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Dynamical phase transition of a periodically driven DNA
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Replication and transcription are two important processes in living systems. To execute such processes,
various proteins work far away from equilibrium in a staggered way. Motivated by this, aspects of hysteresis
during unzipping of DNA under a periodic drive are studied. A steady-state phase diagram of a driven DNA is
proposed which is experimentally verifiable. As a two-state system, we also compare the results of DNA with
that of an Ising magnet under an asymmetrical variation of the magnetic field.
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I. INTRODUCTION

The semiconservative replication of DNA requires a com-
plete separation of the two strands, which occurs concomi-
tantly with the production of new strands. Even transcription
needs a partial separation of the two strands of DNA to read
the genetic code of the base sequence [1]. The traditional view
of a temperature- or pH-induced melting is being superseded
by a more mechanical procedure of force- or torque-induced
unzipping [2–5]. This paradigm shift is because of the lack of
extreme temperatures or the environment required in general
for the melting (the melting temperature is around 70–100 ◦C)
and the recent establishment of the unzipping as a genuine
phase transition [2]. A double-stranded (ds) DNA remains
in the bound doublet state below its melting temperature
even when pulled by a force at one end until and unless
the force exceeds a critical force, g = gc(T ), above which
it opens into two single-stranded (ss) DNA. Many aspects of
this transition have been studied since then, both theoretically
[6–15] and experimentally [4,16,17], mostly in equilibrium,
though puzzles remain [18,19].

In vivo, DNA is opened by helicases, which are motors that
move along the DNA [1]. Both the motion and the opening
processes require a constant supply of energy. A few examples
are DNA-B, a ringlike hexameric helicase that pushes through
the DNA like a wedge [20]; PcrA, which goes through cycles
of pulling the ds part of the DNA and then moving on the
ss part [21]; and viral RNA helicase nucleoside triphosphate
phosphohydrolase-II (NPH-II), which hops cyclically from the
ds to the ss part of the DNA and back [22]. Such cycles of
action and rest, with the periodic adenosine triphosphate (ATP)
consumption, indicates an exertion of a periodic force on the
DNA.

It suffices to describe the equilibrium unzipping transition
by the two thermodynamic conjugate variables, force g and
separation x of the pulled base pair (Fig. 1). In thermal
equilibrium, a quasistatic change of the force from zero to
a maximum gm and then back to zero, keeping other intensive
quantities fixed, would result in retracing the thermodynamic
path, ending at the initial state; history plays no role because
of ergodicity. In contrast, under a periodic force, the mismatch
between the relaxation time and the external time scale for
change of force would restrict the DNA to explore a smaller
region of the phase space, creating a difference in the response
to an increasing or a decreasing force. Near a phase transition,

where the typical time scales of dynamics become large, the
difference between the forward and the backward branches
becomes prominent. This is hysteresis of DNA unzipping [23].
More recently Kapri [24] showed how the work theorem can
be used via a multihistogram method to extract the equilibrium
isotherm from the hysteresis curves. The nature of hysteresis
and its dependence on the applied field and frequency are
well studied in the context of magnetic and structural systems
[25,26], though it is the time-averaged loop that has received
the attention. With the advent of single-molecule experiments
on short DNA chains (oligomers), it might be possible to
probe the time-resolved loops, not just averages. Motivated
by the biological relevance and the experimental feasibility,
we explore the behavior of DNA under a periodic force,
to be called a periodically driven DNA. Our results show
that without changing the physiological conditions (e.g., the
temperature or pH of the solvent), a DNA chain may be brought
from the unzipped state to the zipped state and vice versa
by varying the frequency (ν) alone. By using a probabilistic
description of the time variation of the DNA response, we
propose a force-frequency (g-ν) phase diagram for the driven
DNA.

