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Interactions between oscillators can be investigated with standard tools of time series analysis. However, these
methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant
alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos,
A. Patzak, and R. Mrowka, Phys. Rev. E 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev.
E 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled
phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality.
A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of
coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency
exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions
of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases
obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two
coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol
to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration
and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In
addition, we find that the vagus nerve mediates coupling in both directions.
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I. INTRODUCTION

Coupling of oscillators has broad applicability in physical
and biological systems. Interactions between oscillators can be
investigated empirically with standard methods of time-series
analysis such as cross-correlograms, spectral coherence, or
mutual information. However, these approaches are limited by
their insensitivity to the directionality of the coupling, i.e., the
asymmetry of the interactions.

Rosenblum and collaborators proposed an alternative ap-
proach to investigate coupling in real oscillators capable of
resolving the directionality [1,2]. Their method is to fit a
generic model of coupled phase oscillators to the data and to
use the coupling functions of the model to measure coupling.
Although the theory is sound, spurious results can be obtained
in practice because the fitting is linear and performed in
the least-squares fashion. The problem is that a solution to
the least-squares minimization problem always exists so an
empirical model can be obtained from oscillators that are
actually uncoupled.

In this paper, we propose a three step protocol to overcome
this limitation. First, we compute the mutual information of the
instantaneous phases and determine its statistical significance
using a series of randomizations. If the dependency in the
data is significant relative to the randomized data, then we
fit the coupled oscillator model to the actual data to obtain
the interaction functions. Last, we validate the empirical
oscillator model by comparing the joint probability of the
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phases obtained from simulating the model with the joint
probability of the empirical phases.

We illustrate the application of our protocol in two different
contexts. First, we study a system of two coupled Stuart-
Landau oscillators. This type of oscillator is commonly used
in theoretical and computational studies in physics as it
represents the dynamics of a system close to a supercritical
Hopf bifurcation; a frequent mechanism of obtaining a stable
limit cycle [3]. Our protocol reliably detects the presence or
absence of coupling in this context as well as its directionality.
Second, we study cardiorespiratory coupling (CRC) in rats.
CRC is defined as the relationship between the rhythms of
respiration and the heartbeat [Fig. 1(a)] [4]. Theoretically,
CRC minimizes the energy expenditure for gas exchange and
plays an integral role in maintaining homeostasis [5–8]. Here,
we show that the predominant interaction is the influence of
respiration on the heartbeat. Conversely, the influence of the
heartbeat on respiration is weak, but significant.

Previous studies have quantified CRC using measures
in the time and frequency domains. Recent reports used
χ2 statistics to quantify the deviance from uniformity of
cross-correlograms of heartbeats relative to each breath [9,10]
and spectral coherence at low frequencies [11,12]. Although
both approaches are valid, they are unable to resolve the
asymmetry of the coupling. The empirical model of coupled
phase oscillators proposed in Refs. [1,2] is an ideal candidate
for the study of CRC because it is sensitive to the directionality
of the interactions [13–15].

In practice, two assumptions are made when using the phase
oscillator approach. First, coupling between both oscillators
is weak, in the sense that the dispersion around the mean
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FIG. 1. (Color online) Cardiorespiratory coupling schematic and interevent intervals for respiratory and heartbeat signals. (a) The blue
(light gray) ball is respiration and the red (dark gray) ball is heartbeat. The major pathway which mediates CRC for a given direction is labeled
in the boxes. (b) Distribution of interevent intervals for respiration and heartbeat in intact and vagotomized states. Note that vagotomy reduces
the mean frequency of both oscillators.

frequency of the oscillator is small compared to the mean
frequency, which is verified in Fig. 1(b); and second, the inter-
actions between the oscillators can be truthfully represented
by a phase oscillator model; i.e., the angular frequency is the
only relevant state variable, and the amplitude of the signal
and its temporal modulation are irrelevant, which is verified in
Fig. 2.

II. METHODS

A. Experimental methods

Adult male Sprague-Dawley rats (Sprague Dawley/Harlan,
375–425 g, n = 15), were anesthetized with isoflurane (0.5%–
1.0%). Rats were intubated and breathed spontaneously.
Electrocardiogram (ECG) and diaphragmatic electromyogram
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FIG. 2. (Color online) Phase of ECG and EMG recordings. The
phase of each recording is overlaid on the raw traces. (Top) ECG;
(bottom) diaphragmatic EMG. B stands for breathing and H stands
for heartbeat.

