
PHYSICAL REVIEW E 87, 022809 (2013)

Scaling of earthquake models with inhomogeneous stress dissipation
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Natural earthquake fault systems are highly nonhomogeneous. The inhomogeneities occur because the earth
is made of a variety of materials which hold and dissipate stress differently. In this work, we study scaling
in earthquake fault models which are variations of the Olami-Feder-Christensen and Rundle-Jackson-Brown
models. We use the scaling to explore the effect of spatial inhomogeneities due to damage and inhomogeneous
stress dissipation in the earthquake-fault-like systems when the stress transfer range is long, but not necessarily
longer than the length scale associated with the inhomogeneities of the system. We find that the scaling depends
not only on the amount of damage, but also on the spatial distribution of that damage.
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I. INTRODUCTION

A recent paper [1] shows that introducing inhomogeneities
or damage into simple models of earthquake fault systems can
account for several features associated with Gutenberg-Richter
(GR) scaling. In this approach, the event size scaling relies
on a spinodal critical point [2], in contrast to other proposed
sources of GR scaling such as self-organized criticality [3,4] or
the scale invariance of the individual fault length scales [5,6].

In Ref. [1], damage was distributed randomly in the models.
In real faults, the spatial arrangement of fault inhomogeneities
is dependent on the geologic history of the fault. Because this
history is typically quite complex, the spatial distribution of the
various inhomogeneities occurs on many length scales. One
way that the inhomogeneous nature of fault systems manifests
itself is in the spatial patterns which emerge in seismicity
graphs [7,8].

Despite their inhomogeneous nature, real faults are often
modeled as spatially homogeneous systems. One argument
for this approach is that earthquake faults have long-range
stress transfer [9], and if this range is longer than the
length scales associated with the inhomogeneities of the
system, the dynamics of the system may be unaffected by
the inhomogeneities. However, it is not clear that this is the
case. Consequently it is important to investigate the situation
in which the stress transfer range is comparable to or less
than the length scales associated with the damage or stress
dissipation inhomogeneities. A goal of this work is to further
test the approach to GR scaling developed in Ref. [1] against
the inclusion of spatially inhomogeneous damage.

In this work, we study scaling in cellular automaton
models of earthquake faults. We use a variation of a model
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introduced initially by Rundle, Jackson, and Brown (RJB) and
reintroduced independently by Olami, Feder, and Christensen
(OFC) to explore the effect of spatial inhomogeneities in
earthquake-fault-like systems when stress transfer ranges
are long, but not necessarily longer than the length scales
associated with the inhomogeneities of the system [10,11]. For
long-range stress transfer without inhomogeneities, as well as
randomly distributed inhomogeneities [1], such models have
been found to produce scaling similar to GR scaling found
in real earthquake systems [12]. It has been shown that the
scaling found in such models is due to a spinodal in the limit
of long-range stress transfer [13,14].

In the earthquake lattice models we use in this work
we introduce inhomogeneities in the way that stress is
dissipated. Stress is dissipated both at the lattice site of
failure (site dissipation) and at neighboring sites which are
damaged (damage dissipation). Spatial inhomogeneities are
incorporated by varying this stress dissipation throughout the
system in different spatial arrangements. We find that the
scaling for damaged systems depends not only on the amount
of damage, but also on the spatial distribution of that damage
as well as the relation of the spatial damage or dissipation to
the stress transfer range. Studying the effects of various spatial
arrangements of site dissipation provides insights into how to
construct a realistic model of an earthquake fault which is
consistent with Gutenberg-Richter scaling.

II. MODEL

We use a two-dimensional cellular automaton model of an
earthquake fault which is a variant of the RJB model [15,16]
and closely resembles the OFC model [11]. We begin with
a two-dimensional lattice with periodic boundary conditions,
where each site is either dead (damaged) or alive (active). Each
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live site i contains an internal stress variable, σi(t), which
is a function of time. All stress variables are initially below
a given threshold stress σ t and greater than or equal to a
residual stress σ r (both of which we assume to be spatially
homogeneous). Sites transfer stress to z neighbors. Neighbors
are defined as all sites within the transfer range R. Initially we
randomly distribute stress to each site so that σ r < σi < σ t .
We then increase the stress on all sites equally until one site
reaches σ t . At this point, the site at the threshold stress fails.
When a site fails, some fraction of that site’s stress, given by
αi(σ t − σ r ∓ η), is dissipated from the system, where αi is the
site dissipation parameter (0 � αi � 1) which characterizes
the fraction of stress dissipated from site i, and η is a random
flatly distributed noise. The stress of the site is lowered to
σ r ± η and the remaining stress is distributed equally to the
site’s z neighbors.