A similar dynamic symmetry breaking transition is known
to occur in magnets where the nature of the hysteresis loop
changes [26]. Because of the two stable phases, the unzipping
transition has often been described by a two-state Landau-
type free energy functional [5,12,27]. As a two-phase system,
we make use of the magnetic Ising model to corroborate the
behavior of DNA, both undergoing a first-order transition and
showing hysteresis. We establish that the observed features
and the phase diagram are robust and generic, and not tied to
any particular DNA model.

It was recently shown that the DNA hairpin (Fig. 1) of 32
beads (stem 10 base pairs and a loop of 12 bases) captures
the essential properties of a long DNA chain with implicit
bubbles [23]. The force-temperature diagram of the DNA
hairpin is found to be qualitatively similar to that of the DNA
unzipping experiment [16] in the entire range of f and T ,
whereas the phase diagram for a dsDNA of 16 base pairs differs
significantly with the experiment. Since, under the periodic
force, the chain may unzip and rezip, the bubble dynamics and
the wandering interface (Y-fork junction) meeting transient
bubbles (extra source of entropy) would play important roles
in hysteresis. Needless to say such bubbles are ubiquitous in
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FIG. 1. (Color online) DNA hairpin in a zipped (Z) and an
unzipped (U) state. The stem (solid lines) consists of complementary
nucleotides, whereas the loop (dashed line) is made up of noncomple-
mentary nucleotides. Only native interaction (dotted lines) for base
pairing is allowed. For this paper, the stem is of length p = 10, and
the loop has 12 monomers. The total length is P = 32.

a long chain. A DNA hairpin is the simplest model, where the
premade loop allows us to study the dynamics of such implicit
bubbles.

The outline of the paper is as follows. In Sec. II, we
introduce the model used for the hairpin and the method of
study. The results are analyzed in terms of average hysteresis
loops and time-resolved loops. The dynamic phase diagram
can be found in this section. In Sec. III, the hysteresis loops
of an Ising ferromagnet under an asymmetric field modulation
is given. The similarities with the DNA hairpin problem are
discussed here. The paper ends with a short summary and
conclusion in Sec. IV.

II. DNA HAIRPIN UNDER PERIODIC FORCE

A. Model and method

DNA hairpins (see Fig. 1) occur naturally in vivo and
are used often in experiments on DNA with bubbles [28].
The nonpaired bases of the loop are a source of entropy
which in turn controls the dynamics of hysteresis. In this
paper, we perform Langevin dynamics (LD) simulations of
a DNA hairpin [23] to study the separation x of the terminal
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FIG. 2. (Color online) A typical periodic force used in the
simulation. A cycle refers to one period of variation of the applied
force g from 0 to gm (called amplitude) and back to 0 at a fixed
time period τ . This example has amplitude gm = 0.1 and two
different frequencies, ν = 1 and τ = 0.38 and 0.19 for n = 5 and
10, respectively.

base pairs pulled by a periodic force, g(t), of time period
τ (=1/ν) (Fig. 2). There have been efforts [13,14] to understand
transcriptionlike processes by applying a constant force in the
middle of a DNA chain. A very rich phase diagram has been
obtained though no such experiment has been reported so far to
confirm the phase diagram. It appears that applying a force in
the middle of the chain is experimentally difficult. Moreover,
the biological situation requires the force following a moving
replication fork, which is also not amenable to single-molecule
force experiments. In view of these considerations, we use
a simpler geometry where the force is applied at one end
of the hairpin keeping the other end fixed, which could be
used in single-molecule experiments. The typical time scale of
fluctuations involved in unzipping varies from nanoseconds to
microseconds, and therefore we avoid the details of an all atom
simulation by adopting a minimal off-lattice coarse-grained
model of a DNA hairpin, where each bead represents a
nucleotide as a basic unit, which comprises a base, a sugar,
and a phosphate group. We have performed our simulation in
reduced units as discussed below.