(EMG) were recorded, filtered (0.01–3 kHz), digitized, and
stored on a computer via SPIKE2 software (sampling at 10 kHz).
Rats were allowed at least 30 min after surgery to stabilize.
Stationary epochs were analyzed from a 5-min epoch before
and after bilateral transection of the vagal nerves (vagotomy).

B. Phase estimation

The recordings were first narrow-band pass filtered. The
impulse response of the filter was defined by a trapezoid with
height 1 and vertices located at 0.5, 0.8, 1.3, and 1.5 Hz for
the EMG and 3.5, 4.0, 6.0, and 6.5 Hz for the ECG. Then,
the Hilbert transform was computed for each filtered signal to
obtain a complex time series, the so-called analytical signal,
whose angle represents the instantaneous “protophase,” for
each oscillator, θ1,θ2. Next, a correction detailed in Ref. [16]
was applied to θ1,θ2 to obtain the “genuine” phase ϕ1,ϕ2.
Specifically, begin with θ and define

Sn = 1

N

N∑
j=1

e−inθ(tj ),

where θ (tj ) indicates the values of the protophase at the ith
time sample. Then, the genuine phase is given by

ϕ(t) = θ (t) +
∑
n�=0

Sn

in
(einθ(t) − 1).

For our analysis, we use n = −10 to 10 because a larger range
did not yield different results. An example of the phase in
comparison with the raw data is shown in Fig. 2.

C. Mutual information of the oscillatory dynamics

In information theory, mutual information is a nondirec-
tional measure of the dependency of two random variables
based on their marginal and joint probability distributions.
Intuitively, this measure describes how factorizable a joint
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distribution is. The mutual information, I , for two oscillators
with phases ϕ1,ϕ2 is given by

I (ϕ1,ϕ2) = I (ϕ2,ϕ1) =
∫ 2π

0

∫ 2π

0
P (ϕ1,ϕ2) ln

×
(

P (ϕ1,ϕ2)

P1(ϕ1)P2(ϕ2)

)
dϕ1dϕ2, (1)

where P (ϕ1,ϕ2) is the joint distribution of the phases and
P1(ϕ1) and P2(ϕ2) are the respective marginal distributions. A
theoretical definition of P (ϕ1,ϕ2) is

P (ϕ1,ϕ2) = 1

N

N∑
j=1

δ(ϕ1 − ϕ̂1(tj ))δ(ϕ2 − ϕ̂2(tj )), (2)

where ϕ̂ indicates empirical values of the ith phase at each
time sample, j of N total samples (Ndt is the total duration
of the recording with dt = 1 ms in our case). To construct
a continuous distribution, the δ functions in Eq. (2) are
convolved with a sharp symmetric distribution of unitary area
and half width σ � 2π. For our analysis, we use the von Mises
distribution, which generalizes the Gaussian distribution to the
case of wraparound conditions. The von Mises distribution is
given by

f (x|μ,κ) = eκ cos(x−μ)

2πJ0(κ)
, (3)

where J0 is the modified Bessel function of the first kind and
κ = 1

2πσ 2 . In the above expression, σ 2 is the analog of the
variance of the typical Gaussian distribution. The bivariate
form of the von Mises distribution is the product of Eq. (3),
and so the empirical probability distribution for the phases of
two oscillators is given by

P (ϕ1,ϕ2) = 1

N (2πJ0(κ))2

N∑
k=1

exp (κ cos(ϕ1 − ϕ̂1(tk)))

× exp (κ cos(ϕ2 − ϕ̂2(tk))). (4)

This definition of the joint distribution of the phases is more
robust than the standard one obtained via a two-dimensional
histogram; this is because the calculation of the mutual
information is acutely sensitive to the size and edges of
the histogram’s bins. In contrast, the mutual information
marginally depends on the choice of σ in Eq. (4). As long
as σ � 2π, the above method approximates the value for the
“true” continuous distribution associated with its empirical
estimation, P (ϕ1,ϕ2). We use σ = 0.12 for our analysis.

Recall that I is a criterion for determining if coupling can
be detected using the phase oscillator approach. As mentioned
in the Introduction, this constraint is necessary because fitting
the model to data always produces a coupling function, even
in cases where the oscillators are uncoupled. To determine
whether I for a given experiment is significant, we randomize
the data to obtain a tolerance for I due to chance interactions.
Specifically, we compute I for the empirical phases and
compare it to the 95% confidence interval of I ’s computed
from many randomizations of the empirical phases. These
randomizations consist of independently permuting the cycles
of both oscillators. It is worth noting that this randomization

technique preserves the mean and variance of the heartbeat
and respiration periods.

