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Dynamic analysis of a diffusing particle in a trapping potential
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The dynamics of a diffusing particle in a potential field is ubiquitous in physics, and it plays a pivotal role in
single-molecule studies. We present a formalism for analyzing the dynamics of diffusing particles in harmonic
potentials at low Reynolds numbers using the time evolution of the particle probability distribution function. We
demonstrate the power of the formalism by simulation and by measuring and analyzing a nanobead tethered to a
single DNA molecule. It allows one to simultaneously extract all the parameters that describe the system, namely,
the diffusion coefficient and the restoring-force constant.
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I. INTRODUCTION

Diffusing particles under potential fields are of great interest
in a broad range of physical systems, and the dynamics of
such particles is specifically relevant in soft condensed matter
physics and biophysics. Moreover, unprecedented biophysical
information is provided through single-molecule methods that
involve the dynamics of particles in trapping potentials. These
include optical [1] and magnetic tweezers [2,3], atomic force
microscopy [4], and tethered particle motion (TPM) [5].
Although the properties of diffusing particles in potential
fields have gained much attention, the complete dynamics
of these systems have not yet been fully explored. Treating
the detailed dynamics of these systems provides both a better
understanding of their properties and an improved capability
for related experimental methods.

II. THEORETICAL BACKGROUND

For studying the detailed dynamic properties of a diffusing
particle in a harmonic potential, we start by calculating its
probability P to be found at position r and time t , given its
initial position and time r0, t0: P (r,t |r0,t0), see Fig. 1. This
can be calculated by using Smoluchowski’s formalism [6], a
special case of the Fokker-Planck equation that describes the
dynamics of a diffusing particle in a stationary potential field.
The Smoluchowski equation is derived for the case of low
Reynolds numbers and, therefore, neglects the inertia term of
the Langevin equation, which is the overdamped case. This
solution is fully adequate for the experimental methods listed
above for biophysical systems. In its simplest form, this system
(and equation) has only two free parameters, the diffusion
coefficient of the free particle D and the restoring-force
constant K . It was solved long ago [7,8], but its solution, that
we further develop here, was overlooked. Moreover, previous
treatments concentrated on the average displacement of the
probability P , whereas, here, we show that the time evolution
of both the average as well as the width of P provides a better
understanding of the dynamics and that its adaptation can
improve the capability and effectiveness of single-molecule
methods.

More specifically, the dynamic analysis can be used to
extract the restoring force constant K and the particle’s
diffusion coefficient D simultaneously by time tracking the

particle. Inversely, the method can be used to calculate the
diffusion coefficient of particles, even if they can only be
detected while they are trapped (e.g., by tethering them).
Finally, the developed formalism intrinsically allows one to
distinguish different time-dependent dynamic regimes: the fast
dynamics that depend mainly on D, the intermediate dynamics
that depend on both D and K , and the slow dynamics that
depend only on K .

The time evolution of the distribution probability P of a
diffusing particle at position r and time t , given its initial
position r0 at time t0 in a potential field, is given by the
Smoluchowski equation,

∂

∂t
P (r,t |r0,t0) = ∇ · D [∇ − βF (r)] P (r,t |r0,t0) , (1)

where D is the diffusion coefficient, β = 1/kbT , and F(r) is
the force applied on the particle. This equation is developed
by using Einstein relations for the diffusion coefficient, drag
coefficient ζ , and thermal energy Dζ = kbT . In the case of
one-dimensional diffusion in a harmonic potential, U (x) =
Kx2/2, and assuming that the diffusion coefficient is an
isotropic scalar, the equation can be written as

∂

∂t
P (x,t |x0,t0) = D

(
∂2

∂x2
+ βK

∂

∂x
x

)
P (x,t |x0,t0). (2)

Equation (2) has an analytical solution [6,9],

P (x,t |x0,t0)

=
√

K

2πkbT S (t,t0)
exp

(
− (x − x0e

−2(t−t0)/τ )2

2kbT S(t,t0)/K

)
, (3)

where S (t,t0) = 1 − exp [−4(t − t0)/τ ] and τ = 2kbT /

(KD). The solution, which is Gaussian, depends on the
parameters x0 and �t ≡ t − t0, and its time evolution is
characterized by a time-dependent average and a width which
is proportional to S(t, t0).

