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Measuring information interactions on the ordinal pattern of stock time series
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The interactions among time series as individual components of complex systems can be quantified by
measuring to what extent they exchange information among each other. In many applications, one focuses not
on the original series but on its ordinal pattern. In such cases, trivial noises appear more likely to be filtered and
the abrupt influence of extreme values can be weakened. Cross-sample entropy and inner composition alignment
have been introduced as prominent methods to estimate the information interactions of complex systems. In this
paper, we modify both methods to detect the interactions among the ordinal pattern of stock return and volatility
series, and we try to uncover the information exchanges across sectors in Chinese stock markets.
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I. INTRODUCTION

In recent years, considerable techniques have been in-
troduced to measure the interactions among systems or the
information exchanges of individual components in single
systems. Cross-correlation coefficients and detrended cross-
correlation analyses were typically designed to analyze the
cross correlations for linear and nonstationary series [1–3].
Both methods are constructed on the covariance estimation,
while this may present spurious scaling behavior when the
external trend arises [4,5]. Many methods are based on the
evaluation of complexity or prediction, e.g., the inner compo-
sition alignment and Granger causality [6–8]. Many others
use information-theoretic tools, including mutual entropy,
conditional entropy, cross-sample entropy, and transfer en-
tropy [9–12]. Each method emphasizes symmetric information
exchange or asymmetric information transfer among complex
systems. These methods have been applied to such areas
of interest as physiology, economics, traffic, hydrology, and
geography [13–19].

Nowadays, the interactions among financial markets have
been extensively studied [20–25]. Specifically, the investiga-
tion on stock time series is an active area of research, which
may recommend the selection of an assets portfolio. Many
authors have focused on the composite indexes in nations
or regions, and a few have considered the performances of
individual companies or the sectors in stock markets [26–30].
Among these, they found high degrees of interdependence,
indicating the sectors were highly integrated and exchanged
information among each other. This paper modifies two promi-
nent methods—the cross-sample entropy [11] and the inner
composition alignment [6]—and tries to detect the interactions
across sectors in Chinese stock markets. Stock markets in
China have expanded rapidly following the establishment of
two stock exchanges in Shanghai and Shenzhen in the early
1990s, the activity of which may have real economic effects
now.

In this paper, we focus not on the original series but on its
ordinal pattern. The underlying ideas behind such applications
are as follows:
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(i) In stock markets, large trading volumes may not be
directly associated with high trading prices, while large trading
volume changes appear closely with respect to high trading
price changes [31–33]. It is often the case that the increase
of one variable accompanies the increase or decrease of
another variable. It is also expected to quantitatively detect
such information linkage in stock trading price, return, and
volatility across stock sectors.

(ii) In detail, a common issue of information-theoretic
measures is how to accurately estimate the probability dis-
tribution of time series. There exist numerous approaches to
estimate the probability distribution of the discrete variable.
A straightforward approach is based on frequency statistics
by covering the whole range of time series with equally
sized sections and counting the number of values in each
section, such as the histogram and kernel estimation, e.g.,
p̂r (xn) = ∑

n′ �(|xn − xn′ | − r)/N , where � is the Heaviside
step function. The artificial parameter r is assigned as the
tolerance of the accepting neighborhood. An alternative choice
is to coarse grain the time series {xn} into discrete symbolic
sequences {yn}, e.g., by the step transformation yn = �(xn).
Inspired from the permutation process of permutation entropy
[34], we propose another technique by measuring the ordinal
pattern, which divides the whole time series into sections and
gathers local ranks in each section. An advantage is that it can
deal with small-sized series. Moreover, trivial noises appear
more likely to be filtered, and the abrupt influence of extreme
values can be weakened.

We organize the paper as follows. In Sec. II, we introduce
the cross-sample entropy and the inner composition alignment,
both designed for the ordinal pattern, and a method to obtain
the ordinal pattern from time series is proposed by the
process of phase space reconstruction. Section III presents
the empirical analysis of information interactions of return
and volatility across Chinese stock sectors. A brief summary
is then arranged in Sec. IV.

