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Instability of a fluctuating membrane driven by an ac electric field
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Shape fluctuations of a planar lipid membrane in an ac electric field are investigated using a zero-thickness
electromechanical model, which accounts for membrane conductivity and capacitance, and asymmetry in the
properties of the fluids separated by the membrane. A linear stability analysis shows that unlike in the case of a
dc electric field, a purely capacitive membrane can be destabilized in an ac electric field. The theory highlights
that the instability originates from electric pressure exerted on the membrane.
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I. INTRODUCTION

Living cells maintain an electric potential difference across
their plasma membranes. Changes in the transmembrane
electric field are biologically important signals in physiological
processes such as signal propagation in neurons via action
potentials [1,2] and electric-field-directed cell migration [3,4]
in development and regeneration [5,6].

The transmembrane potential can be modulated intrinsi-
cally through transport of ions between the extracellular and
intracellular spaces or ionization of membrane lipids (e.g.,
due to changes in pH), or externally through application of
electric fields. Intrinsically charged membranes have been the-
oretically studied in order to predict the renormalization of the
bending rigidity and tension [7–12], membrane fluctuations,
and stability [13–17]. Similar studies of membranes in exter-
nally applied electric fields have only recently appeared [18–
25] (reviewed in [26,27]). Progress has been slow because of
the nonequilibrium nature of the problem, which involves cou-
pled evolution of electric fields, membrane shape, and flow in
the surrounding fluids. As a result, much of the rich dynamics
displayed by lipid membranes in electric fields [28,29] remains
unexplained. For example, in dc fields quasispherical vesicles
can deform into spherocylinders [30], burst [31], or porate
[32,33]. ac fields drive frequency-dependent membrane flows
[34] and membrane destabilization [35]. ac fields are widely
used in vesicle electroformation; hence understanding of ac-
field-driven instabilities may shed light on the vesicle forma-
tion mechanism. All theoretical analyses of membrane stability
so far have focused on dc fields and established several desta-
bilizing mechanisms: electric-field-induced negative surface
tension [18], electrokinetic flows [19], and electric pressure
and shear stress in the case of a membrane separating solutions
with different conductivities [24,25]. In real systems, these
different sources of instability are most likely all operational,
but one may dominate depending on the parameters of the
experiment. For example, when the membrane is surrounded
by fluids of the same conductivity, only the first two effects are
relevant. In this paper, we investigate the possibility of desta-
bilization of a nonconducting membrane, such as the typical
lipid bilayer, by the electric pressure generated by an ac field.

II. PROBLEM FORMULATION

Let us consider a planar membrane formed by a charge-free
lipid bilayer with dielectric constant εm and conductivity σm.

The molecularly thin bilayer (thickness d ∼ 5 nm) is treated
as a two-dimensional interface with effective capacitance
Cm = εm/d and conductance Gm = σm/d. The membrane
separates solutions with different viscosities, conductivities,
and dielectric constants; see Fig. 1. Far from the membrane
a uniform electric field is created by applying a potential V

between two electrodes, placed at a distance L on either side.
To be able to study both dc and ac situations in the same
framework, we consider

V (t) = V0(
√

1 − δ2 + δ
√

2 cos νt), (1)

where ν is the angular frequency of the field, and δ is a param-
eter varying between 0 and 1: δ = 0 and δ = 1 correspond to
a constant and a purely sinusoidal voltage, respectively. The
above expression is chosen because it conserves the root mean
square of the potential as the parameter δ is varied (in contrast
to the form adopted by Roberts and Kumar [36]).

A. Physical motivation

Let us first recall the response of an insulating planar
membrane, Gm = 0, subjected to a step electric field with mag-
nitude E0 = V0/2L [E(t < 0) = 0, E(t > 0) = E0]. Upon
application of the electric field, free charges brought by
conduction pile up at the membrane physical surfaces and
the membrane acts as a perfect capacitor.

At steady state, the entire voltage drop occurs within
the membrane (the transmembrane potential is Vm = V0).
The membrane capacitor prevents any electrical current from
flowing through the system. Thus, electric fields in the upper
and lower solutions vanish and so does the electric pressure on
the membrane. Accordingly, the membrane is linearly stable
[24,25]. This is in contrast with ordinary fluid-fluid interfaces
(e.g., air/water) where the potential is always continuous:
bulk electric fields are nonzero and the corresponding electric
stresses may act to destabilize the interface [37–39].

However, while the capacitor is charging electric current
does flow through the system, and transient electric fields
exist in the bulk. The transmembrane potential evolves
exponentially in time [24]

Vm(t) = V0(1 − e−t/tm,0 ), (2)

where

tm,0 = LCm

(
σ−1

2 + σ−1
1

)
(3)
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FIG. 1. A freely floating planar lipid bilayer membrane separating
fluids with different physical (viscosity μ) and electrical (permittivity
ε and conductivity σ ) properties. A uniform electric field E0 is applied
far from the membrane. The time-dependent displacement of the
membrane above the x-y plane along the z direction is h(x,y,t).

is the capacitor charging time. Hence, we expect that the
membrane could become destabilized during this time; this
case has been observed in dc electric fields [24]. In this
work, we hypothesize that an ac electric field with a period
of oscillations comparable to the charging time (3) could
maintain electric currents through the membrane, and thus
promote membrane instability.

B. Governing equations

Membrane instability involves deformation; interface shape
in an electric field is determined by the balance of electric τ el,
hydrodynamic τ hd, membrane bending τ κ , and tension τ�

stresses

τ el + τ hd = τ κ + τ� . (4)

Next we discuss the calculation of these stresses.

1. Membrane mechanics

Elastic properties of lipid membranes are described by the
model proposed by Helfrich [40], in which the deformation
energy for bending depends quadratically on the departure
of the local mean curvature H from its preferred value. The
bending tractions derived from the Helfrich energy are [41]

τ κ = −κ
[
4(H 3 − KGH ) + 2∇2

s H
]
n, (5)

where κ is the bending modulus, KG is the gaussian curvature,
and ∇2

s is the Laplace-Beltrami operator.
Lipid molecules are free to move within a monolayer, and

their number in the bilayer is fixed. Accordingly, the membrane
can be treated as an incompressible two-dimensional fluid.
The membrane tension � is a two-dimensional analog of
the pressure in incompressible fluids; it is introduced the
enforce the constant surface area [42]. The surface force
associated with membrane tension has both normal (pressure)
and tangential (shear) components,

τ� = 2�Hn − ∇s�, (6)

where ∇s = Is · ∇ is the surface gradient operator and Is =
I − nn is the surface projection.