To model more realistic faults, we use systems which are
damaged, meaning they have both alive sites, which obey the
rules outlined above, and dead sites, which do not hold any
stress. Following Serino et al. [17], in addition to the stress
dissipation regulated by the site dissipation parameter αi , we
specify that any stress which is passed to a neighboring dead
site also gets dissipated from the system. We can therefore
regulate the spatial distribution of stress dissipation from the
system with the distribution of the αi and the placement of
dead sites on the lattice. After the initial site failure, all live
neighbors are then checked to see whether their stress has
risen above σ t . If it has, this site goes through the same failure
procedure outlined above until all sites have stress below σ t .
The size of the avalanche is the number of failures that stem
from the single initiating site. We refer to this whole avalanche
process as a plate update.

Because stress is dissipated from the system both at the
site of failure (as regulated by αi) and through dead sites
which may be placed inhomogeneously throughout the system,
we may think of each site i as having a parameter which
incorporates both types of dissipation, γi = 1 − φi(1 − αi),
where φi is the fraction of live neighbors of site i. The mean
value γ = ∑

i γi/Na, where Na is the number of live sites, is
the average fraction of excess stress dissipated from the system
per failed site.

We will want to compare the scaling in these systems
with the scaling in simpler systems with no damage or with
uniformly distributed damage. Klein et al. [9] studied the
mean-field limit of OFC models with no damage and found
that the number of avalanche events of size s is associated with
a spinodal critical point and obeys the scaling form

n(s) ∼ e−�h sσ

/sτ , (1)

where τ = 3/2 and σ = 1. [Note that n(s) is the number
of events of size s, which is the noncumulative distribution,
rather than the number of events of size s or smaller, which
is the cumulative distribution often discussed in relation to
the Gutenberg-Richter law.] The quantity �h is a measure of
the distance from the spinodal and vanishes as the dissipation
parameter α → 0. In previous work [1,9], the authors have
taken αi = α = constant. In this limit, Eq. (1) approaches a
power law.

Serino et al. [1] showed that lattices with a spatially uniform
distribution of damage also obey the scaling form of Eq. (1),

(a) (b)

(c) (d)

FIG. 1. Various configurations of 25% dead sites (in black) for
lattices with linear size L = 256. Lattices contain (a) dead sites
distributed randomly, (b) blocks of various linear sizes ranging from 1
to L/8, where each block has p randomly distributed dead sites with
p varying for each block, (c) dead blocks of various sizes, (d) dead
blocks of a single size L/16.

where �h also depends on q. In fact, long-range damaged
systems with a fraction φ = 1 − q of live sites and constant site
dissipation parameter αi are equivalent to undamaged systems
with site dissipation parameter α′ = 1 − φ(1 − α). These
systems approach the spinodal (�h → 0) as the total stress
dissipation from the system vanishes: α′ → 0. Physically,
stress dissipation from the lattice system suppresses large
avalanche events.

III. QUALITATIVE BEHAVIOR OF SCALING

First we study the case with constant αi = α and damage
distributed inhomogeneously throughout the system. In Fig. 1
we show two-dimensional lattices of linear size L = 256 and
25% of the sites dead. The lattices have various distributions
of the dead sites, with various levels of spatial homogeneity.
Figure 1(a) has the dead sites randomly distributed throughout
the system. (In the long-range limit, this corresponds to
homogeneous damage studied in Ref. [17].) Figures 1(b)– 1(d)
incorporate clustering of dead sites to various degrees. The
distribution of dead sites in Fig. 1(b) is set in the following
way: Sublattices of the initial 256 × 256 lattice are considered
with blocks of linear size L/2m with 3 � m � 8. (The m = 8
case is just the initial 256 × 256 lattice with blocks of size 1.)
With all sites initially alive, each of the largest blocks (of size
L/8) is “damaged” with probability pb. A block is damaged
by killing each site within the block with probability pd , which
itself is drawn from a Gaussian distribution with center c and
width w. Then each undamaged block of linear size L/16
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TABLE I. Averages and variances of γi for the lattices and
parameters given in Fig. 1 and for R = 16. The total number of
dead sites is equal to 25% of the lattice for all distributions.