II. MEASURING INFORMATION INTERACTION

A. Ordinal pattern

In 2002, Bandt and Pompe introduced a reliable method
to evaluate the probability distribution considering the time
casuality and taking into account the temporal structure of
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time series [34]. The method is constructed on the phase space
reconstruction in order to determine a probability distribution
of the ordinal pattern. According to Takens’s theory, if any
single variable has sufficient accuracy for a long period of time,
it is possible to reconstruct the underling dynamic structure of
the entire system from the behavior of that single variable
using delay coordinates and the embedding procedure [35].
The possibility of making a time-delay reconstruction of a
phase space to view the dynamics of nonlinear systems has
been extensively investigated.

From the time series {xi} of N observations, multivariate
state vectors in d-dimensional space,

Xi = {xi,xi+τ ,xi+2τ ,...,xi+(d−1)τ }, (1)

are used to trace out the orbit of the system. τ is termed
time delay and d is referred to as the embedding dimension.
It is important to choose the proper time delay and embed-
ding dimension in the phase space reconstruction procedure.
Embedding dimension d is considered as the sufficient
dimension for recovering the object without distorting any of
its topological properties, and time delay τ is determined by
the role that the reconstructed phase space will neither collapse
into the main diagonal nor fill the entire phase space.

Through phase space reconstruction, a time series is
mapped to a trajectory matrix X by the reconstruction
parameters (d,τ ):

X =

⎡
⎢⎢⎣

X1

X2
...

XN−(d−1)τ

⎤
⎥⎥⎦ . (2)

Each state vector Xi = {xi,xi+τ ,xi+2τ ,...,xi+(d−1)τ } has an
ordinal pattern by comparison with neighboring values. For
example, suppose d = 5, a given value of τ , and the state vector
Xi = {3.2,9.7,4.1,6.3,5.5}. Xi is sorted in ascending order
to make sure that xi+π1τ � xi+π2τ � xi+π3τ � xt+π4τ � xt+π5τ .
As the relation xi+0τ � xi+2τ � xi+4τ � xi+3τ � xi+τ holds,
the ordinal pattern, also called the symbolic state vector,
�i of Xi is {0,2,4,3,1}. The values of the ordinal pattern
behave more stably and stationary for analysis than those of
original irregular series [34]. The trajectory matrix X is then
transformed into the ordinal pattern matrix:

� =

⎡
⎢⎢⎣

�1

�2
...

�N−(d−1)τ

⎤
⎥⎥⎦ . (3)

The transformation from Xi to �i is termed permutation.
It is clear that for a given embedding dimension d at most
d! permutations exist in total. We select all distinguishable
permutations and number them �j , j = 1,2, . . . ,d!. For all the
d! possible permutations �j of order d, the relative frequency
(No. denotes the number of elements) can be computed by

p(�j ) = No. {Xi |Xi has ordinal pattern �j }
N − (d − 1)τ

, (4)

where 1 � i � N − (d − 1)τ .

B. Cross-sample entropy of ordinal pattern

Cross-sample entropy is a symmetric measure to assess
the degree of synchrony of time series. It was generalized by
the sample entropy designed to measure the irregularity of
time series. Here we make a modification on the cross-sample
entropy based on the ordinal pattern. Consider two time
series {xi} and {yi}, i = 1,2, . . . ,N . Given a matching
(embedding) dimension d and a time delay τ , reconstruct vec-
tor series Xd

i = (xi,xi+τ , . . . ,xi+(d−1)τ ),1 � i � N − (d −
1)τ and Y d

j = (yj ,yj+τ , . . . ,yj+(d−1)τ ),1 � j � N−(d − 1)τ .
Define Bd

i (y||x) as a binary variable that sets one when Y d
i

has the same ordinal pattern with Xd
i and zero otherwise,

where i ranges from 1 to N − (d − 1)τ . Then define

B =
∑N−(d−1)τ

i=1 Bd
i (y||x)

N − (d − 1)τ
. (5)

This is the probability that the ordinal patterns of two
series simultaneously match for d points. In the original
cross-sample entropy version, the matching process is
determined by artificially introducing a tolerance parameter r

and counting the number at which the distance of two vectors
falls in the range [0,r]. Similarly, expand matching dimension
d to d + 1 and define Ad+1

i (y||x) as the boolean variable of
whether vector Y d+1

i has the same ordinal pattern with Xd+1
i .