2. Electric field

We adopt the leaky dielectric model, which combines the
Stokes equations to describe fluid motion with conservation
of current described by Ohm’s law, J = σE [43]. Even though
the model was originally developed for fluids with very low
conductivity, it has been shown that it is an exact lumped
parameter description in the case of drop electrohydrodynam-
ics [44] and it has been successfully applied to model vesicle
electrohydrodynamics [45,46]. The charge of the diffuse layers
is effectively included in the induced surface charge density,

Q = n · (ε1E1 − ε2E2), z = h. (7)

The absence of spatial charge means that the bulk fluids
are electroneutral and that the electric field is irrotational,
E = −∇φ. Due to the membrane capacitance the potential is
discontinuous at the interface z = h(x,y,t), and we define the
transmembrane potential as Vm = φ2 − φ1. The current con-
servation at the top (z = h+) and bottom (z = h−) membrane
surfaces is

n · (J1 − Jm) = −∂Q1

∂t
− ∇s · (vsQ1), z = h+,

(8)

n · (Jm − J2) = −∂Q2

∂t
− ∇s · (vsQ2), z = h−,

where Jm is the Ohmic current flowing through the membrane
(if the membrane is conducting Jm = σmEm). vs is the interface
velocity; vsQ is the convective charge flux along the interface.
The charge densities Q1 and Q2 on the two surfaces of the
membrane facing fluids 1 and 2 are

Q1 = n · (ε1E1) − CmVm, Q2 = CmVm − n · (ε2E2), (9)

where for a thin membrane we use the approximation εmn ·
Em = CmVm. Note that the apparent induced charge of the
membrane (7) is Q = Q1 + Q2.

If charge convection is negligible then Eqs. (8) and (9) can
be rewritten as

n ·
(

σ2E2 + ε2
∂E2

∂t

)
= n ·

(
σ1E1 + ε1

∂E1

∂t

)
,

(10)

n ·
(

σ2E2 + ε2
∂E2

∂t

)
= Cm

∂Vm

∂t
+ GmVm.

The above equations express the conservation of normal
currents through the system. The membrane current has a part
due to the charging of the capacitor (Cm∂Vm/∂t) and an Ohmic
part due to membrane conductivity (GmVm, e.g., arising from
pores or channels). Likewise, the current in each fluid is the
sum of an Ohmic part σE, and a displacement current ε∂E/∂t

associated with charge relaxation.
The electric force density τ el acting on the membrane is

calculated from the Maxwell tensor,

τ el = n · (
Tel

1 − Tel
2

)
, Tel = ε

(
EE − E2

2
I
)

. (11)

The interfacial electric stress has normal (pressure) and
tangential (shear) parts,

pel ≡ τel,n = 1
2

[
ε1

(
E2

1,n − E2
1,t

) − ε2
(
E2

2,n − E2
2,t

)]
,

(12)
τel,t = ε1(E1,nE1,t ) − ε2(E2,nE2,t ).
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3. Fluid motion

At the length scale of biological membranes, inertia is
negligible and the velocity v and pressure p fields are solutions
of the Stokes equation:

μ∇2v = ∇p, ∇ · v = 0. (13)

The no-slip boundary condition applies for the velocity
at the electrodes, v1(z = L) = v2(z = −L) = 0. Membrane
deformation is determined from the kinematic condition that
the interface moves with the normal component of the fluid
velocity. For a planar membrane,

∂h

∂t
= vs · (ẑ − ∇h), (14)

where v1(z = h) = v2(z = h) ≡ vs . The area incompressibil-
ity of the membrane imposes an additional constraint on the
velocity field, ∇s · vs = 0. The viscous forces exerted on the
membrane are inferred from the hydrodynamic stress tensor,

τ hd = n · (
Thd

1 − Thd
2

)
, Thd = −pI + μ[∇v + (∇v)†],

(15)

where the dagger denotes the transpose.

C. Dimensionless parameters and rescaling

Upon application of an electric field, bulk fluids become
electroneutral on the charge relaxation time scales [47]

t1 = ε1

σ1
, t2 = ε2

σ2
, (16)

and the leaky membrane capacitor charges on a time scale (see
Appendix A for the derivation)

tm = LCm

σ1

1 + R

R + gm(1 + R)
, (17)

where gm = GmL/σ1 is the nondimensional membrane con-
ductance and R = σ2/σ1. The electric stresses drive membrane
deformation accompanied by fluid motion with a time scale

tel = μ1 + μ2

ε1E
2
0

, (18)

where E0 = V0/2L is the characteristic magnitude of the
imposed electric field. Resistance to changes in membrane
curvature drives relaxation on a time scale

tκ = μ1 + μ2

κq3
, (19)

for a membrane undulation with wave number q.
Henceforth, all quantities are rescaled by the properties of

the top fluid. The distance L between the membrane and the
electrode is used to rescale all lengths, and it is chosen for
two reasons. First, it is the only physical scale of our problem
(since we assume the membrane to be infinitely thin and large).
Second, it is a crucial experimental parameter determining, for
example, the strength of the electric field, for a given potential.
Additionally, the charge scale is ε1E0, and stresses are scaled
by ε1E

2
0 . The systematic analysis of the problem involves four

dimensionless parameters:

ω = νtm, Ca = ε1E
2
0L

3

κ
= tκ

tel
,

(20)

α = ε1

LCm

≈ t1

tm
, β = ε1E

2
0CmL

μ1σ1
≈ tm

tel
.

α reflects the importance of bulk charge relaxation; β and the
capillary number Ca respectively compare viscous and elastic
effects to electrical pressure. In addition, the physical prop-
erties of the system are characterized by R = σ2/σ1 and S =
ε2/ε1, which measure the electrical mismatch between the two
fluids, the viscosity ratio λ = μ2/μ1, and the nondimensional
membrane conductance gm. We also introduce ξ = �L2/κ ,
which compares the membrane tension to bending forces.

III. PROBLEM SOLUTION

Here we perform a linear stability analysis by studying
the dynamics of a shape fluctuation mode h(x,t) = hq(t)eiqx .
Without loss of generality we consider only a wave vector
parallel to the x axis. Accordingly, any variable u is expanded
in a series of the form u = u(0)(z,t) + u(1)(z,x,t) + · · ·. The
superscript (0) corresponds to the base state, h = 0. u(1) =
uq(z,t) exp(iqx) is a linear correction accounting for the effect
of the small undulations. In the next sections, we derive the
evolution equations for the amplitudes uq(z,t) and study their
growth rate using Floquet analysis.

A. Base state

In the base state the membrane is flat and fixed at z = 0
(h = 0). After an initial transient corresponding to the charging
of the membrane, the electric fields are spatially homogeneous
in each region and may be written as

E
(0)
1 = E

(0)
1,dc + E

(0)
1,c cos ωt + E

(0)
1,s sin ωt,

(21)
E

(0)
2 = E

(0)
2,dc + E

(0)
2,c cos ωt + E

(0)
2,s sin ωt.