Damage Distribution γ Variance

Fig. 1(a) 0.2514 2.5 × 10−4

Fig. 1(b) 0.2288 7.6 × 10−3

Fig. 1(c) 0.2062 9.5 × 10−3

Fig. 1(d) 0.1719 2.2 × 10−2

is damaged with probability pb and so on until all of the
undamaged blocks of size 1 are damaged with probability pb.

The parameters (pb, c, and w) are varied until the final lattice
has 25% damage. (The parameter choices are not unique for a
particular fraction of damage.) Figure 1(c) has damage set in
the same way, but with pd = 1. Figure 1(c) has blocks of dead
sites (“dead blocks”) where the blocks also range in linear size
from 1 to L/8.1 Figure 1(d) has randomly distributed dead
blocks with blocks of linear size of L/16 only. To characterize
each configuration in Fig. 1, we calculate γ and the variance of
γi for an interaction range R = 16 and αi = 0 ∀i. The results
are summarized in Table I.

Figure 2 shows n(s), the numerical distribution of avalanche
events of size s, corresponding to the various distributions of
damage in Fig. 1 for a stress transfer range of R = 16. Figure 2
also shows in black the best-fit lines of the data to Eq. (1). We
use a weighted nonlinear least-squares method with four fitting
parameters: τ,�h, σ , and an overall constant n0. Fitting results
are summarized in Table II. We note that the fit parameters are
highly correlated with each other.

Figure 2 indicates that the scaling f orm of the data
[Eq. (1)] remains the same in the presence of inhomogeneous
damage, supporting the general paradigm explaining GR
scaling in Ref. [1]. However, Serino et al. [1] found for systems
with spatially uniform damage (where τ = 1.5 and σ = 1)
that �h = q2, where q is the fraction of dead sites. This
relationship clearly does not hold for the data in Fig. 2 since the
lattices in Figs. 1(a)– 1(d) all have 25% damage but different
distributions ns, with different values of �h and σ. Therefore
the scaling behavior of systems with damage depends not only
on the total amount of damage to the system but also on the
spatial distribution of damage. In particular, large events are
suppressed more for lattices with damaged sites distributed
more homogeneously. [Note that we do not expect finite-size
scaling similar to that found in Ref. [1] because the values of
σ are different for the lattices of Figs. 1(a)–1(d).]

Because these lattices are identical in terms of size
(256 × 256), percentage of damaged sites (25%), and stress
transfer range (R = 16), the differences in the large-event
behavior are not due to the finite size of the lattice or the
finite number of active sites in the lattice. Furthermore, the

1Lattices shown in Figs. 1(b) and 1(c) are constructed with a variety
of length scales to reflect the fact that real fault systems are damaged
on a variety of length scales. However, the distribution of lengths
scales is arbitrary as the lattices in Fig. 1 are also constructed to show
a qualitative range from spatially homogeneous to inhomogeneous
damage distributions.
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FIG. 2. (Color) Numerical distribution of avalanche events of size
s for various spatial distributions of dead sites. Data correspond to
lattices and parameters given in Fig. 1 with stress transfer range
R = 16. Black lines indicate the best fits of the data to Eq. (1). Final
fit parameters of these lines are summarized in Table II.

results of Sec. III B indicate that the effect is due to the
spatial distribution of γi values and does not require any lattice
damage. The calculated quantities in Table I would appear to
indicate that the large-event suppression is correlated with both
higher values of the average dissipation parameter γ and lower
values of the variance of γ.

In order to better understand these results, we now study
the effect of the interaction range relative to the length scales
of inhomogeneities and the effect of clustering of dead sites.

A. Length scales

For any given distribution of damage, the system will act
as if the damage is homogeneous if the stress transfer range is
long enough compared to the length scales of damage of the
lattice. To illustrate the importance of relative length scales,
we consider more lattices similar to Fig. 1(d) where there is a
single length scale associated with damaged areas. In Fig. 3,
we place blocks of damaged sites of linear size b randomly in
the system which has constant αi = α. [Note that Fig. 1(d) is
identical to Fig. 3(c).] All lattices shown in Fig. 3 have 25%
dead sites and a linear system size of L = 256.

