + Z uDN(X) 4+ ule — eé’;l)Xﬁ,
JF#L

where € is the eigenstrain of the ith Eshelby and so on. Note that in the expression for the strain in the inclusion given by

Eq. (B8) we have removed the eigenstrain from the constrained strain e((ljs’i) — eg;;i) leaving only the elastic contribution in order

to calculate correctly the elastic contribution to the energy. Using these expressions, the elastic energy of the system can be
written from Eq. (B6):

1 A
(00) (00) @, (@) (m)_ (m) A
E=30u oV + 5 E /m (agtty’ — g ug” )iy ds. (B9)

Since the traction force has to be continuous at the inclusion boundary (Newton’s third law), we have

(1) NGO G(rg) i)
o

Oy at the inclusion boundary, (B10)

which gives us from Eq. (B9),

1 00 () DAD (Y — 2
E=2o, eV +5 Z/ ouphl u")ds. (B11)
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We also have from Eqgs. (B7) and (BS),

uy —uf” = —egi"X,. (B12)

On plugging this expression into Eq. (B11) gives us finally

N
1
(00) (00) oD p @ D)
E =305 ¢ V = § /s‘“ e X\ dS

1
(oo) (00) (*z) @)
== 20""3 €po V — /m X
1 (00) () (*z) (z)
= = 2001/3 €par Vv — 8 «dV
LRCONCS) 1 @ () 0
= E =06V =5 Zvo b oag (B13)

i=1
where of, ol wp =1/ Vg )fv, (’)dV Using the expression for ao([js) from Eq. (B8), we obtain
0 DX) ~ ol + 3 IRy + 05 — o, (B14)
J#
Equation (B14) is a far-field approximation that assumes that R;; > a. As R;; — a clearly the spatial integrals contributing to

oof’ﬂi must be computed explicitly and cannot be replaced by the single distance R;; between the centers of the Eshelby inclusions
iand j.
Using expression (B13) we obtain

1
_ (00) (c0) (00) (* i)y, () (* l) (c i)y, () (€ 1) C,0) /(@) ( @) (e, ))
E = 200(5 B V- (E Vo ) E Vo + E €pa Ogp Vo' — E e*')V ( E Oup (R,J))

J#L
= E= Emat+Eoo+Eesh+Einc, (B15)
where all these terms are defined in Egs. (20)—(23).

APPENDIX C: THE FINAL FORM OF E;,

We can also explicitly write Ej,. showing its linear dependence on the eigenstrain by using Eq. (23). This gives us

77,’(12

Eine = ———€" ) [0 — dup)o,s” (Rip) + (20DA) = Sup)o,” (Riy)]. (1)
(i)

Plugging Eq. (A25) into the above equation, we find that the term inside the square braces in Eq. (C1) can be written as

s () A~0) AP wii ~ (i) v (i) INORE )] (@) v ())
_ Ee* 20’y — 8up) [_4<i)2{(1 s <i>2}{<n .x1><ng>xﬁf L Xa’ > XXy }
4(1 —v?) R;; R;; R;; R;; R;i; (Rij)*
a \? a \? ) al0) a \? a \2) (20 . X2 Xg")X,(gu)
(=) {20 —20) + (= ) H2a%3D — 84} —4( =) {1 -2( — 1 /
Rij R;; R;; R;; (Rij) (Rij)
4( a )2{1 ( u )2}{(ﬁ<i>.i<ij>><xif”ﬁ§> Xf;'f’ﬁg)) S XD Xijf)ng)}
() {1~ + -
R;; Rij R;; R;; R;; (Rij)? (Rij)?

5 5 L R
a a 2@ - X ))2 Eve* (a®\ (209 - X@))2 () ali) .
+2(R—,,.) {1‘<E> HW—I b |~ T ) AP e e ),

(C2)

where X indicates the vector joining the centers of the Eshelby pair labeled as i and j, and (i <> j) in Eq. (C2) represents the
term obtained by exchanging i and j.
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In order to simplify Eq. (C2), we need the following identities:

PHYSICAL REVIEW E 87, 022810 (2013)

o SO RN LAOXE A0 x @D XD x )

(2249 —aaﬁ){(" )( = £ 42 )— “ }+ (i < J)

R;; Rij R;; (Rij)

RO L XEDN AD) . XD O . X\ 2 AU . X\ 2
= 8a® . 4V -4 —4——) +2 (C3)
(2007 — 84s) (20070 — bug) + (0 > j) = 412G - AP) - 11, (C4)

' X D) x i) A . XEDN2
NGO “ 7B ; N

(0P — bug) > ) _2[2(T) —1], (C5)

) a0 . XN (xga x§0a0 @© . Xy X$ X o
(2’102] g — Saﬂ) - > (<)
R;; R;; R;; (Rij) (Rij)
AD . XN /pWw . XD , , AD . XEDN2 W) L XD 2
() () =(5) () @9
(AR — 84p)8ap + (i <> j) = 0. (C7)

Using these identities, we can write the final expression for the interaction energy in the form shown in Eq. (24).
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