The dc components of the fields are

E
(0)
2,dc = gm

√
1 − δ2

R + gm(1 + R)
, E

(0)
1,dc = RE

(0)
2,dc. (22)

As already noted, in the dc (δ = 0) case the bulk electric fields
vanish when the membrane is nonconducting, i.e., when gm =
0. This is not the case for the oscillating components, as seen
for example in their ω → +∞ limit (full expressions are given
in Appendix A):

E
(0)
2,c,ω→+∞ =

√
2δ

1 + S(1 + α)
, E

(0)
2,s,ω→+∞ = 0,

(23)
E

(0)
1,c,ω→+∞ = SE

(0)
2,c,ω→+∞, E

(0)
1,s,ω→+∞ = 0.

The electric field in the base state generates a (rescaled) electric
pressure on the (flat) membrane (12),

pel,(0) = 1
2

[(
E

(0)
z,1

)2 − S
(
E

(0)2
z,2

)2]
. (24)

This isotropic electric pressure is compensated by hydrostatic
pressure, and the fluids are at rest in the base state. Moreover,
since the electric stress has no tangential component, from the
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tangential stress balance (4) it follows that the tension in the
membrane is uniform at leading order: ξ (0) = ξ0.

B. Linearized evolution equations

In order to determine the perturbed electric potential,
velocity, and pressure fields, we need to apply the bound-
ary conditions at the deformed interface. All variables are
expanded in Taylor series, and the boundary conditions are
evaluated at z = 0:

u(z = h) = u(z = 0) + h
∂u

∂z

∣∣∣∣
z=0

= u(0)(z = 0) +
[
u(1)(z = 0) + h

∂u(0)

∂z

∣∣∣∣
z=0

]
. (25)

The solution for the perturbed potential yields [with boundary
conditions φ(1)(±∞) = 0]

φ
(1)
1q (t) = A1q(t) exp(−qz), φ

(1)
2q = A2q(t) exp(qz). (26)

We introduce A1q and A2q as the amplitudes of the potentials
on each side of the membrane, which are unknown functions
of time. The perturbed transmembrane potential is

V (1)
mq = A2q − A1q + hq

(
E

(0)
1 − E

(0)
2

)
. (27)

When dealing with simple interfaces, one typically uses hq

and the interfacial charge Qq to characterize the state of
the system [36,39]. Our problem is more complicated due
to the potential discontinuity, and needs a third variable to be
fully described. We choose to use hq , A1q , and A2q (instead
for example of hq , Vmq , and Qq) in order to obtain a more
symmetric (and convenient to manipulate) set of equations.
The current conservation (10) serves to relate A1q and A2q to
hq (through V (1)

mq ), and gives at first order

RA2q + Sα
dA2q

dt
= −A1q − α

dA1q

dt
, (28)

A1q + dA1q

dt
= dV (1)

mq

dt
+ gmV (1)

mq . (29)

The kinematic condition (14) describes the evolution of the
shape mode,

dhq

dt
= βf (q)[pel,(1) − Ca−1(q4 + ξ0q

2)hq], (30)

where

f (q) = cosh 2q − 1 − 2q2

2(1 + λ)q(2q + sinh 2q)
. (31)

In the absence of an electric field (pel,(1) = 0), Eq. (30)
describes the relaxation of shape perturbations towards a flat
membrane, under the influence of elastic restoring forces.
Considering a shape perturbation of the form hq(t) = ĥqe

−st ,
two well-known limits may be recovered. The first one is the
result of [48] for a tensionless (ξ0 = 0 with our notations), sym-
metric (μ1 = μ2), and unbounded (q 	 1) membrane, which
in dimensional form is written as s = −κq3/4μ1, q

−1 
 L.
In the opposite limit of a wall-bounded membrane, q−1 	 L,
we find s = −κL3q6/12μ1 in agreement with [49].

Equations (28), (29), and (30) describe the evolution of the
linearly perturbed system. Details about the calculations are
given in Appendixes B and C.

Equation (30) shows that the stability depends on the
electric pressure in the perturbed state (12), which is

pel,(1)
q = qE

(0)
1 A1q + qSE

(0)
2 A2q . (32)

In (30), f (q) is always positive: it scales as q2 for small
values of q, but decreases as 1/q when q 	 1. The elastic
term −Ca−1(q4 + ξ0q

2)hq is always stabilizing (provided that
the tension ξ0 is positive): the q4 contribution is due to bending,
the q2 term is due to tension, and both oppose deformation.
On the contrary, electric pressure may become positive and
destabilize the membrane. However, for q 	 1 the elastic term
dominates, so the membrane is always stable for sufficiently
high wave numbers q.

The membrane experiences electric shear stresses as well:

τ
(1)
el,t = E

(0)
z,1E

(1)
x,1 + ∂h

∂x

(
E

(0)
z,1

)2 − S

[
E

(0)
z,2E

(1)
x,2 + ∂h

∂x

(
E

(0)
z,2

)2
]

= −ipel,(1)
q + 2iqhqp

el,(0), (33)

but they are balanced by gradients in the membrane tension.
The tension varies as ξ = ξ0 + ξq(t)eiqx , where the nonuni-
form part ξq is determined from the tangential stress balance
τel,t = −∇sξ , and

ξq = pel,(1)
q

q
− 2hqp

el,(0). (34)

The perturbation in the tension does not enter the first-order
normal stress balance and does not affect the shape evolution
(30) (its contribution is second order).

C. Growth rate: Floquet analysis

When the electric fields E
(0)
1 and E

(0)
2 are constant in

time (that is, when δ = 0), the growth rate s of a given
perturbation is found by looking for solutions of the form
hq(t) = ĥqe

st , Aiq(t) = Âiqe
st , as in [25]. The growth rate

s is then found analytically as the solution of a third-order
polynomial equation.

This approach is not applicable when electric fields vary in
time, which is the case of interest here. This is easily seen in
Eq. (29), where E

(0)
2 (t) and E

(0)
1 (t) appear in the expression of

V (1)
m . However, since the forcing electric terms are periodic in

time and our system is linear, we may use techniques derived
from the Floquet theorem to compute the growth rate s of any
perturbation. We will briefly outline these techniques here,
mostly following Klausmeier [50] (see also [36,39,51]).

Let us first assume that our system can be written in a matrix
form (the detailed transformation is given in Appendix D),

dX

dt
= M(t)X, (35)

where X is a vector of length n describing our system (in the
present work n = 3 and the three elements of X are hq , A1q ,
and A2q), and M(t) is an n × n matrix which is T periodic
in time (here T = 2π/ω). The Floquet theorem states that the
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general solution of Eq. (35) is

X(t) =
n∑

i=1

cie
ζi tpi(t), (36)

where the coefficients ci depend on initial conditions. The
vector-valued (here with three components) functions pi are T

periodic, which implies that their amplitude is finite and that
the long-term stability of the system is entirely controlled by
the real parts of the n Floquet exponents ζi : the growth rate of
the system is sq = max Re(ζi).

The challenge is to calculate these exponents numerically,
and we employed two commonly used techniques. In the
integration method, one first integrates Eq. (35) over one
period, with the n × n identity matrix as initial condition,
which is equivalent in practice to solving it n times with
different initial vectors [(1,0,0), (0,1,0), and (0,0,1) in our
case]. The Floquet multipliers eζi t are the eigenvalues of the
resulting matrix X(T ).