As we vary the ratio R/b, the measured value of γ varies
from γ = α for R/b � 1 to γ = 1 − φ(1 − α) for R/b � 1.
In the former case, the live domains of the system appear
nearly homogeneous with φi = 1 except near the boundaries
of dead blocks. The latter case is the limit of homogeneously

TABLE II. Summary of reduced χ 2 values and final fit parameters
corresponding to best-fit lines shown in black in Fig. 2. The data
were fitted to the form n(s) = n0 exp(−�hsσ )/sτ using a weighted
nonlinear least-squares method. (Standard error for fit of parameters
is smaller than the final significant figure given.)

Damage Reduced
Distribution χ 2 τ �h σ n0

Fig. 1(a) 1.21 1.47 0.0408 0.987 4.99 × 105

Fig. 1(b) 0.891 1.47 0.0569 0.821 4.97 × 105

Fig. 1(c) 0.979 1.49 0.0365 0.857 4.76 × 105

Fig. 1(d) 0.915 1.52 0.0299 0.719 4.61 × 105

022809-3



DOMINGUEZ, TIAMPO, SERINO, AND KLEIN PHYSICAL REVIEW E 87, 022809 (2013)

(a) b = L/64 (b) b = L/32

(c) b = L/16 (d) b = L/8

FIG. 3. Various configurations of 25% dead sites (in black) for
a lattice with linear size L = 256. Each lattice has dead blocks of a
single size b. Note that (c) is identical to Fig. 1(d).

distributed damage. In both limiting cases, the variance of
γi is small and the scaling is equivalent to the scaling for
an undamaged system with α′ = γ . In Fig. 4, we compare
distributions ns for the lattice systems in Fig. 3 for R = 16
and α = 0. As R/b gets small, the values of γ also get small.
The distribution ns of the corresponding data approaches a
power law with the exponent −3/2 (shown in Fig. 4 as a solid
red line) which is the form of the distribution of a system
at the spinodal [see Eq. (1)]. The best-fit lines of the data to
Eq. (1) are plotted in black. Fitting results are summarized in
Table III.
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FIG. 4. (Color) Numerical distribution of avalanche events of size
s for lattices and parameters given in Fig. 3, and with stress transfer
range R = 16. The straight red line ns ∼ s−1.5 is drawn to show that
the data are approaching a power law. Black lines indicate the best
fits of the data to Eq. (1). Final fit parameters of these lines are
summarized in Table III.

TABLE III. Summary of reduced χ 2 values and final fit parame-
ters corresponding to best-fit lines shown in black in Fig. 4. The data
were fitted to the form n(s) = n0 exp(−�hsσ )/sτ using a weighted
nonlinear least-squares method. (Standard error for fit of parameters
is smaller than the final significant figure given.)

Damage Reduced
Distribution χ 2 τ �h σ n0

Fig. 3(a) 1.03 1.47 0.0530 0.890 5.01 × 105

Fig. 3(b) 0.946 1.48 0.0588 0.801 5.00 × 105

Fig. 3(c) 0.915 1.52 0.0299 0.719 4.61 × 105

Fig. 3(d) 0.874 1.50 0.0216 0.644 4.30 × 105

B. Spatial distributions of dissipation

The spatial distribution of damaged sites determines the
spatial distribution of γi values. A more direct way to
control the numerical and spatial distributions of γi is to use
undamaged systems and vary the values of αi . In this way,
we can isolate the effects of spatial redistribution of γi values
while holding the numerical distributions of γi constant.

We construct three lattices, shown in Fig. 5, with site
dissipation only; that is, they have no damage and γi = αi

for each system. The color in the figure indicates the values
of αi. In Fig. 6, we show the numerical distributions of the
αi values p(αi) for the three lattices. We see that the average
value γ = 0.5 for all three systems.

The lattices shown in Figs. 5(a) and 5(b) both have a uniform
spatial distribution of αi values. However, as shown in Fig. 6,
the values of αi for the lattice of Fig. 5(a) have a Gaussian
distribution centered about αi = 0.5, while the values of αi

for the lattice of Fig. 5(b) have partial Gaussian distributions
and are clustered near the values of αi = 0 and αi = 1. Thus,
the variance of αi values for lattice 5(a) is less than the variance
for lattice 5(b). In Fig. 7 we present the numerical distributions
of avalanche events, n(s), for these systems when the stress
transfer range is R = 16. We have fitted the data to Eq. (1),
removing the data points s � 5 for the lattices of Figs. 5(b)
and 5(c) [which do not fit the form of Eq (1)]. Fitting results
are summarized in Table IV. Despite the different numerical
distributions of αi values, we see the distributions are similar