1. Model

The configurational energy of the system under considera-
tion is [23]

E =
P−1∑
i=1

k(di,i+1 − d0)2 +
P−2∑
i=1

P∑
j>i+1

4

(
C

d12
i,j

− Aij

d6
i,j

)
. (1)

Here, P = 32 is the number of beads. The harmonic term
with a spring constant, k(=100), couples the adjacent beads
along the chain. The distance between the adjacent beads di,j

is defined as |ri − rj |, where ri and rj denote the positions
of beads i and j , respectively. We assign C = 1 of the
Lennard-Jones (L-J) potential. The base pairing interaction
Aij = 1 is restricted to native contacts only, which is similar
to the Go model. All pairs of nucleotides that do not form native
contacts in the stem and in the loop interact only through short-
range repulsion (excluded volume). The parameter d0(=1.12)
corresponds to the equilibrium distance in the harmonic
potential, which is close to the equilibrium position of the
average L-J potential. We obtained the dynamics of the system
by using the following Langevin equation [29,30],

m
d2r
dt2

= −ζ
dr
dt

+ Fc + �, (2)

where m is the mass of a bead which is set equal to 1 here, and
the friction coefficient used in the simulation is ζ = 0.4. Fc is
defined as the gradient of the energy, −∇E, and � is a random
force, a white noise with zero mean and correlation

〈�i(t)�j (t ′)〉 = 2ζkBT δij (t − t ′), (3)

where kB is the Boltzmann constant which is set to 1 in the
present simulation. The choice of Eq. (3) keeps the temperature
of the system constant throughout the simulation for a given
force. In order to study the behavior of a DNA hairpin under
a periodic force, we add an additional energy, −g(t)x(t), to
the total energy of the system in Eq. (1). We have performed
the simulation at T = 0.10, for which gc ∼ 0.20 [31]. We
may convert the dimensionless units to real units by using the
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relations [29]

t∗ =
(

mσ 2

ε

)1/2

t, r∗ = σr, (4)

where t∗, r∗, and ε are time, distance, and characteristic
hydrogen bond energy in real units. Here σ is the distance
at which the interparticle potential goes to zero. For example,
if we set effective base pairing energy ε ∼ 0.1 eV, the average
mass of each bead 5 × 10−22 g, and σ = 5.17 Å, we get a
time unit τ ≈ 3 ps. It is known that ζ affects the kinetics
only and the thermodynamics remains unchanged [32,33]. The
friction coefficient used in our simulations is ζ = 0.4mτ−1 =
6 × 10−11 gs−1. The order of force thus would be ε/Å ∼ 160
pN. For temperature conversion, a little more care is needed
because the coarse-grained model does not take into account
many other energies [34]. We compare the phase diagrams
for DNA in the thermodynamic limit using a two-state model
based on the modified freely jointed chain (mFJC) model of
polymer with the experiment [16]. The melting temperature
at 363 K and the flat portion (the stretching of covalent
bonds) at 293 K in experiments [16] correspond to 0.23
and 0.05 in reduced units, which are also consistent with
the simulation [23]. If we use this information to scale the
temperature in a linear fashion, we have the relation T ∗ =
363 + 363−293

0.23−0.05 (T − 0.23), where T ∗ is the real temperature.
This mapping is valid only in the range of overlap of mFJC
and experiment. This relation gives the reduced temperature
used here, T = 0.1, as equivalent to a real temperature around
320 K, i.e., around 45 ◦C. It may be noted that hysteresis has
been observed in this range of temperature [17].

2. Integration

The equation of motion is integrated using a sixth-order
predictor corrector algorithm with the time step 	t = 0.025
[30]. Reference [23] showed that the present coarse-grained
model exhibits the observed features of the experimental g-T
diagram [16] of a long DNA with implicit bubbles as well
as hysteresis at low temperatures in the g-x plane as seen
experimentally [17]. During the simulation, g is changed in
steps of 	g(=0.01) from 0 to a maximum gm and then to 0
(Fig. 2). This one period is referred to as a cycle and gm as the
amplitude. The time period

τ = 2n	t

(
1 + gm

	g

)

is controlled by n, the number of LD steps executed after every
increment (or decrement) of force. We choose n such that n	t

is much below the equilibration time.
By changing gm or ν, we find it is possible to induce a

dynamical transition between a state of time-averaged zipped
(Z) or unzipped (U) to a dynamical state (D) oscillating
between Z and U.