The other method is often referred to as the Hill’s method,
and uses a Fourier decomposition of the T -periodic matrix M

and the functions pi . Let us consider one Floquet exponent
ζ . The corresponding p may be written as an infinite sum of
its Fourier components: p = ∑+∞

k=−∞ pke
ikωt . In our system,

this can be equivalently written in terms of our variables
as (simply making explicit the three components of the
vector-valued function p, and of its Fourier components
pk) hq = ∑+∞

k=−∞ hke
ikωt eζ t , A1q = ∑+∞

k=−∞ a1ke
ikωt eζ t , and

A2q = ∑+∞
k=−∞ a2ke

ikωt eζ t . These expressions are then intro-
duced in Eq. (35) (where the T -periodic matrix M has also
been expanded in Fourier series), and collecting coefficients
in front of the same-order harmonics yields an eigenvalue
problem of the form MζXζ = ζXζ . Xζ is an infinite vector
containing all the coefficients hk , a1k , and a2k and accordingly
Mζ is an infinite matrix. Hence, there exist an infinite number
of eigenvalues ζ . Given one solution, an infinite family of
solutions can be generated by adding iω to it an arbitrary
number of times (which does not change its real part, but
simply corresponds to a shift in phase of one period). And, in
fact, the entire set of solutions forms n different families, each
based on one of the “real” Floquet exponents of the system.

When solving the eigenvalue problem numerically, the
Fourier decomposition is truncated at order N , and Mζ (given
for reference in Appendix D) becomes a finite matrix of size
(6N + 3) × (6N + 3). Its 6N + 3 eigenvalues are easily found
using any computational tool and they can be separated into
three families of 2N + 1 solutions as shown in Fig. 2. The
truncation errors show up in the fact that the solutions are
not exactly separated by iω. Additionally, the eigenvalues’
real parts are not exactly the same within each family: for the
family with the largest real part in Fig. 2, they lie between
0.04 and 0.12. To improve the accuracy of this technique, we
consider only approximately one-third of the total number of
eigenvalues, those whose imaginary part is closest to zero,
and average their real parts within each family. We thus get
from the calculation three real numbers (corresponding to the
computed real part of each Floquet exponent), and the largest
one is chosen as the growth rate of the system.

In Hill’s method the accuracy is very simply controlled by
the truncation threshold N , whereas in the integration method

−80 −60 −40 −20 0
−0.2

0

0.2

Re(ζ )

Im (ζ )

FIG. 2. Illustration of Hill’s method (see text), for q = 10, R =
10, S = 1, ω = 1, δ = 1, Ca = 105, β = 1, gm = 20, α = 0.1, λ = 1,
and ξ0 = 0. We plotted all the complex solutions ζ of the eigenvalue
problem. For clarity, we kept only the first three modes of the
Fourier series (N = 3), and accordingly there are 6 × 3 + 3 = 21
eigenvalues. The eigenvalues segregate into three distinct families of
approximately equal real parts, and their imaginary parts should differ
by iω (here ω = 0.05). This is not the case for the family with the
highest real part: too few modes were taken into account to guarantee
satisfactory precision of the calculations (N = 50 modes are used
throughout this work).

it is controlled by the tolerance parameter of the integration
scheme used (we used the ode45 solver of MATLAB software,
based on an explicit Runge-Kutta formula). When comparing
the two methods, we adjusted this tolerance parameter so that
both of them achieved comparable computational speeds. In
the dc case (δ = 0), the results of the Floquet analysis with
N = 50 agree with the analytical solution by Seiwert et al.
[25] (the relative error is on the order of 10−12). Although
not shown, we checked that the calculations are converged
for all values of the parameters (and in particular for δ > 0).
Throughout this study we preferentially used Hill’s method,
as we found its behavior to be more robust, and mostly used
the integration method as a mean to check our results.

IV. RESULTS

Typical values for the parameters in experiments with giant
lipid vesicles are R = 10, S = 1, λ = 1, ω = 1, Ca = 105

(corresponding to electric field strengths of 1 kV/m), β = 1,
gm = 0, and α = 0.1 [25,29]. To calculate some of this values,
we considered L ≈ 100 μm. Depending on the conductivity
of the surrounding fluids, the capacitive charging time varies
between 10−3 and 1 s. We will most often assume a purely
sinusoidal potential, i.e., δ = 1. The membrane tension in the
absence of electric field can be as low as 10−9 N/m [52];
therefore, for simplicity, we consider an initially tension-free
membrane, that is, ξ0 = 0.

A. Effect of the ac field frequency

Before delving into the analysis of the effects of the
time-varying electric field, we summarize a few important
results in the dc case [25]. If displacement currents are
negligible (equivalent to setting α = 0), which is justified in
most biological applications, the criterion for instability is
gm(R − 1)(R2 − S) > 0. In the more general case α �= 0, there
is no such simple criterion but instability always requires a
conducting membrane (gm > 0), and fluid properties (R and S)
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FIG. 3. (Color online) Growth rate s as a function of wave number
q, for R = 10, S = 1, Ca = 105, β = 1, gm = 0, α = 0.1, λ = 1, and
ξ0 = 0. Dashed lines correspond to dc electric field δ = 0 and solid
lines correspond to a sinusoidal electric field δ = 1 with frequency
ω = 3. For each family of curves, gm increases from bottom to top:
gm = 0 (black), 4 (red), 20, (green), and 1000 (blue). Note that, unlike
what happens for a dc field, in the ac case an instability develops even
for gm = 0. As gm increases, the ac and dc growth curves collapse
(they become indistinguishable on the graph for gm > 20): + symbols
correspond to the gm 	 1 limit, which is the same for ac and dc fields.

within a certain range. In particular, there can be no instability
if the fluids have equal conductivities, that is R = 1.

In contrast to the dc case, the membrane can be unstable
in an ac field (δ = 1) even for gm = 0, due to the fact that
the time-varying field generates currents in the system by
alternatively charging and discharging the membrane over
each period. Figure 3 compares the growth rate s as a function
of wave number q for a dc and an ac electric field, and different
values of gm.

As gm increases, both the extent of the unstable region and
the maximum growth rate smax increase, and the difference
between the ac and dc results decreases. The latter effect
reflects the fact that the current due to the charging of the
membrane ∂Vm/∂t becomes negligible compared to the Ohmic
current gmVm. As gm → +∞ both growth curves converge
towards the limit obtained for a dc field. This limit has
a simple analytical expression when displacement currents
are negligible (αs 
 1), which illustrates nicely the balance
between the restoring elastic and the destabilizing electric
forces:

s
gm→+∞
α=0 = βf (q)

[
qE

(0)2
2,dc

(R − 1)(R2 − S)

R + 1

− Ca−1(q4 + ξ0q
2)

]
. (37)

As a conclusion, the effect of a varying electric field is most
pronounced when the conductivity of the membrane is low,
and for the rest of this study we will focus on gm = 0.