FIG. 5. (Color) Spatial arrangements of αi values for three lattices
with average value α = 0.5, no damage, and a linear system size of
L = 256. Values of αi are uniformly distributed in space for lattices
(a) and (b). Lattice (c) has high (and low) values of αi clustered into
blocks of linear size L/8. Numerical distributions of αi are shown in
Fig. 6.
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FIG. 6. Numerical distribution p(αi) of site dissipation parameter
values for lattices and parameters given in Fig. 5. Lattices in Figs. 5(b)
and 5(c) have identical numerical distributions, while the lattice in
Fig. 5(a) has approximately a Gaussian distribution centered about
αi = 0.5.

for the lattices of Figs. 5(a) and 5(b), which both have spatially
uniform distributions of αi values.

However, the results for the lattice shown in Fig. 5(c)
suggest that the spatial distribution of αi has a robust effect
on scaling, even when the averages and variances of αi are
the same. The lattices of Figs. 5(b) and 5(c) have nearly the
same numerical distributions of αi (Fig. 6), and therefore have
the same value of the variance of αi. The spatial distributions
of these two cases, however, are different: Lattice 5(a) has
a uniform spatial distribution of αi values, while lattice 5(c)
has high (and low) αi values clustered together into blocks of
linear size L/8 = 2R. Despite having equal values of αi and
equal variances of αi values, lattice 5(c) experiences much
larger events (by an order of magnitude.)

Evidently, the larger events depend crucially on the spatial
clustering of low dissipation sites. This is because failing sites
with low values of γi pass along a high percentage of excess
stress, encouraging the failure of neighboring sites. Thus, a
large earthquake event is more likely to occur if the initial site
of failure is well connected to a large number of sites with
low dissipation parameters. In our system, connectedness is
determined by spatial locality, so we require large clumps of
sites with low values of γi in order to allow for the occasional
large earthquake event.

IV. GUTENBERG-RICHTER SCALING

The Gutenberg-Richter scaling law states that the cumu-
lative distribution of earthquake sizes is exponential in the
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FIG. 7. Numerical distribution of avalanche events of size s for
lattices and parameters given in Fig. 5 and with stress transfer range
R = 16. Numerical distributions of αi values for these lattices are
shown in Fig. 6.

magnitude [12]. In terms of the seismic moment, which has
succeeded the Richter magnitude as the appropriate measure
for earthquake sizes, the law may be reframed to state that the
cumulative distribution of earthquake sizes, NM, is a power
law in the seismic moment, M [1]:

NM ∼ M−β, with β ≡ 2b

3
, (2)

and b is the so-called b value of the Gutenberg-Richter
law which has been measured for many real earthquake
systems. The seismic moment M is proportional to the size
of the earthquake in this model [18]. Therefore, the relation
appropriate for the systems considered in this work is the
cumulative distribution of earthquake size:

Ns ∼ s−β, (3)

or the corresponding noncumulative distribution

ns ∼ s−τ̃ , with τ̃ = β + 1. (4)

Serino et al. [1] construct a model for an earthquake fault
system consisting of an aggregate of lattice models, where
each lattice has a fraction q of homogeneously distributed
dead sites and q varies from 0 to 1. The individual lattices have
distributions consistent with Eq. (1), such that the pure power
law is achieved only for a lattice with q = 0 corresponding
to �h = 0. The weighting factor Dq gives the fraction of
lattices with damage q. Considering the weighting factor to be
constant with all values of q contributing equally to the fault
system, they find that the fault system obeys the scaling form

TABLE IV. Summary of reduced χ 2 values and final fit parameters corresponding to best fits of data for large event sizes in Fig. 7 to the
form n(s) = n0 exp(−�hsσ )/sτ using a weighted nonlinear least-squares method. (Standard error for fit of parameters is smaller than the final
significant figure given.) Fits use (at least) data points s � 6. We have reported a range of parameters because for the data points used, a range
of fits yields reduced χ 2 values between the values of 0.9 and 1.1.