For clarity, let I ∗ be the tolerance for significance (95th
confidence interval). The procedure to calculate I ∗ is as fol-
lows. First, permute the cycles of the phases of both oscillators
arbitrarily and compute I for this particular randomization.
Then, repeat this process many times (n = 100 in our case)
and determine the 95th percentile of all the I ’s belonging to
the randomizations. Compute the interaction functions only
for experiments where the empirical I is greater than I ∗.

D. Empirical phase oscillator model

Following Rosenblum et al. [1,2,17], the generic model of
two coupled oscillators is given by

ϕ̇1 = ω1 + F2→1(ϕ1,ϕ2) + σ1η1(t),

ϕ̇2 = ω2 + F1→2(ϕ2,ϕ1) + σ2η2(t),
(5)

where ϕ̇1,ϕ̇2 are the time derivative of the phases; ω1,ω2 are the
autonomous frequencies, F2→1(ϕ1,ϕ2),F1→2(ϕ2,ϕ1) are the
coupling functions; η1(t),η2(t) are uncorrelated white noise
processes with unitary variance and scaled by constants σ1,σ2.
The coupling functions can be expressed as a complex Fourier
series given by

F2→1(ϕ1,ϕ2) =
∑
n,m

A1
n,mei(nϕ1+mϕ2)

F1→2(ϕ2,ϕ1) =
∑
n,m

A2
n,mei(nϕ2+mϕ1)

for which n or m �= 0,

(6)

where n,m are indices synonymous to the n : m phase locking
indices of two oscillators, and A1

n,m,A2
n,mare the coefficients

of the respective Fourier series for given values of n,m. Also,
each function possesses a direction: 2 → 1 denotes coupling in
the direction from oscillator 2 to 1 and 1 → 2 denotes coupling
in the direction from oscillator 1 to 2. Incidentally, a similar
approach can be applied to compute the phase-resetting curve
of an oscillator from experimental data [18].

In obtaining the empirical model of coupled phase oscilla-
tors, the left-hand side of Eq. (5) is directly computed from
the data, the right-hand side of Eq. (5) can be expressed as a
complex Fourier series where ω1,2 is given by Eq. (6) for which
n and m = 0, and F1,2 is given by Eq. (6) for which n or m �= 0.
To avoid overfitting, we first compute An,m∀n,m′s for a desired
order, with the inner product of ϕ̇1 and e−i(nϕ̇1−mϕ̇2) given by

An,m =
∫ 2π

0

∫ 2π

0
ϕ̇1 exp(−inϕ1 − imϕ2)dϕ1dϕ2,

which can be numerically approximated as the temporal
average 〈ϕ̇1(t) exp(−inϕ1(t) − imϕ2(t))〉. Then, we rank the
An,m’s and select coefficients with the largest power un-
til 99% of the total power is reached, i.e.,

∑
j |Aj |2 >

0.99
∑

n,m |An,m|2, where Aj denotes the selected coefficients.
When fitting the model to the data, we only use the n,m′s
predetermined using this criterion. The amount of energy that
cannot be accounted for the coefficients is then attributed to
the energy of background noise, σ 2. In the final step, we fit
(5) to the data using least squares. Furthermore, we use the
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parameters c2→1,c1→2 given by

c2→1 =
√∑

n,m�=0

∣∣A1
nm

∣∣2

2π
, c1→2 =

√∑
n,m�=0

∣∣A2
nm

∣∣2

2π
,

with units of Hz, to compare the strength of coupling and
its directionality. In particular, if c2→1 > c1→2, then heartbeat
drives respiration more strongly than vice versa. If c2→1 <

c1→2, then respiration drives heartbeat more strongly than vice
versa.

Finally, we note that the amplitude of the interaction
function has units of the reciprocal of time, Hz in our
experiments. Thus, its reciprocal value provides a proxy for
the time scale of the coupling, which is a few minutes in our
experiments. Consequently, we selected 5-min-long stationary
epochs for analysis.

E. Validation of the empirical oscillator model

The final step of our protocol is the validation of the
empirical phase oscillator model. To this end, we test whether
the joint distribution of the empirical phases is statistically
different from the joint distribution of the phases obtained
from simulating the oscillator model. This step is an additional
measure for preventing spurious results. For our protocol,
statistical similarity of the two distributions is determined
using both Pearson’s linear correlation coefficient, R and
Kendall’s τ . The Kendall’s τ coefficient is a nonparametric
correlation statistic based on ranks and takes values between
−1 and +1, where −1 indicates the ranks are reversely ordered
with respect to each other, 0 indicates there is no association
with the ranks, and 1 indicates the ranks are identical. Details
for computing the p value for a given τ are provided in
Ref. [19]. Hypothesis testing is performed using Kendall’s
τ, where the null hypothesis is that the two distributions
are independent and the alternate hypothesis is that they are
dependent. We cannot perform a rigorous hypothesis testing
with R since the error is not entirely Gaussian. Finally, we
note that to compute Kendall’s τ and R for the empirical
and theoretical probability distributions, we discretize them in
intervals of 2π/100 for both ϕ1 and ϕ2.