The effect of the field frequency ω on the maximum growth
rate smax is illustrated in Fig. 4. It shows a nonmonotonic
dependence, where at low frequencies smax approaches its dc
value and at high frequencies smax vanishes independently of
the membrane conductivity gm.

Figures 3 and 4 also illustrate the typical values of the
nondimensional instability characteristics: smax ≈ 0.1, qmax ≈

0 20 40 60 80 100
0

0.05

0.1

0.15

ω

smax

gm = 0
gm = 4
gm = 20

FIG. 4. Fastest growth rate smax as a function of ω for R = 10,
S = 1, δ = 1, Ca = 105, β = 1, α = 0.1, λ = 1, ξ0 = 0, and different
values of gm. The short horizontal lines starting at the origin of each
curve represent the values calculated for the dc field δ = 0.

1–10. For a giant lipid vesicle, these correspond to a most
unstable wavelength of 1–100 μm.

1. Instability at high frequencies ω � 1/α

Figure 4 shows that at high frequencies, the maximum
growth rate smax decreases but remains positive, implying
instability. In this frequency regime the period of the field
oscillations becomes shorter than the bulk charging time,
i.e., ω 	 1/α, and the system is dominated by displacement
currents. The base electric fields reduce to (in the case of
δ = 1)

E
(0)
2 =

√
2

1 + S + αS
cos ωt, E

(0)
1 = SE

(0)
2,c. (38)

The fact that the electric fields do not depend on R or gm

anymore is a consequence of the prevalence of displacement
currents. By assuming that each variable varies on the same
time scale as the electric field, so that it is negligible compared
to its derivative when ω 	 1/α, the continuity of bulk currents
across the membrane becomes

α
dA1q

dt
= −αS

dA2q

dt
, i.e., A1q = −SA2q, (39)

whereas the continuity of bulk and membrane currents gives

−(αqS + 1 + S)
dA2q

dt
= dhq

dt

(
E

(0)
1 − E

(0)
2

)

= dhq

dt
E

(0)
2 (S − 1),

A2q = −hqE
(0)
2 (S − 1)

αqS + 1 + S
+ K1. (40)

The constant K1 can be found from the initial values of A2q

and hq , and it is neglected since we focus on unstable modes
(for which hq diverges). The evolution equation for hq is thus

dhq

dt
= βf hq

(
qS

(
E

(0)
2

)2
(S − 1)2

αqS + 1 + S
˜ − Ca−1(q4 + ξ0q

2)

)
.

(41)

This equation has a simple analytical solution, since E
(0)
2 is

a sinusoidal function, and the growth rate s can be instantly
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FIG. 5. (Color online) Maximum growth rate smax as a function
of ω for R = 10, δ = 1, Ca = 105, β = 1, gm = 0, α = 0.1, λ = 1,
ξ = 0, and different values of S. The horizontal lines are calculated
from the approximate solution (42).

recovered by averaging the equation over one period

s = βf

(
qS

(S − 1)2

αqS + 1 + S

〈
E

(0),2
2

〉 − Ca−1(q4 + ξ0q
2)

)
, (42)

where 〈· · ·〉 denotes time averaging over a period. The electric
field contribution in Eq. (42) (the first term on the right-hand
side) is always positive, and thus destabilizing. It is also
dominant at small q; thus it follows that the membrane is
always unstable in the high-frequency regime as long as S �= 1
(as seen in Fig. 5).

2. Intermediate values of ω

An important conclusion is drawn from the results in the
previous section: the membrane can always be made unstable
by increasing the frequency of the field, provided that the
liquids have different permittivities (S �= 1). For S = 1 and
gm > 0, the membrane is unstable for very low frequencies
(in the dc limit), provided that the liquids have different
conductivities (R �= 1). However, the membrane is always
stable in the case of symmetric fluids, R = S = 1.

In most biologically relevant situations S ≈ 1 and thus
the membrane is stable at high frequencies. Moreover, at
low frequencies the membrane is also expected to be stable
because an intact lipid membrane has negligible conductivity
(gm 
 1). The question arises of whether the membrane is still
stable at intermediate frequencies. To answer this question, we
present an approximate analytical solution of our system, valid
for ω 
 1/α. Displacement currents may then be neglected,
which corresponds to setting α = 0 in the evolution equations.
This greatly simplifies the relation between the electric fields
in the fluids on either side of the membrane, giving for the
base and linearly perturbed states

E
(0)
1 = RE

(0)
2 , A1q = −RA2q . (43)

The simplicity of these relations makes it convenient to use the
transmembrane potential as a variable: V (1)

mq = A2q(R + 1) +
hqE

(0)
2 (R − 1). The system (28), (29), and (30) thus reduces

0 10 20 30 40 50

−0.005

0

0.005

t

A 1 q

A 2 q

(b)

0 10 20 30 40 50

−0.005

0

0.005

0.01

0.015

t

h q( t )
h q/( h 0 e s t) − 1

(a)

FIG. 6. Numerical integration of the system of equations (28),
(29), and (30), for R = 10, S = 1, ω = 1, δ = 1, Ca = 105, β =
1, gm = 0, α = 0.1, λ = 1, and ξ = 0. (a) Evolution of hq (solid
lines). Dashed lines represent the normalized variation around an
exponential growth, which is within 1% of hq . (b) In contrast, A1q

and A2q vary almost sinusoidally around 0 (with a slowly growing
amplitude).

to two coupled equations:

dhq

dt
= βf

(
q
(
E

(0)
2

)2 (R − 1)(R2 − S)

R + 1
− Ca−1(q4 + ξq2)

)
hq

−βf qE
(0)
2

R2 − S

R + 1
V (1)

mq , (44)

dV (1)
mq

dt
= −qR + gm(1 + R)

1 + R
V (1)

mq + qRE
(0)
2

R − 1

R + 1
hq. (45)

We further assume that hq varies exponentially: hq = ĥesq t .
Although it is difficult to provide a proof of validity for this
approximation, it holds empirically very well throughout the
range of parameters used in this work. As seen in Fig. 6,
the amplitude of the oscillating part of hq is typically 1%
of its value. In contrast, A1q and A2q , for example, vary
almost sinusoidally around 0 with a slowly growing amplitude
[Fig. 6(b)].