Therefore, the probability that the ordinal patterns of two
series match for d + 1 points is

A =
∑N−dτ

i=1 Ad
i (y||x)

N − dτ
. (6)

Finally, the cross-sample entropy Sd (x,y) is derived by

Sd (x,y) = −log(A/B). (7)

Sd measures the synchrony of two time series. We discuss
several special cases. It can be inferred that for two completely
random series the cross-sample entropy of the ordinal pattern is
Sd = −log[1/(d + 1)!/(1/d!)] = log(d + 1), since a random
series increases or decreases with equal possibility. For two
monotonous series with the same direction, Sd = −log(1/1) =
0, while for two monotonous series with opposite directions
both A and B approach zero. In such a case, Sd = −log(0/0)
appears meaningless. However, it still indicates strong
asynchrony if A or B equals zero. In real-world applications,
this rarely occurs and does not need to be considered. We also
propose a new statistic to test the degree of synchrony:

ρd (x,y) = Sd (x,y)/ log(d + 1), (8)

where ρd generally falls in the range of [0,1]. A small value
of ρd represents a strong synchrony, and vice versa.

C. Inner composition alignment of ordinal pattern

The inner composition alignment was proposed to detect
regulatory links from very short time series that facilitated the
understanding of emerging structures in complex networks.
Here we modify the method on the ordinal pattern. Also
consider series {xi} and {yi}, i = 1,2, . . . ,N . First reconstruct
{xi} and {yi} into phase space by the reconstruction parameters
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(d,τ ), respectively:

X =

⎡
⎢⎢⎣

X1

X2
...

XN−(d−1)τ

⎤
⎥⎥⎦ , Y =

⎡
⎢⎢⎣

Y1

Y2
...

YN−(d−1)τ

⎤
⎥⎥⎦ . (9)

Let �
(X)
i be the permutation which arranges each state vector

Xi in a nondecreasing order. The new state vector Zi =
Yi(�

(X)
i ) is the reordering of the state vector Yi with respect

to �
(X)
i . Then let Z = [Z1,Z2, . . . ,ZN−(d−1)τ ]� . In the inner

composition alignment, the monotonicity of reordered series
Zi is quantified by counting the number of intersection points
of the series with the horizontal lines which are drawn from
each of the time points. In this paper, we use the entropy of
the ordinal pattern to estimate the monotonicity of new series.
As indicated in Ref. [34], such consideration tends to be more
effective. Each vector Zi in Z presents a unique ordinal pattern
forming � = [�1,�2, . . . ,�N−(d−1)τ ]� .

For all possible d! permutations, the occurrence probability
of each ordinal pattern is approximated by the relative
frequency P (�j ). The information of the ordinal pattern
�j is measured by H = −log[P (�j )]. By averaging all the
pattern information, the Shannon entropy of ordinal patterns
is obtained:

Hd (x,y) = −
d!∑

j=1

P (�j )log[P (�j )]. (10)

Hd measures the coupling strength of two time series.
The random series still increases or decreases in uncertain
ways through the reordering process by the inner composition
alignment. Therefore, for two random series with large enough
size, each ordinal pattern �i emerges with equal probability
for all possible d! permutations, i.e., P (�i) = 1/d!. In such a

case, Hd = log(d!). If x and y are the same series, reordered
state vector Zi appears to increase monotonically. Then it can
be easily inferred that Hd = 0. We also introduce a new statistic
to quantitatively measure the coupling strength:

σd (x,y) = Hd (x,y)/log(d!), (11)

where theoretically σd ∈ [0,1]. In brief, a small value of σd

represents a large coupling strength of two series, while a
large value of σd represents a small coupling strength. The
monotonicity of reordered time series by the order of x is
different from that of y. The information transfer from y to x

can be obtained from the opposite direction. Even so, it can be
inferred that the reordering process is a one-to-one mapping
that σd keeps constant when information transfer from x to y

changes into that from y to x.