B. Numerical analysis

1. Hysteresis loops

In Fig. 3, we plot the average value of x(g) over C(=1000)
cycles vs g, for different values of gm and ν. These loops for
different initial conformations remain almost the same [except
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FIG. 3. (Color online) DNA hysteresis for different gm and ν

(increases from left to right) as indicated. Each plot contains the
loops for ten different initial conformations. These are at T = 0.10,
for which gc ∼ 0.20.

Fig. 3(23)] so that the large menagerie of shapes of hysteresis
loops observed are typical, not exceptional or accidental. At a
high frequency, the DNA remains in Z or in U depending on
whether gm < 2gc or not, [Figs. 3(13) and 3(43)], irrespective
of the initial conformation. For a relatively smaller ν, the
sequence of hysteresis loops [Figs. 3(11), 3(21), and 3(31)]
is of a different nature. These clearly reflect that the DNA
starts from the Z (x = 0 at the start of the cycle), goes to the U
(x = 30), and then back to the Z [35]. Some of these plots show
the phase lag between the force and the extension; e.g., even
when the applied force decreases from gm to 0 [Figs. 3(32)
and 3(33)], the extension x(g) increases. If the system gets
enough time to approach equilibrium, the lag disappears [e.g.,
Figs. 3(21) and 3(31)]. A different behavior is seen in the case
of intermediate forces [Figs. 3(21), 3(22), and 3(23)]. Despite
the identification of the states at the two extreme forces as Z
and U, there is a significant change in the x values at g = 0
and g = gm, in Fig. 3(23), compared to the other loops shown
in Fig. 3. Most striking here is the wide sample to sample
fluctuations in the loop.

2. Time-resolved loops

The failure of the average response to provide a description
of the steady-state dynamic behavior prompts us to analyze
the distribution of paths over the different cycles in terms of a
dynamical order parameter Q defined as

Q = 1

τ

∫ τ

0
x(t) dt. (5)
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FIG. 4. The time sequence of Q and P (Q) vs Q plots. Three pairs of vertical panels for three ν’s. Each panel has (i) the time sequence on
the left (L) and (ii) the P (Q) plot on the right (R) for different gm’s.

This Q is analogous to the dynamical order parameter studied
in the context of magnetic systems [26]. In Fig. 4, we plot
the values of Q over different cycles for three different ν.
The time sequence of Q seems not to indicate any regular
pattern, and therefore, we assume that the allowed states occur
randomly. The time sequence can then be interpreted in terms
of a probability of getting a particular value of Q. We find
that the steady state is described by a stationary probability
distribution, P (Q), which are also shown in Fig. 4. The plots
show three peaks which could be associated with phases U,
D, and Z by comparing with Fig. 3. Based on the width of
P (Q) we make operational criteria, 0 < QZ < 10, QU > 22,
and 10 < QD < 22, for the identification of the phases.

From the peak locations of P (Q), we map out the phase
diagram of the driven DNA in the g-ν plane (Fig. 5). A line in
Fig. 5 represents a boundary beyond which a particular peak
appears or disappears and resembles a first-order line. These
are now discussed sequentially.

(1) For a very small force, P (Q) expectedly shows a peak
in the QZ window for any ν (Fig. 4, first row). Beyond a
certain gm there appears a second peak in the QD window. See
Figs. 4(12) to 4(22) or Figs. 4(13) to 4(23). For each chosen
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FIG. 5. (Color online) Dynamical phase diagram of a periodically
driven DNA hairpin in the gm-ν plane. The lines are boundaries for
various phases: U, D, and Z. The points are from the simulation and
the lines are guides to the eye.