F. Pseudocode

We implement our protocol with the MATLAB scripting
language, made publicly available on our web site [20] as the
Empirical Phase Oscillator Model (EPHOM) software package.
EPHOM will take pre-processed data as input and produce
the coupling functions when applicable. An overview of our
protocol is as follows. Begin by computing the empirical joint
distribution of the data. Then, compute I and I∗ from the
empirical joint distribution of the phases. Proceed with the
analysis only if I is significant, i.e., I > I∗. Next, fit the
coupled phase oscillator model to the data. Following, simulate
the phase oscillator model and compute the joint distribution
of these surrogate phases. Last, compute the Kendall’s τ for
the empirical and the theoretical probability density functions.
The results are considered only if τ is significant, i.e., the
p-value is less than 0.05.

III. RESULTS

A. Numerical example

We simulate two complex Stuart-Landau oscillators with
weak diffusive coupling and weakly driven with uncorrelated
white noise:

ż1 = (1 + iω1)z1 − |z1|2z1 + ε1(z2 − z1) + σ1η1(t),

ż2 = (1 + iω2)z2 − |z2|2z2 + ε2(z1 − z2) + σ2η2(t).

In Cartesian coordinates, the model is given by

ẋ1 = x1 − ω1y1 − x1
(
x2

1 − y2
1

) + ε1(x2 − x1) + σ1η1(t),

ẏ1 = y1 + ω1x1 − y1
(
x2

1 − y2
1

) + ε1(y2 − y1),

ẋ2 = x2 − ω2y2 − x2
(
x2

2 − y2
2

) + ε2(x1 − x2) + σ2η2(t),

ẏ2 = y2 + ω2x2 − y2
(
x2

2 − y2
2

) + ε2(y1 − y2).

In polar coordinates it reads

ṙ1 = r1
(
1 − ε1 − r2

1

) + ε1r2 cos(ϕ2 − ϕ1) + σ1η1(t) cos(ϕ1),

ϕ̇1 = ω1 + ε1
r2

r1
sin(ϕ2 − ϕ1) − σ1η1(t) sin(ϕ1),

ṙ2 = r2
(
1 − ε2 − r2

2

) + ε2r1 cos(ϕ1 − ϕ2) + σ2η2(t) cos(ϕ2),

ϕ̇2 = ω2 + ε2
r1

r2
sin(ϕ1 − ϕ2) − σ1η1(t) sin(ϕ2).

Under the weak-coupling assumption, r1,r2 are roughly con-
stant and can be approximated as 1. In this case, the model
of coupled Stuart-Landau oscillators takes the form of two
weakly coupled phase oscillators, as in Eq. (5) with

F2→1(ϕ1,ϕ2) = sin(ϕ2 − ϕ1),
(7)

F1→2(ϕ2,ϕ1) = sin(ϕ1 − ϕ2).

We applied our protocol to four different test cases:
asymmetric coupling where oscillator 2 drives oscillator 1
more strongly than vice versa, asymmetric coupling where
oscillator 1 drives oscillator 2 more strongly than vice versa,
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FIG. 3. (Color online) Mutual information values of simulated
coupled Stuart-Landau oscillators. (a) Symmetric coupling. (b)
Asymmetric coupling where oscillator 2 drives oscillator 1 more
strongly than vice versa. (c) Asymmetric coupling where oscillator 1
drives oscillator 2 more strongly than vice versa. (d) No coupling.
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(a) (b) (c) (d)

FIG. 4. (Color online) Theoretical and empirical coupling functions of simulated coupled Stuart-Landau oscillators. In (a), (b), (c), and (d)
the top panel is a schematic showing how the oscillators are coupled. The middle panel is the theoretical coupling function, and the bottom
panel is the empirical coupling function obtained using our protocol. (a) Symmetric coupling. (b) Asymmetric coupling where oscillator 2
drives oscillator 1 more strongly than vice versa. (c) Asymmetric coupling where oscillator 1 drives oscillator 2 more strongly than vice versa.
(d) No coupling.

symmetric coupling, and no coupling. For all the test cases,
ω1 = 3, ω2 = 3π, and σ1 = σ2 = 0.05. For the asymmetric
cases, ε1 = 0.5, ε2 = 0.15 and ε1 = 0.15, ε2 = 0.5, for the
symmetric case, ε1 = 0.5, ε2 = 0.5, and for the uncoupled
case, ε1 = 0, ε2 = 0. To integrate the model, we use the
Euler-Maruyama method with dt = 0.001 s and a total
integration time of 5 min. Only one realization was used for the
analysis. However, other realizations produce near identical
results due to the considerable length and stationarity of the
simulated signals.