III. INFORMATION INTERACTION ACROSS CHINESE
STOCK SECTORS

A. Data description

We use daily closing prices of 18 Chinese sector indexes
mixed by Shanghai and Shenzhen markets. The data expand
from 6 January 2009 to 9 May 2012, with a total of 810
daily observations of each sector [36]. The data cover almost
all fields of industries in Chinese stock markets, consisting
of communication, construction, extraction, finance, food,
forestry, information, machinery, metals, paper, petrochem-
istry, real estate, service, synthesis, textile, utility, wholesale
and retail, and wood industries. Table I presents these sectors
and lists them from 1 to 18. We consider the return series
ri as ri = log(xi+1) − log(xi) and volatility vi as vi = |ri |,
supposing the daily closing price in a sector at day i is xi .
The traditional statistics of return (columns 2–5) and volatility
(columns 6–9) series including mean value, standard deviation,

TABLE I. Eighteen sectors numbered 1–18 in Chinese stock markets. Columns 2–5 and 6–9, respectively, show the traditional statistics
including mean value, standard deviation (SD), minimum and maximum of return, and volatility series.

Return Volatility

Sector Mean SD Minimum Maximum Mean SD Minimum Maximum

1 Communication 0.0003 0.0211 −0.0816 0.0740 0.0160 0.0138 0.0001 0.0816
2 Construction 0.0000 0.0162 −0.0747 0.0532 0.0121 0.0108 0.0000 0.0747
3 Extraction 0.0007 0.0219 −0.0928 0.0797 0.0162 0.0147 0.0000 0.0928
4 Finance 0.0004 0.0180 −0.0654 0.0773 0.0133 0.0122 0.0000 0.0616
5 Food 0.0010 0.0170 −0.0609 0.0616 0.0129 0.0111 0.0000 0.0616
6 Forestry 0.0005 0.0214 −0.0802 0.0915 0.0163 0.0138 0.0000 0.0915
7 Information 0.0005 0.0185 −0.0670 0.0577 0.0142 0.0119 0.0000 0.0670
8 Machinery 0.0007 0.0186 −0.0737 0.0616 0.0142 0.0120 0.0000 0.0737
9 Metals 0.0006 0.0210 −0.0918 0.0740 0.0157 0.0139 0.0000 0.0918

10 Paper 0.0005 0.0201 −0.0799 0.0596 0.0150 0.0134 0.0000 0.0799
11 Petrochemistry 0.0005 0.0199 −0.0758 0.0660 0.0151 0.0130 0.0000 0.0799
12 Real estate 0.0005 0.0218 −0.0922 0.0752 0.0161 0.0146 0.0000 0.0922
13 Service 0.0006 0.0191 −0.0810 0.0588 0.0143 0.0127 0.0000 0.0810
14 Synthesis 0.0006 0.0200 −0.0905 0.0626 0.0151 0.0131 0.0000 0.0905
15 Textile 0.0007 0.0193 −0.0770 0.0579 0.0145 0.0127 0.0000 0.0770
16 Utility 0.0001 0.0159 −0.0625 0.0504 0.0118 0.0107 0.0001 0.0625
17 Wholesale & retail 0.0006 0.0179 −0.0753 0.0624 0.0135 0.0118 0.0000 0.0753
18 Wood 0.0007 0.0223 −0.0868 0.0811 0.0167 0.0147 0.0000 0.0868
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FIG. 1. (Color online) The probability distribution of (a) return and (b) volatility series in 18 sectors.

minimum, and maximum in each sector are presented in the
whole time range to allow an overview on the data. We also
illustrate the probability distribution of return and volatility
series in Fig. 1.

For return series, the maximal mean value occurs in the food
sector and the minimal mean value appears in the construction
sector. The markets show a more prosperous economy with
time, since the mean values of return in all sectors are
non-negative. For volatility series, the maximal mean value
occurs in the wood sector and the minimal mean value still
appears in the construction sector. We first calculate the

linear cross-correlation coefficients rx,y = ∑N
i=1(xi − x̄)(yi −

ȳ)/
√∑N

i=1(xi − x̄)2 ∑N
i=1(yi − ȳ)2 of return and volatility

and show them in Fig. 2, where x̄ represents the mean value
of the x series. The coefficients on the diagonal stay at 1
when xi ≡ yi , i = 1, . . . ,N . Two sectors numbered 4 and 12
corresponding to finance and real estate show lower coefficient
values. This indicates that these two sectors are more linearly
independent and the linear information exchanges with other
sectors are less frequent. We also use the dendrograms
to illustrate the arrangement of the clusters produced by
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FIG. 2. The linear cross-correlation coefficients rx,y and the dendrogram based on 1 − rx,y for (a), (c) return and (b), (d) volatility series
across Chinese stock sectors. We consider 1 − rx,y rather than rx,y because rx,y increases with the strength of cross correlation, so we use
1 − rx,y as the distance to the cluster.
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hierarchical clustering. For return and volatility series, sectors
4 and 12 are different from other sectors, as they belong to one
cluster while other sectors belong to the other cluster.