This assumption allows us to calculate (easily, albeit
tediously) V (1)

mq from Eq. (45), and insert it in (44). The
right-hand side of (44) oscillates with a frequency ω (due
to the terms containing V (1)

mq or E
(0)
2 ). We lastly assume s 
 ω,

and average the equation over one period. This leads to a
fourth-order polynomial equation for s,

s = βf q2R
(R − 1)(−R2 + S)

(R + 1)2

× (s + K)2
〈
E

(0)2
2

〉 + ω2E
(0)2
dc

(s + K)3 + ω2(s + K)
+ s0, (46)
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FIG. 7. (a) Growth rate as a function of wave number for R = 10,
S = 1, ω = 1, δ = 1, Ca = 105, β = 1, gm = 0, α = 0.1, λ = 1, and
ξ0 = 0. (b) shows the largest growth rate as a function of ω. In both
figures, the solid line is the result of the Floquet analysis, while the
dashed line represents the approximate solution (46). As expected,
the latter is valid only for low frequencies (ω < 1/α), since it does
not take into account displacement currents.

where

K = qR + gm(1 + R)

1 + R
(47)

and

s0 = βf q
(R − 1)(R2 − S)

R + 1

〈
E

(0)2
2

〉 − βf Ca−1(q4 + ξq2).

(48)

Figure 7 compares the growth rate obtained from this poly-
nomial approximation with the Floquet analysis for a system
with α = 0.1. As expected, both agree for ω � 10, or αω � 1.
For higher values of ω, the approximate solution has a totally
different behavior; smax reaches a plateau smax ≈ 0.15, whereas
the true solution vanishes. This discrepancy is obviously due
to the neglected displacement currents in the approximate
solution.

For our discussion, let us consider the long-wavelength
limit of our approximation q 
 1, where the growth rate is
simply

s = βf q
(R − 1)(R2 − S)

R + 1

〈
E

(0)2
2

〉
. (49)

Although this result is an approximation, it is very robust
since ω and q can be chosen independently as to satisfy the
assumptions s 
 ω 
 1/α. It proves that the membrane is
unstable when (R − 1)(R2 − S) > 0 and 〈(E(0)

2 )2〉 �= 0. This
is always the case when S = 1 and R �= 1, as long as δ �= 0.

0 5 10 15 20
−0.01

0

0.01

q

s

Ca = 102

Ca = 103

Ca = 105

Ca → + ∞

0 2000 4000
0

2

4

Ca

q max

q c

(a)

(b)

FIG. 8. Properties of the instability for R = 10, S = 1, ω = 1,
δ = 1, β = 1, gm = 0, α = 0.1, λ = 1, and ξ = 0. (a) Growth rate s as
a function of q, for increasing values of Ca. The growth rate converges
towards a limit curve (dashed line), which is calculated numerically
by setting Ca−1 = 0 in the system of equations. (b) Whereas the most
unstable wave number qmax (and smax) converges towards a finite
value, the highest unstable wave number qc diverges as Ca → +∞.

Going back to the discussion at the beginning of this section, it
means that by a careful choice of the frequency of the field, a
biomembrane can always be made unstable, unless R = S = 1
(in which case the two surrounding fluids are electrically the
same).

B. Effect of electric field strength: Ca and β

Experimentally, the easiest way to enhance the instability is
to increase the applied voltage. With our rescaling, this means
increasing β and Ca, which both scale as V 2

0 , but to simplify the
discussion, we will consider each of them separately. Figure
8 illustrates the effect of Ca. The growth rate s increases
with this parameter and tends towards a limit curve [dashed
line in Fig. 8(a)], which is calculated numerically by setting
Ca−1 = 0 in Eq. (30). Physically, this limit corresponds to
neglecting all mechanical restoring forces of the membrane
(tension and bending resistance): the problem simplifies to a
balance between electric and viscous stresses. Since there are
no restoring processes, the stability is entirely determined by
the sign of the electric pressure, which is destabilizing for the
set of parameters shown; the growth rate is always positive.
An important consequence, as seen in Fig. 8(b), is that the
extent of the unstable wavelengths diverges with Ca (that is,
the largest unstable mode qc tends to +∞). In contrast, both the
largest growth rate smax and the most unstable wave number
qmax approach a finite value. Indeed, once the elasticity of
the membrane becomes negligible, the interface dynamics is
controlled by the electric pressure and must be independent of
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FIG. 9. Properties of the instability for R = 10, S = 1, ω = 1,
δ = 1, Ca = 105, gm = 0, α = 0.1, λ = 1, and ξ = 0. (a) Growth
rate s as a function of q, for increasing values of β. The fastest
growing wave number and the extent of the unstable region are
almost independent of β. (b) The maximum growth rate smax, however,
increases almost linearly with β.

Ca. Typical biophysics experiments, with Ca ≈ 105, lie just at
the edge of this plateau regime.

Figure 9 shows that increasing β affects the most un-
stable and the highest unstable wave numbers very little.
Figure 9(b) shows that the maximum growth rate, however,
increases almost linearly with β. This behavior is illustrated
by (30), where β appears as a multiplication factor of dhq/dt .

V. CONCLUSIONS

We have analyzed the destabilization of a bilayer membrane
by the electric pressure generated by a uniform ac electric field.
The main result is that while an insulating membrane is linearly
stable in dc electric fields, using ac fields, the membrane
can always be made unstable, except for the symmetric case
of a membrane separating the same fluids R = S = 1. In
the present model, at very low frequencies the instability is
controlled by the dc field criterion gm(R − 1)(R2 − S) > 0
[25]. At intermediate frequencies (ω 
 1/α), the instability
appears when (R − 1)(R2 − S) > 0. And at large frequencies
(ω 	 1/α), the membrane is unstable with a growth rate
proportional to (S − 1)2.

This discussion takes into account only the destabilization
due to the electric pressure produced by the electric field. It
would be very interesting to see how other mechanisms of
instability, such as electric-field-induced negative tension (as
studied in [18] for a dc field) and electrokinetic flows [19], are
affected by an ac field.
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APPENDIX A: ELECTRIC FIELDS IN THE BASE STATE

To calculate the electric fields in the base state, we
consider independently the dc and ac parts of the potential
V = √

1 − δ2 + δ
√

2 cos ωt to find the corresponding parts
of the electric fields.

1. dc potential

Let us first consider an applied dc potential V (t) = 1. To
find the dc part of the fields, we will just multiply the result by√

1 − δ2. In each fluid, k = 2,1, the potential φk is solution of
the Laplace equation ∇2φk = 0. The potential is imposed at
the electrodes [φ(z = ±1,t) = ∓1/2], which gives

φ1(z) = −1/2 + β1(z − 1), φ2(z) = 1/2 + β2(z + 1).

(A1)

In the case of fast bulk charge relaxation, α = 0, the conser-
vation of bulk currents reduces to RE2(0) = E1(0), or

Rβ2 = β1. (A2)

The transmembrane potential is Vm = φ2(0,t) − φ1(0,t) =
1 + β2(1 + R). The equation for Vm from the continuity of
bulk and membrane currents becomes

dVm

dt
+ R + gm(1 + R)

1 + R
Vm = R

1 + R
, (A3)

which yields

Vm(t) = R

R + gm(1 + R)
(1 − e−t/tm ), (A4)

where the (nondimensional) charging time for a leaky capaci-
tive membrane is

tm = (1 + R)

R + gm(1 + R)
. (A5)

At steady state, Vm = R/[R + gm(1 + R)], which gives the
dc part of the electric fields,

E1,dc = Rgm

√
1 − δ2

R + gm(1 + R)
, E2,dc = gm

√
1 − δ2

R + gm(1 + R)
. (A6)

2. ac potential

Let us now consider a sinusoidal potential V = cos ωt . We
use complex notation to find the electric field and write the
potential as φ = �eiωt . The Laplace equation becomes �� =
0; together with the continuity of potential at the electrodes it
imposes:

�1(z,t) = −1/2 + B1(z − 1), �2(z,t) = 1/2 + B2(z + 1).