When a particle time track is measured, the Gaussian center
and width can be used for extracting both K and D, although it
is mainly the Gaussian width that is sensitive to each of these
two parameters independently. The Gaussian central position
depends almost exclusively on τ , which is a function of KD

and does not allow extraction of these parameters separately.
As �t → 0, Eq. (3) approaches the Dirac δ function at x0: P
(x,�t → 0|x0) = δ (x − x0), and as �t → ∞, the solution
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FIG. 1. (Color online) (a) Pictorial description of a single particle
diffusing in a harmonic potential applied by the DNA. Two different
conformations are shown. (b) P (x,�t |x0) for x0 = −650 nm. Dashed
red line: for �t = 0.01τ ; solid blue line: for �t = 0.1τ ; and
dotted black line: for �t = 10τ . Solid green line: the steady-state
(Boltzmann) distribution.

converges to the equilibrium Boltzmann distribution (Fig. 1),

P (x) =
√

K/2πkbT exp(−Kx2/2kbT ). (4)

For a general �t , the solution of the Smoluchowski equation
[Eq. (3)] has a Gaussian width of σ 2 = kbT S/K that broadens
with �t , finally reaching a steady-state value [Eq. (4)]. The
center of the distribution function depends on the initial
position x0 and converges exponentially as a function of
time to x = 0 with a relaxation time constant τ . Actually,
τ is identical to the correlation time that is found by
calculating the time correlation of the position coordinate
〈x (t) x (0)〉 = kbT K−1 exp (−2t/τ ) [6]. The relaxation time
τ is also directly related to the “corner frequency” that is found
in the frequency-response curve (power spectrum) commonly
used for analyzing optical-tweezers experiments fc = (πτ )−1

[10,11]. Note that, from the power spectrum, it is possible to
extract only the corner frequency fc, which is a function of
KD, and these two parameters cannot be extracted separately
as in our formalism.

The center of the Gaussian at a given (fixed) �t linearly
depends on x0 as can be seen in the exponent of Eq. (3):
x (t0 + �t) = x (t0) exp (−2 �t/τ ). Figures 2(a) and 2(b)
show the joint probability distribution P (x(t),x(t + �t)) for
any given pair of x(t) and x(t + �t) assuming a uniform
distribution for x (t) for a fixed time interval �t = 0.01τ

and �t = 0.5τ . The probability is higher where the color
is brighter. Nevertheless, in an actual potential field, the
probability of observing the particle at an initial position x0 is
not uniform but, instead, follows the steady-state Boltzmann
distribution [Eq. (4)]. Taking this into consideration gives a
different joint distribution as shown in Figs. 2(c) and 2(d). The
dashed lines in Fig. 2 describe the linear fit to the distribution
(the center of the Gaussians as explained above).

In order to find the width σ 2 and the slope of the joint
probability, we plot x(t + �t) vs x(t) for each measured point
along the time series. Note that the two-dimensional histogram
of this plot is the joint probability as shown for the theoretical
solution in Figs. 2(c) and 2(d) and experimentally in Figs. 4(a)

FIG. 2. (Color online) Theoretical joint probability distribution
P (x(t),x(t + �t)) for two different time intervals: left: �t = 0.01τ

and right: �t = 0.5τ . The brighter the color, the higher the prob-
ability. (a) and (b) Assuming that x(t) is uniformly distributed.
(c) and (d) Taking into account that the initial position x(t) is
distributed according to a Boltzmann distribution. The dashed lines
represent the linear fit.

and 4(b). The slope is found by fitting this plot to a linear
function. To extract the width σ 2, we subtract the linear curve
that was fitted from the plot, project all the points on the vertical
x(t + �t) axis, and obtain a set of points centered around
zero. These points represent the distribution of distances of
the particle in a given time interval �t , which is independent
of its previous position. σ 2 is now found by fitting a Gaussian
to the distribution. An illustration of the process is available in
Supplemental Material [12].