ν, we determined the value of gm above which the peak of QD

appears, giving us the lower boundary for D.
(2) For a given ν, with increasing gm, the peak height of QZ

decreases as seen in Fig. 4 along any vertical sequence, top
to bottom. One gets one or two other peaks but Z disappears
beyond a certain gm, giving an upper boundary for Z.

(3) Before Z disappears, there could be peaks for D or U, or
both [Figs. 4(31) and 4(22)], implying coexistence, Z + U or
Z + D + U, for a range of gm. From the appearance of U, we
determine the lower boundary for U.

(4) Then, as Z disappears, the system may be either in
the D phase [Fig. 4(23R)] or in the mixed state of D + U
[Fig. 4(32R)]. To be noted is the crossing of the boundaries of
U and Z, which produces the region of the D phase. Once the
mixed phase D + U appears, a further increase of gm vanishes
the D peak and only the U peak survives.

An important point is the occurrence of different Q values
or regions of phase coexistence. In such a situation, the average
response is not a good measure of the state and there will be
intrinsic difficulty in reducing fluctuations in the hysteresis
curve.

III. DYNAMICAL PHASE TRANSITION IN ISING
FERROMAGNET

To use the magnetic analogy, consider a ferromagnet like a
two-dimensional Ising model below its critical point, subjected
to a periodic magnetic field h = h0 cos(2πνt) in time (t). As
ν increases, there is a dynamic transition where the average
magnetization in a cycle goes from zero to a nonzero value
[26]. For small ν there is a hysteresis loop connecting the two
symmetrically opposite magnetized states, while for large ν

the lethargic system remains magnetized in one direction. The
analogy is between the conjugate pair (h,m), where m is the
magnetization, for a magnet and (g,x) for DNA. The magnetic
hysteresis loop in the h-m plane is analogous to that in the g-x
plane. To simulate a DNA-like behavior in the Ising system, an
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asymmetric modulation of the magnetic field has been taken to
make the average field over a cycle different from the critical
value. A Monte Carlo dynamics is used to study the hysteresis
in an 8 × 8 square lattice Ising model with periodic boundary
conditions under a periodic field between hl and hm.

A. Model and method

We consider a two-dimensional Ising spin system ({si =
±1}) with nearest-neighbor interaction and under a magnetic
field h,

H = −J
∑
〈i,j〉

sisj − h
∑

i

si , (J > 0), (6)

with i labeling the sites of an 8 × 8 square lattice with periodic
boundary conditions. The infinite lattice critical temperature
is Tc ≈ 2.269J/kB in zero field. The magnetization is defined
as the thermal average,

m = N−1
∑

i

〈si〉, (7)

of N (=64) spins. For the above Hamiltonian, we choose J = 1
and kBT = 2, with kB = 1, so that T < Tc.

The Monte Carlo (MC) procedure used is as follows. We
choose a spin and calculate the change in energy 	E of the
system if the spin gets flipped. Whether this spin would be
flipped or not is determined by using the standard Metropolis
algorithm, which gives the probability of acceptance of an
attempted flip by Paccept = min(1,e−β	E). In this way, we
sequentially consider all the N spins, one at a time, to attempt
a flip. The time taken to attempt N spin flips constitutes one
MC sweep.

A complete cycle consists of 2N steps, starting from hl ,
reaching hm and then back to hl . Initially the system is
equilibrated at hl = −0.6 and kBT = 2. Then the periodic
magnetic field is switched on. At each step, (i) the magnetic
field is increased by δh = (hm − hl)/N and (ii) the system
is relaxed towards equilibrium by n = 5 MC sweeps, which
is much less than the equilibration time. The magnetization
m is calculated at each of such 2N steps. The average of
magnetizations calculated over a cycle then gives the quantity
Q. The above process is repeated C = 104 times, i.e., for 104

cycles. The Q values obtained in this way give the probability
distribution P (Q) for a given hm. We simulate the system for
various frequencies (controlling N ) and hm, keeping hl fixed.