α Distribution Reduced χ 2 τ �h σ n0

Fig. 5(a) 0.619 1.49 0.188 0.997 7.50 × 106

Fig. 5(b) between 0.9 and 1.1 1.36 < τ < 1.50 0.176 > �h > 0.128 0.950 < σ < 1.02 4.81 × 106 < n0 < 5.22 × 106

Fig. 5(c) between 0.9 and 1.1 1.45 < τ < 1.64 0.0945 > �h > 0.0248 0.677 < σ < 0.877 2.83 × 106 < n0 < 3.35 × 106
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FIG. 8. (Color) Numerical distribution for avalanche events of
size s for systems with uniform numerical distributions for αi , but
nonuniform spatial distributions of αi which are shown in the insets.
System size is L = 512 and stress transfer range is R = 16. Slopes
of lines in red are (a) τ̃ 
 2.07 and (b) τ̃ 
 2.10.

of Eq. (4) with a value of τ̃ = 2. They also consider a power-
law distribution of Dq and fit the exponent to correspond to
Gutenburg-Richter b values found in real earthquake systems.

There are two important differences between the model
considered by Serino et al. and our work: In the model treated
by Serino et al.,

(1) the damage is distributed homogeneously;
(2) the individual lattices with homogeneous damage q are

noninteracting.
We investigate both the effect of the spatial arrangement of

the damage and its relation to the stress transfer range as well
as the effect of stress transfer between regions with different
levels of damage.

We construct two lattice systems with a uniform numerical
distribution of γi which have scaling consistent with Serino
et al.’s systems with constant distribution Dq. The first model
essentially pieces together many homogeneous lattice systems:
The numerical distribution of αi values is uniform between 0
and 1, but spatially arranged into NB blocks of linear size B

[see Fig. 8(a) inset], where each block contains a random
distribution of αi values within an interval of size 1/NB.

There are no dead sites, so that αi = γi. The effects of the
boundaries between the blocks should be negligible if B � R.

In Fig. 8(a), we present data from a system with L = 512,

R = 16, and B = 64. The straight line shows the best fit to a

power law with exponent τ̃ 
 2.07, which is consistent with
the results for the aggregate lattice system of Serino et al. with
Dq = 1.

We find that the size of the blocks, B, need not be the
same for different values of αi . It is important that the boxes
with lower values of γ be large enough to accommodate
large avalanche events, but blocks with large αi may be small
because they are more likely to seed small avalanches. With
this in mind we construct a lattice system with cascading
length scales of blocks where the largest blocks have the
lowest αi values and decreasing sized blocks have increasing
values of αi. The scaling results are shown in Fig. 8(b),
where the red line drawn shows a power law with exponent
τ̃ 
 2.10.

V. CONCLUSIONS

We have studied both damage and site dissipation to inform
the development of models of realistic earthquake faults with
inhomogeneous stress dissipation. Spatially rearranging dead
sites on a given lattice affects the numerical distributions of the
effective stress dissipation parameters and the scaling behavior
of large avalanche events, depending on the homogeneity of
the damage and the length scales associated with the clustered
dead sites. However, by studying site dissipation we find
evidence suggesting that spatial distributions of dissipation
parameters crucially affect scaling behavior even when the
numerical distributions of dissipation parameters are the
same.

The nonlinear fits to Eq. (1) (Tables II–IV) suggest that
the scaling form remains the same in the presence of damage.
In particular, the value of τ, which is the scaling exponent
associated with GR scaling, was found to be close to 1.5
for all systems investigated in this work. The importance of
this result is that we have determined that the GR scaling
exponent is not sensitive to the spatial distribution of damage.
This suggests that the explanation for GR scaling developed
in Ref. [1] also holds for systems with inhomogeneous
damage.

However, the value of σ deviates from 1 in our nonlin-
ear fits for some systems. This poses new questions into
the relationship between the parameter σ and the largest
earthquake events and suggests a new line of investigation
into the relationship between the spatial structure of these
events and other aspects of earthquake phenomenology. For
example, lower values of sigma generated by nonrandom
distributions of dead blocks, as seen in Fig. 1(d), are linked
to an extended range of GR scaling behavior and an increased
number of the largest events. Studies [19,20] have found
that realistic damage rheologies can be related directly to
the range of dynamics and variety of behaviors associated
with earthquake faults. This includes such phenomena as
characteristic earthquakes and accelerating seismic moment
release. Here we find further evidence, using simple models
of damage, that the pattern and type of damage can be
directly related to the rate and magnitude of events at all
sizes.

The models studied here go beyond those previously pro-
posed by incorporating inhomogeneities with various spatial
structures into the lattice and allowing areas with different
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characteristic dissipation rates to interact. We stress again
that our results are consistent with the paradigm proposed in
Ref. [1] with no effect of the structure of the inhomogeneities
on the GR scaling exponent.
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