The slope shown for two different time intervals in Fig. 2
can be plotted as a function of any time interval �t . When an
experiment is performed, a certain fixed time interval �T is
determined. Normally, the shortest time interval is preferred,
but this is limited by the camera or detector and by the
brightness of the detected particle. Based on that, different
time intervals �t can be used: �t = �T,2 �T, . . . ,n �T ,
and particle displacements for different time intervals can be
calculated x (t + �t) − x (t). Figure 3(a) shows the slope as a
function of the sample frequency (f = 1/�t) for both theory
and simulation; details of the simulation are described later.

These results emphasize the existence of three different
frequency domains for the dynamics of a diffusing particle in
a force field. At long time intervals �t > τ (low frequencies),
the spatial dynamic correlation is lost, 〈x(�t)x(0)〉 ≈ 0, the
Boltzmann steady-state distribution is measured [Eq. (4)],
and the slope mentioned above approaches zero. For short
time intervals �t < τ/10 (high frequencies), the effect of
the restoring force on the particle displacement is negligible
relative to the diffusion effect, and the slope approaches the
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FIG. 3. (Color online) (a) Dashed blue line: the theoretical slope
of the joint distribution P (x(t),x(t + �t)) for different sample
frequencies and asterisks: the simulation results. Three different
frequency domains that correspond to different time-interval regimes
are observed. At long time intervals (low frequencies), there is
no correlation between the positions 〈x(t)x(t + �t)〉 ≈ 0, and the
steady-state distribution dominates. For short time intervals (high
frequencies), the influence of the force field is negligible, and the
diffusion dominates. In the intermediate regime, the force field, as
well as the diffusion, affect the dynamics. (b) Solid red line: the
theoretical Gaussian width as a function of the sampling frequency
shown as σ 2/�t vs (�t)−1. Circles: simulation results. At high
frequencies, the Gaussian width becomes identical to that of a
one-dimensional freely diffusing particle, shown as a solid green
line: σ 2/�t = 2D.

value 1. The Gaussian width in this regime (derived from
Taylor series expansion of S) is equal to σ 2 ≈ 2D�t as
expected for normal diffusion [13]. Finally, in the intermediate
frequencies, the particle dynamics depends on both its free
diffusion parameter D as well as the DNA applied force
parameter K .

This description, summarized in Fig. 3 for both (a) the
slope and (b) the Gaussian width, clearly demonstrates the
different frequency-response regimes of a diffusing particle
in a harmonic-potential field and shows the advantages of
using the dynamic measurement and the analysis according to
Smoluchowski’s equation. Notice that, in the low-frequencies
regime, the slope suffers from errors due to statistical
fluctuations, whereas, the width plot is insensitive to these
fluctuations.

III. EXPERIMENT AND SIMULATIONS

To test the developed formalism, we have performed TPM
simulations and experiments [5]. TPM belongs to a family of
single-molecule methods that are intensively used for studying
the fundamental properties of DNA, RNA, proteins, and their
interactions. In this method, one end of a double-stranded DNA
(or other polymer) is attached to the surface, and a detectable
probe is attached to its other end. The DNA properties are
normally extracted by analyzing the spatial distribution of the
probe [14] as opposed to its actual dynamics that have been
much less studied and are described hereunder.

The DNA can be modeled by using the wormlike chain
polymer model, and its force-extension curve is described
by [15]

F lp

kbT
= r

L
+ 1

4 (1 − r/L)2 − 1

4
, (5)

where F is the force applied by a DNA molecule of contour
length L with an end-to-end extension r , a persistence length
lp, and a thermal energy kbT .