An asymmetric field in the Ising model enables us to
distinguish two differently ordered phases, the counterparts of
the zipped and the unzipped states, and in addition a hysteretic
state, to be called the dynamic state D. For easy comparison,
the negatively magnetized state is named Z while the positively
magnetized state is U. The states are distinguished by a
dynamic parameter,

Q = 1

τ

∫ τ

0
m(t) dt, (8)

and the operational definition adopted is (i) QZ ≡ {−64 �
Q � −40}, (ii) QU ≡ {55 � Q � 64}, and (iii) the rest is QD.
Cases (i) and (ii) occur when the paths in the m-h diagram
remain on one side throughout the cycle, and case (iii), the
dynamical state D, occurs either if there are paths connecting
positive and negative values of magnetization or if the paths
remain more or less near zero of magnetization. The division
of the three intervals or regions are independent of hm.

B. Numerical results

The results for P (Q) vs Q shown in Fig. 6 are very similar
to those shown in Fig. 4 and the interpretations toe the DNA
line. We point out a few salient features here. For hm � 0,
there is only the Z state [Figs. 6(a)–6(c)]. With increasing
hm, P (Q) develops a multipeaked structure which indicates
coexistence. Various sequences of states seen are noted in the
figure caption. These include D + U, Z + D, and Z + D + U.
We find a clear dependence on ν of the occurrence of the
various states, similar to the DNA case. There are situations
where U appears before Z vanishes. In this regime, we see
the coexistence of three phases, Z + D + U (e.g., hm = 0.6 in
Fig. 6). The peak height for D first grows from zero and then,
depending on frequency, it may decrease, with the gradual
appearance of a U peak [Figs. 6(a) and 6(b)], or it may keep on
increasing up to a very high field seemingly merging with U
[low frequency case of Fig. 6(c)]. The Ising case has a special
line at hm = −hl where the + ↔ − symmetry is restored. On
that line, there is the dynamic transition (D ↔ Z or U) at a
particular frequency [26]. The occurrence of the Z + D + U
coexistence region found on this line is a finite size effect and
is a novelty of the mesoscopic system. The h-ν phase diagram
is qualitatively similar to that of the DNA hairpin, shown in
Fig. 5.
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FIG. 6. (Color online) P (Q) vs Q for the Ising model for three different ν’s and the same set of hm with hl = −0.6. For a given ν, the
distribution P (Q) shifts as hm increases. It goes from Z to U through D. The sequence of phases are (a) Z → Z + D → Z + D + U → D +
U → U, (b) Z → Z + D → D → D + U, and (c) Z → Z + D → D.
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IV. SUMMARY

This paper reports the possibility of a dynamical transition
of a DNA hairpin and a magnetic spin system both under a
periodic drive. When a DNA hairpin is subjected to a periodic
force or a magnetic system is subjected to a periodic magnetic
field, then the system driven away from equilibrium shows
hysteresis. Usually to get the hysteresis curve, one averages
over many cycles of the field or force, but we show here that this
averaging suppresses or loses the actual picture of the states.
This can be observed if one looks at the individual cycles. By
quantifying the state of a cycle by Q, the average separation for
DNA, or the average magnetization for the spins, we find that
the distribution of Q is multipeaked. Whenever a distribution
is multipeaked, the average is not a good representation of
the state. We identify the peaks of the distribution with the
zipped (Z), unzipped (U), and dynamical (D) states for the

DNA hairpin. There is a dynamical transition from one phase
or state to another phase, and also there is coexistence of phases
in some range of strength of drive and frequency. The phase
diagrams constructed from the data for both the DNA hairpin
and the magnetic system are of a similar nature. The role of
hysteresis in biological processes remains unexplored territory.
On a more quantitative front, our work calls for time-resolved
experiments on periodically driven DNA hairpins to explore
such hitherto unknown dynamical phase diagrams.
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