(A7)
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Conservation of bulk currents imposes

RE2 + αS∂tE2 = E1 + α∂tE1,

(R + iαSω)B2 = (1 + iαω)B1,

B1 = RB2 with R = R + iαωS

1 + iαω
. (A8)

The continuity of bulk and membrane currents becomes
−(R + iαωS)B2 = dtVm + gmVm, with V m = 1 + B2(1 + R).

Simple substitution gives

B2 = − gm + iω

R + iαωS + (gm + iω)(1 + R)
. (A9)

We write the electric fields as Ek = Ek,c cos ωt +
Ek,s sin ωt with the amplitudes of the sine and the cosine
components given below for reference:

E
(0)
2,c =

√
2δ

gm[R + gm(1 + R)] + α2ω4[1 + S + αS] + ω2[1 + R + αS] + α2ω2gm[R + gm(1 + S)]

[R + gm(1 + R) − α2ω2S − ω2α(S + 1)]2 + ω2[1 + R + α(R + S) + αgm(S + 1)]2
,

E
(0)
2,s =

√
2δω

αS
[
ω2(1 + α2gm) + gm + g2

m

] − R
[
1 + αg2

m + αω2(1 + α)
]

[R + gm(1 + R) − α2ω2S − ω2α(S + 1)]2 + ω2[1 + R + α(R + S) + αgm(S + 1)]2
, (A10)

E
(0)
1,c = (R + Sα2ω2)E(0)

2,c − αω(R − S)E(0)
2,s

1 + α2ω2
, E

(0)
1,s = (R + Sα2ω2)E(0)

2,s + αω(R − S)E(0)
2,c

1 + α2ω2
.

APPENDIX B: FLOW AROUND THE MEMBRANE
AT FIRST ORDER

The velocity field in a bounded domain is

vq,z,2 = iq{−Cqq(z + 1) cosh[q(z + 1)]

+ [Cq + Dq(1 + z)] sinh[q(z + 1)]},
vq,x,2 = {Dqq(z + 1) cosh[q(z + 1)]

+ [Dq − Cqq
2(1 + z)] sinh[q(z + 1)]}, (B1)

vq,z,1 = iq{−Mqq(z − 1) cosh[q(z − 1)]

+ [Mq + Nq(z − 1)] sinh[q(z − 1)]},
vq,x,1 = {Nqq(z − 1) cosh[q(z − 1)]

+ [Nq − Mqq
2(z − 1)] sinh[q(z − 1)]}. (B2)

It satisfies the no-slip boundary condition at the electrodes
z = ±1. The corresponding pressure field is

pq,1 = 2iq{Mqq cosh[q(z − 1)] + Nq sinh[q(z − 1)]},
pq,2 = 2iq{Cqq cosh[q(z + 1)] + Dq sinh[q(z + 1)]}.

(B3)

In the Monge representation, z = h(x,t), and with Fourier
mode decomposition, the kinematic condition (14) becomes

dhq

dt
= vq,z − iqvq,xhq. (B4)

Since the leading-order velocity field is zero (hydrostatic
equilibrium around a flat membrane), we have simply

dhq

dt
= v(1)

z,q = Mq

iq[cosh(2q) − 2q2 − 1]

2(q cosh q + sinh q)
. (B5)

The continuity of normal velocity yields Cq = −Mq . The area
incompressibility requires that v(1)

x = 0. Hence,

Dq = Nq = −Mq

q2

q coth q + 1
. (B6)

Mq is determined from the normal stress balance

(
T

hd,(1)
zz,1 − T

hd,(1)
zz,2

) + (
pel,(1)

q − τmm
z,q

) = 0, (B7)

where τmm = τκ + τ� . Then

Mq = −i(1 + λ)−1 q cosh q + sinh q

q2[2q + sinh(2q)]

×
[
pel,(1)

q + κ

ε1E
2
0L

3
(q4 + ξ0q

2)hq

]
. (B8)

The tangential stress balance

(
T

hd,(1)
xz,1 − T

hd,(1)
xz,2

) + (
τ

el,(1)
t,q − τmm

x,q

) = 0 (B9)

serves to determine the nonuniform membrane tension which
influences the dynamics at next order. From τmm

x,q = iq�q we

find �q(t) = (R2 − S)E(0)
1 (t)[Aq(t) + E

(0)
1 (t)hq(t)].

APPENDIX C: MEMBRANE STRESSES

The general formula for the bending tractions is given by
(5). Since our problem is invariant in the y direction, the
Gaussian curvature vanishes. On the other hand, the mean
curvature H is a first-order quantity: H = 1

2∇ · n ≈ − q2

2 hq .
Hence, when evaluated at first order, the bending stresses are

τ (1)
κ = −Ca−1q4hq ẑ. (C1)

The tension stresses in dimensionless form are

τ� = Ca−1(2ξHn − ∇sξ ). (C2)

At first order, the normal part of this stress only depends only
on the value of the tension in the base state, which is constant,
ξ0. Thus,

τ
(1)
� = −Ca−1(ξ0q

2ẑ + iqξq x̂)hq. (C3)
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APPENDIX D: FLOQUET ANALYSIS

1. Dynamical system

In Sec. III B we wrote the evolution equations determining
the stability of the system as

dhq

dt
= βf (q)

[
qE

(0)
1 A1q + qSE

(0)
2 A2q

− Ca−1(q4 + ξ0q
2)hq

]
, (D1)

A1q + α
A1q

dt
= −RA2q − αS

A2q

dt
, (D2)

V (1)
mq = A2q − A1q + hq

(
E

(0)
1 − E

(0)
2

)
, (D3)

A1q + dA1q

dt
= dV (1)

mq

dt
+ gmV (1)

mq . (D4)

However, Fourier analysis requires a linear first-order equation
system. We thus rewrite our system (with �E = E

(0)
1 − E

(0)
2 )

as

dthq = βf (q)
[
qE

(0)
1 A1q + qSE

(0)
2 A2q

− Ca−1(q4 + ξ0q
2)hq

]
, (D5)

α(αqS + 1 + S)∂tA2q

= −αhq(∂t�E + gm�E − f b�E)

−A2q

(
αqR + R + αgm + αSf qE

(0)
2 �E

)
−A1q

(
1 − αgm + αf qE

(0)
1 �E

)
, (D6)

α(αqS + 1 + S)∂tA1q

= αShq(∂t�E + gm�E − f b�E)

+A2q

( − R + gmαS + αS2f qE
(0)
2 �E

)
−A1q

(
αqS + 1 + gmαS − αSf qE

(0)
1 �E

)
, (D7)

where b = Ca−1(q4 + ξ0q
2). This system can be written in

matrix form dX
dt

= M(t)X, where X is a three-component
vector (hq,A1q,A2q).