B. Cross-sample entropy across Chinese stock sectors

We first use the cross-sample entropy to investigate the
interactions in the daily return series across Chinese stock
sectors. We mainly consider the case of τ = 1 [see Eq. (1)].
The value of d is closely related to the length of series
and can be made large if the series is long enough. To
study the effect of finiteness of the series, we generate 50
groups of random series with length 809 in each group
and calculate the cross-sample entropy between any two
series. We find S2 = 1.1028 ± 0.0745 (mean ± standard de-
viation), S3 = 1.4093 ± 0.1674,S4 = 1.7190 ± 0.4202, and
S5 = 1.5310 ± 0.4596. For d = 2,3,4,5, the theoretical cross-
sample entropy of random series is log(3) = 1.0986,log(4) =
1.3863,log(5) = 1.6094,log(6) = 1.7918. It is unambiguous
that the standard deviation increases with the increase of d. The
difference between the empirical cross-sample entropy and
theoretical value also increases with d due to the finiteness, but
it is rather close to zero for d = 2,3. Therefore we set d = 2,3
considering the length of daily observations in Chinese stock
sectors.

We show the cross-sample entropy of return series in Fig. 3.
The figures are symmetric and the values on the diagonal
represent the sample entropy of single series [see Eq. (7)].

When d = 2, the cross-sample entropy falls in the range of
[0,0.6265]. This indicates that, if the return for two days
in one series has the same pattern as that in another series,
it is uncertain that the return for three days in two series
will have the same pattern. The sectors that own the three
largest cross-sample entropies with other sectors on average
are 4, 12, and 5 (corresponding to finance, real estate, and
food). The three smallest cross-sample entropies on average,
indicating the largest degree of synchrony, occur in 11, 15, and
17 (corresponding to petrochemistry, textile, and wholesale
and retail). This can be more clearly observed from the
dendrogram of return in Fig. 3. The results are rather similar
for d = 3. In general, the finance, real estate, and food sectors
are revealed to be more independent from other sectors, while
the petrochemistry, textile, and wholesale and retail sectors
behave more dependently. Therefore we classify the sectors
into three clusters: (i) more independent sectors (4, 5, 12),
(ii) more dependent sectors (11, 15, 17), and (iii) other
sectors. The linear cross-correlation coefficients and the results
reported in Ref. [27], where the finance sector is also found to
be more independent, are partly consistent with our findings.

We turn now to estimate the cross-sample entropy of
volatility series, and we show them in Fig. 4. For d = 2,
the cross-sample entropy falls in the range of [0,0.8787]. As
a small cross-sample entropy corresponds to a large degree
of synchrony, the larger interval compared to that of return
series indicates the volatility series show a smaller degree of
synchrony. We get the same results from the cross-correlation
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FIG. 3. The cross-sample entropy of the ordinal pattern of daily return series across Chinese stock sectors for (a) d = 2 and (b) d = 3.
(c), (d) Dendrograms based on the values of the cross-sample entropy.
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FIG. 4. The cross-sample entropy of the ordinal pattern of daily volatility series across Chinese stock sectors for (a) d = 2 and (b) d = 3.
(c), (d) Dendrograms using the values of the cross-sample entropy as the distance to the cluster.

coefficients since rx,y of return series is always larger than
that of volatility series. We also classify the sectors into
three clusters: (i) more independent sectors (4, 12), (ii) more
dependent sectors (8, 11, 15, 17), and (iii) other sectors. One
can observe that the cross-sample entropy generally increases
with d.