In the low-force regime where r < 0.4L and using a Taylor
series expansion, Eq. (5) can be approximated as a linear force
F = Kr with constant K , which results from pure entropic
considerations [16],

K = 3kbT

2Llp
. (6)

Few aspects of DNA dynamics have been treated before, such
as the DNA dynamics in a strong stretching regime where
r ∼ L [17], the DNA dynamics in response to stretching forces
[18], or the dynamics of a tethered particle in the case of DNA
looping [19,20]. Qian and Elson [21] used Smoluchowski’s
equation but eventually took into account only the steady-state
solution and the autocorrelation function. Previous papers
used different analysis methods including a time averaging
approach [5], a steady-state distribution analysis [22,23], and
the statistics of Markovian processes for measuring the rate
of loop formation due to protein action [19,20]. The full
dynamics as we described above, however, have not been
considered.

The dynamic simulation is based on the code published by
Beausang et al. [24]. In each time step of the simulation,
the particle moves as a result of both the harmonic force
and the diffusion. The parameters used relate to the exper-
iment described below with L = 925 nm and lp = 50 nm,
which gives a spring constant of K = 0.133 pN/μm at room
temperature. The probe attached to the DNA is a bead with
a diameter of 80 nm, and its diffusion coefficient in water
is D = 5.5 μm2/s. The simulation results are analyzed by
finding the slope and width of the joint probability distribution
P (x(t),x(t + �t)) for different time intervals �t as explained
above. The slope and Gaussian width are shown in Fig. 3. By
performing simulations (N = 1000), we obtained the values
of K = 0.135 ± 0.015 pN/μm and D = 5.5 ± 0.18 μm2/s
from the width fit [Fig. 3(b)]. These parameters agree very
well with the theoretical derivation from the Smoluchowski
equation given above.

The TPM experimental system details are described else-
where [25,26]. The particle positions are tracked using a
microscope and a CCD camera. Different experimental aspects
have to be taken into account including the size of the particle
relative to the DNA length [27] and the time needed for the
DNA to “search” its conformational space [28].

We used a 2722 bp (L = 925 nm) λ-DNA attached to
the surface through digoxigenin (DIG)–anti-DIG conjugation
and an 80 nm diameter gold bead attached to the DNA
through a biotin–anti-biotin conjugation. A dark-field setup
was used for the illumination and detection based on a 50×/0.8
numerical aperture dark-field objective lens (Olympus) and
an electron-multiplied CCD camera (Andor DU-885). Image
processing was performed using MATLAB and the DIPimage
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FIG. 4. (Color online) Experimental results. (a) x(t + �t) vs x(t)
for �t = 3 ms. (b) For �t = 30 ms, notice the changes in both slope
and width. Dashed line: fit of a linear curve for the slope. (c) Bars:
steady-state distribution. Solid red line: fit to a Gaussian. (d) Circles:
experimental results for the width of the distribution divided by the
time interval as a function of sample frequency. Solid line: fit to the
theoretical function.

library (see Ref. [29]), and the fits were carried out using
the non-linear-least-squares algorithm of MATLAB. In each
experiment, a time series of 3000 frames was taken at a high
frame rate of ∼300–500 Hz. After preliminary analysis, the
data were filtered for beads with symmetric motion in the x-y
plane that were attached to a single DNA molecule.

IV. RESULTS AND DISCUSSION

Figures 4(a) and 4(b) show the joint distribution
P (x(t),x(t + �t)) for two different time intervals where
the different slopes (dashed line) and widths are clearly
noticeable. Figure 4(c) shows the steady-state distribution
and fit, whereas, Fig. 4(d) shows the width as a function of
the sampling frequency. As one can see, the results agree
well with the theory (solid line). We extracted the force
constant by fitting the steady-state distribution to the expected
Boltzmann distribution [Eq. (4), shown in Fig. 4(c)], which
gave K = 0.17 ± 0.02 pN/μm. This is a possible method for
TPM, but it is much more difficult and is rarely used for the
calibration of optical and magnetic tweezers, which are more
complex systems as explained below. It is also possible to fit
the slope vs f as shown in Fig. 3(a), but as explained above,
this method only extracts τ , which is a function of KD, and
for finding K itself, a priori knowledge of D is required [30].
This step of using a supposedly known diffusion coefficient
may result in a large error.