2. Hill’s analysis

The Floquet theorem tells us that for each fundamental
solution of the system, hq , A1q , and A2q can be written as
Re[hq,T (t)eζ t ], Re[A1q,T (t)eζ t ], and Re[A2q,T (t)eζ t ], where

the subscript T denotes a periodic function. The Floquet
exponents ζ (which are complex) control the stability of the
solution, and there is one per fundamental solution, that is,
three in our system. The first method that we used to find those
requires integration of the system numerically over one period,
and is described in the text.

The second method uses a Fourier decomposition of the
periodic functions (called Hill’s decomposition):

hq,T =
∞∑

−∞
hke

ikωt , A1q,T =
∞∑

−∞
a1,ke

ikωt ,

A2q,T =
∞∑

−∞
a2,ke

ikωt . (D8)

These expressions are then substituted into the set of equations
(D5)–(D7). Coupling between different modes of the Fourier
decomposition appears whenever a variable (hq , A1q , or A2q)
is multiplied by an (oscillating) electric term. As an example,
we list below the product of a generic variable gq and a simple
sinusoidal electric field with frequency ω, in terms of Fourier
components. Notice that sub- and superharmonic terms are
generated:

gq,T (Ec cos ωt + Es sin ωt)

=
∞∑

−∞

(
gkEc

ei(k+1)ωt + ei(k−1)ωt

2

+ gkEs

ei(k+1)ωt − ei(k−1)ωt

2i

)

=
∞∑

−∞
eikωt

(
gk−1

Ec − iEs

2
+ gk+1

Ec + iEs

2

)
. (D9)

Collecting terms in the same power of eiωt yields an eigenvalue
equation of the form ζXζ = MζXζ where Xζ contains all the
Fourier coefficients of hq , A1q , and A2q and is of infinite size.
To solve this equation and find the values of ζ (the method is
specified in the text), the Fourier decomposition is truncated
at order N . Xζ is then of length 6N + 3, and is written Xζ =
(h−N,h−N+1, . . . ,hN−1,hN,a1,−N, . . . ,a1,N ,a2,−N, . . . ,a2,N ).
To write the coefficients of the matrix Mζ , it is convenient to
introduce simplified notations for the electric fields and their
products:

E
(0)
i = E

(0)
i,dc + E

(0)
i,c cos ωt + E

(0)
i,s sin ωt, �E = E

(0)
1 − E

(0)
2 = Êdc + Êc cos ωt + Ês sin ωt,

(D10)
E

(0)
i �E = Ẽi,dc + Ẽi,c cos ωt + Ẽi,s sin ωt + Ẽi,2c cos 2ωt + Ẽi,2s sin 2ωt.

As an illustration, we list the dc parts of �E and E
(0)
i �E:

Êdc = E
(0)
1,dc − E

(0)
2,dc, Ẽi,dc = E

(0)
i,dcÊdc + E

(0)
i,c Êc + E

(0)
i,s Ês

2
. (D11)

The coefficients of Mζ can then easily be deduced from the following relations, valid for −N � k � N [for compactness,
b = Ca−1(q4 + ξ0q

2)]:

ζhk = −hk(βf b + ikω) + βf qa1,kE1,dc + βf qa1,k−1
E1,c − iE1,s

2
+ βf qa1,k+1

E1,c + iE1,s

2

+βf qSa2,kE2,dc + βf qSa2,k−1
E2,c − iE2,s

2
+ βf qSa2,k+1

E2,c + iE2,s

2
, (D12)
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ζa2,k = −hk

(gm − βf b)Êdc

(αqS + 1 + S)
− hk+1

ωÊs + (gm − βf b)Êc − iωÊc + i(gm − βf b)Ês

2(αqS + 1 + S)

−hk−1
ωÊs + (gm − βf b)Êc + iωÊc − i(gm − βf b)Ês

2(αqS + 1 + S)
− a2,k

(
αqR + R + αgm + αSβf qẼ2,dc

α(αqS + 1 + S)
+ ikω

)

−αSβf qa2,k+1
Ẽ2,c + iẼ2,s

2α(αqS + 1 + S)
− αSβf qa2,k−1

Ẽ2,c − iẼ2,s

2α(αqS + 1 + S)
− αSβf qa2,k+2

Ẽ2,2c + iẼ2,2s

2α(αqS + 1 + S)

−αSβf qa2,k−2
Ẽ2,2c − iẼ2,2s

2α(αqS + 1 + S)
− a1,k

1 − αgm + αβf qẼ1,dc

α(αqS + 1 + S)
− αβf qa1,k+1

Ẽ1,c + iẼ1,s

2α(αqS + 1 + S)

−αβf qa1,k−1
Ẽ1,c − iẼ1,s

2α(αqS + 1 + S)
− αβf qa1,k+2

Ẽ1,2c + iẼ1,2s

2α(αqS + 1 + S)
− αβf qa1,k−2

Ẽ1,2c − iẼ1,2s

2α(αqS + 1 + S)
, (D13)

ζa1,k = hk

(gm − βf b)dEdc

αqS + 1 + S
hk+1

ωÊs + (gm − βf b)Êc − iωÊc + i(gm − βf b)Ês

2(αqS + 1 + S)

+hk−1
ωÊs + (gm − βf b)Êc + iωÊc − i(gm − βf b)Ês

2(αqS + 1 + S)
+ a2,k

−R + αSgm + αS2βf qẼ2,dc

α(αqS + 1 + S)

+αS2βf qa2,k+1
Ẽ2,c + iẼ2,s

2α(αqS + 1 + S)
+ αS2βf qa2,k−1

Ẽ2,c − iẼ2,s

2α(αqS + 1 + S)
+ αS2βf qa2,k+2

Ẽ2,2c + iẼ2,2s

2α(αqS + 1 + S)

+αS2βf qa2,k−2
Ẽ2,2c − iẼ2,2s

2α(αqS + 1 + S)
− a1,k

(
αSq + 1 + αSgm − αSβf qẼ1,dc

α(αqS + 1 + S)
+ ikω

)

+αSβf qa1,k+1
Ẽ1,c + iẼ1,s

2α(αqS + 1 + S)
+ αSβf qa1,k−1

Ẽ1,c − iẼ1,s

2α(αqS + 1 + S)
+ αSβf qa1,k+2

Ẽ1,2c + iẼ1,2s

2α(αqS + 1 + S)

+αSβf qa1,k−2
Ẽ1,2c − iẼ1,2s

2α(αqS + 1 + S)
. (D14)
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