Statistical inferences based on estimation and hypothesis
testing are among the most important aspects of the decision
making process in science and business. It is interesting
to uncover the statistical significance of the cross-sample
entropy difference (i) between the sector and random series
and (ii) between any two sectors. For (i), a t test rejects the
hypothesis that data in the cross-sample entropy of return
and those of random series are with equal means at the 5%
significance level, which holds for all sectors. Before that, a
Kolmogorov-Smirnov test cannot reject the hypothesis that the
normal distribution is the correct description for cross-sample
entropy of any two sectors at the 5% significance level. It
indicates that for return series the synchrony between sectors
behaves significantly different from that of random series.
We also got the same results from volatility series. For (ii),
we propose a null hypothesis to test whether sectors i and j

have the same mean value of cross-sample entropy with other
sectors k:

h0 : S̄d (ri,rk) = S̄d (rj ,rk), (12)

and an alternative hypothesis h1 : S̄d (ri,rk) �= S̄d (rj ,rk), where
k = 1,2, . . . ,18 and S̄d represents the average over k. In Fig. 5,

h0 = 1 (black cell) holds if a t test rejects the null hypothesis at
the 5% significance level, and h0 = 0 (white cell) otherwise.
For some sectors such as 4,5,12, their mean cross-sample
entropies appear more likely to be different from others.

We also calculate ρd [see Eq. (8)] and get |ρ2(ri,rj ) −
ρ3(ri,rj )| < 0.1 with confidence level 99.4% for return series
and |ρ2(vi,vj ) − ρ3(vi,vj )| < 0.1 with confidence level 95.5%
for volatility series, where i = 1,2, . . . ,18; j = 1,2, . . . ,18;
and i �= j . Although cross-sample entropy Sd increases with
d, ∂ρd/∂d = 0 approximately holds. The measure ρd provides
a possibility to gain insight into the properties of series even if
they are not long enough as one can set d = 2. Moreover, the
oscillation of ρ may also be observed to uncover the dynamical
changes of long series.

C. Inner composition alignment across Chinese stock sectors

In this section, we use the inner composition alignment
designed for the ordinal pattern to investigate the stock return
and volatility series across Chinese stock sectors. We also
set τ = 1. Due to the finiteness of the series, we generate
50 groups of random series and calculate Hd for different
d. We find H2 = 0.6924 ± 0.0011 (mean ± standard devi-
ation), H3 = 1.7873 ± 0.0028,H4 = 3.1577 ± 0.0063,H5 =
4.6865 ± 0.0136,H6 = 5.9782 ± 0.0245, and the theoreti-
cal values are log(2!) = 0.6931,log(3!) = 1.7918,log(4!) =
3.1781,log(5!) = 4.7875,log(6!) = 6.5793. One can get the
correct results for d = 2,3,4,5 of random series while large
deviation occurs at d = 6. This also indicates the inner
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FIG. 5. h0 = 1 (black cell) if one rejects the null hypothesis that the mean cross-sample entropy equals for two sectors and h0 = 0 otherwise
(white cell) for (a) return series and (b) volatility series.

composition alignment is more effective than cross-sample
entropy (where deviation occurs at d = 4) in dealing with
small-sized series. We set d = 2,3,4,5 and calculate Hd of
return series in Fig. 6. According to the algorithm of inner
composition alignment, the entropy on the diagonal should
be zero. Since for arbitrary i reordered state vector Zi , that
reorders Yi by the local rank of Xi , appears to increase
monotonically if Xi ≡ Yi , i = 1, . . . ,N . Therefore, we replace
the values of zero by the theoretical results of two complete
random series on the diagonal as log(d!). It can be observed
that the values of Hd of return series behave significantly
different from those of random series. A small value of Hd

represents a high coupling strength. It indicates that return
series across Chinese sectors exchange information with each
other and tend to move consistently rather than disorderly.
It may be partially driven by the similar policy stimulations,
investment environments, and the development of the markets,
or it may be partially due to the fact that information flows
across sectors. We also observe the cluster phenomena of
different sectors from the dendrogram. Sectors 8, 11, 15, and

17 are more dependent with other sectors, and 4, 5, and 12 are
more independent. Such a relation does not change with d.