In contrast, the frequency dependence of the Gaussian width
[Fig. 4(d)] can be used to simultaneously extract both K

and D. The values extracted from the width function based

on the x-axis data are as follows:K = 0.22 ± 0.04 pN/μm,
which is close to the steady-state value, and D = 1.81 ±
0.82 μm2/s. We note that such an analysis is possible from
neither the steady-state distribution nor the derivation of the
corner frequency, which is often used for extracting the force
constant in tethered experiments. By using the steady-state
distribution, it is possible to find K [as in Fig. 4(c)], and
then, by extracting τ from the slope (or the corner frequency
that was described above), one can deduce the diffusion
coefficient D. Nevertheless, this method is problematic, and
it is rarely used since the steady-state analysis is vulnerable
to low-frequency noise and drift. This noise results from
mechanical vibrations and drift, and it is much slower than the
typical frequency that characterizes the system (f ∼ 1/τ ). The
dynamic analysis method described here depends on the entire
frequency spectrum, and therefore, it is much less sensitive to
drift and noise.

Interestingly, we realized that the beads we measured
were consistently bigger than what we a priori thought (by
extracting the size from the diffusion coefficient). We attribute
this to the fact that the beads that have been measured in
the experiment are the brighter ones, which are also the
larger ones, and their actual diffusion coefficient is, therefore,
smaller. Another possible reason for the deviation of D

from its expected value, based on Stokes-Einstein calculation,
is due to the complexity that may occur as a result of
hydrodynamic effects near the surface and the bead-DNA
molecule interaction.

V. CONCLUSIONS

These results verify the validity of the dynamic method
based on Smoluchowski’s formalism and demonstrate its
advantage for extracting both K and D. It can be used in most
of the single-molecule experiments as long as the sampling
frequency is high enough. It does not require modification
of the experimental setup as needed in some optical-tweezers
calibration methods [31]. Our dynamic method can also be
useful when the diffusion is more complex [32], and it can
be extended to describe the dynamics of particles exhibiting
anomalous diffusion in potential fields. This may be important
for understanding the structure and function in a crowded
environment, such as the chromatin in the nucleus. We
recently found that the dynamics in the nucleus is transient
anomalous, a complex type of diffusion [33,34], but more
work is required for these cases. The method can also be
used for generalized variables, such as the angular parameter
in torque-determination experiments [35]. We mention in
passing that, even if the potential function is not harmonic
U (x) ∼ x2, the linear restoring-force approximation can still
be applied as long as the particle position is near the
minimum of the potential. If this is not the case and the
linear approximation is not adequate, one can find the solution
of Smoluchowsik’s equation for the nonharmonic potential
(either analytically or numerically) and can use it to extract
the force.

To summarize, we have used the Smoluchowski equation
and its solution for developing a formalism to analyze the
dynamics of a diffusing particle in a harmonic potential and
have shown its advantages for simultaneously extracting the
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restoring-force constant and diffusion coefficient. We have
shown the excellent fit of the simulated data with the theory
and have demonstrated the applicability of our methodology
in the TPM experiment. The dynamic analysis that we present
can be important for applications, such as calibration of the
force applied by an optical or magnetic tweezers and can
significantly improve the accuracy of the extracted results.
This formalism can also be extended to describe nonharmonic
potentials where an adequate solution of the Smoluchowski
equation can be used as a reference for fitting the experimental
data. Furthermore, the formalism can be extended to describe

the dynamics of particles exhibiting anomalous diffusion
in potential fields, which may be of great importance for
understanding fundamental mechanisms, such as the structure
and function of molecules in a crowded environment.
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