We then estimate the entropy of the ordinal pattern of
volatility series. We also take the place of zero on the diagonal
by the entropy of two random series for d = 2,3,4,5 in Fig. 7.
Many similar results show up compared to those of return
series. The sectors that perform more independently for return
series remain the same for volatility series, such as the finance
and real estate sectors. They show larger entropy than other
sectors and exchange less information with other sectors,
which is consistent with the findings by the cross-sample
entropy. The machinery and wholesale and retail sectors appear
to be more dependent with other sectors. Moreover, the values
of entropy for volatility series are closer to the theoretical
results of random series than those for return series. It can thus
be concluded that the linkages for volatility series are weaker
than those for the return series.

It is interesting to uncover the statistical significance of
the difference of Hd (i) between the sector and random series
(ii) between any two sectors. A Kolmogorov-Smirnov test
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FIG. 6. The entropy derived by inner composition alignment of the ordinal pattern of return series across Chinese stock sectors for
(a) d = 2, (b) d = 3, (c) d = 4, and (d) d = 5. We use the entropy as the distance to the cluster in the dendrograms.
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FIG. 7. The entropy derived by inner composition alignment of the ordinal pattern of volatility series across Chinese stock sectors for
(a) d = 2, (b) d = 3, (c) d = 4, and (d) d = 5. We use the entropy as the distance to the cluster in the dendrograms.

cannot reject the hypothesis that the normal distribution is
the correct description for cross-sample entropy of any two
sectors at the 5% significance level, and all comparisons are
significant by a t test. This indicates that for return series
the synchrony between sectors behaves significantly different
from that of random series. For (ii), we also propose a null
hypothesis to test whether sectors i and j have the same mean
value of entropy with other sectors k:

h0 : H̄d (ri,rk) = H̄d (rj ,rk), (13)

and an alternative hypothesis h1 : S̄d (ri,rk) �= S̄d (rj ,rk), where
k = 1,2, . . . ,18; d = 2; and S̄d represents the average over k.
In Fig. 8, h0 = 1 (black cell) if a t test rejects the null hypothesis
at the 5% significance level, and h0 = 0 (white cell) otherwise.

Although the values of entropy Hd generally increase with
d, σd almost keeps constant, i.e., ∂(σd )/∂(d) ≈ 0. We also
get max|σd1 (ri,rj ) − σd2 (ri,rj )| < 0.06 with confidence level
96.7% for return series and max|σd1 (vi,vj ) − σd2 (vi,vj )| <

0.04 with confidence level 98.0% for volatility series, where
d1,d2 = 2,3,4,5; m �= n; i,j = 1,2, . . . ,18; and i �= j . So the

measure σd provides a possibility to gain insight into the
properties of series even if they are not long enough.

IV. CONCLUSIONS

In this paper, the information interactions of daily return and
volatility series across Chinese sectors are investigated. The
ordinal pattern of the series is considered, where the local rank
of series is obtained by the technique of phase space recon-
struction and permutation process. The cross-sample entropy
and the entropy derived by the inner composition alignment
method are specially designed for the information detection of
the ordinal pattern. Several sectors, such as finance, real estate,
and food, show less information exchanges with other sectors;
thus, they behave more independently, while some sectors,
such as machinery, petrochemistry, textile, and wholesale and
retail, exchange information more frequently and rely on other
sectors more, since they exhibit more linkages with other
sectors. We also compare the cross-sample entropy and the
entropy by the inner composition alignment method with
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FIG. 8. h0 = 1 (black cell) if one rejects the null hypothesis that the mean Hd equals for two sectors and h0 = 0 otherwise (white cell) for
(a) return series and (b) volatility series.
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theoretical results of random series. They are lower than the
theoretical entropy of random series, which indicates that the
return and volatility series tend to move consistently with
large possibility. Additionally, the return series show stronger
synchrony than volatility series across sectors. We propose
two parameters—ρd based on cross-sample entropy and σd

based on inner composition alignment—both of which do not
change with d. They actually provide the possibility to study
the synchrony and coupling strength for small-sized series with
small d. Moreover, σd is more robust than ρd for small-sized
series, according to the comparison between empirical and
theoretical results of random series.

As noted in the reference of permutation entropy, the
advantages of the permutation process are its simplicity, ro-
bustness, and invariance with respect to nonlinear monotonous

transformations. We expect that the modified methods for
the ordinal pattern will provide a statistically robust basis to
assess the information interactions in many fields of science,
especially in geophysics.
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