Our protocol accurately resolves the presence or absence of
coupling, its directionality, and its magnitude (Figs. 3 and 4).
As expected, the accuracy of coupling estimation decays as ε

approaches the value of σ but, notably, the directionality can
still be resolved until when ε ≈ σ (not shown).

B. Cardiorespiratory coupling in anesthetized rats

We applied our protocol to a physiologic data set composed
of 15 experiments. The values of mutual information ranged
from highly significant to insignificant (Fig. 5); data from 12
of 15 passed the mutual information test and 3 (see Fig. 5, 13
through 15) were excluded because the data did not possess a
significant value of the mutual information (Fig. 5).

The coupled phase oscillator model was obtained for 12
experiments, and importantly, the residuals of these models,
η(t), were not correlated. The Pearson’s linear correlation
coefficients for ηB(t) and ηH (t) were <6% for all the ex-
periments analyzed. This indicates that the coupling between
both oscillators is deterministic and not the result of stochastic
synchronization [21–25], i.e., the entrainment of uncoupled
oscillators driven by common noise.

In order to improve the solution of the least squares
problem, we removed angular frequencies which differed
by more than three standard deviations from the natural
frequency. Outlying angular frequencies were removed by
eliminating entire segments of the phase corresponding to
those values, from both signals. This preserves the paring of

the data points in time, and thus any interactions which were
present prior to modifying the data. For clarity, no means
of interpolation was used to fill in removed segments; they
are simply removed in the same way from both signals. An
example of the coupling functions for an experiment before
and after vagotomy is presented in Fig. 6(a), and examples of
the coupling functions for three experiments in the naive state
is presented in Fig. 6(b). Overall, the interaction functions
are quite consistent across animals in terms of their undulated
structure. This is because the dominant coefficient An,m

corresponds to the closest n:m ratio of heartbeat to respiration.
To interpret the shape of the coupling functions one must

bear in mind that each coupling function depends on the
phases of both oscillators. Thus, the plot of the each coupling
function represents an unwrapped toroidal surface. A single
heart rate acceleration-deceleration occurs per respiratory
cycle in time, but because the heart rate is approximately
six (or five, etc.) times faster than respiration in Fig. 6, and
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FIG. 5. (Color online) Mutual information values of data. The
empirical and randomized values of the mutual information are
presented for the 15 experiments.
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FIG. 6. (Color online) Empirical coupling functions of CRC data.
In both (a) and (b), on the left is the coupling function corresponding
to the influence of heartbeat on the respiration, and on the right is
the coupling function corresponding to vice versa. (a) The top panel
is before vagotomy and the bottom panel is after vagotomy. The
coupling coefficients for this experiment correspond to 1 in Fig. 8.
(b) The coupling functions for three experiments are shown. Top,
middle, and bottom correspond to 2, 3, and 4 in Fig. 8.

0 π 2π
0

π

2π

 

 

0 π 2π
0

π

2π

0

4

8

x10-2

BB

FIG. 7. (Color online) Empirical and theoretical joint probability
distributions of the phases. (a) Joint probability of empirical phases
corresponding to 2 in Fig. 8. (b) Joint probability of the phases
obtained from simulating the model.

because there are wraparound conditions for the phase, when
respiration completes a revolution along the toroidal direction,
the heartbeat revolves roughly six times along the poloidal
direction on the torus. The number of bands in the coupling
functions corresponds to the closest n:m synchronization index
of these oscillators. The ratios in our data are 1:4, 1:5, 1:6, and
1:7. From a physiological perspective, the ratio 1: n implies
that there are n heartbeats per respiration. So, the baroreceptors
are activated n times within one respiratory cycle. Thus, the
values of the coupling function constrained to a transversal
cut at a fixed value of ϕH , for instance, ϕH = π, will have n

peaks.
A comparison between the empirical joint distribution and

the joint distribution from the model is presented in Fig. 7. The
Kendall’s τ, along with the associated p-value, and Pearson’s
linear correlation coefficient is presented below (Table I). The
coupling coefficients for these experiments are presented in
Fig. 8.

Our results indicate that coupling in the cardiorespiratory
system in the anesthetized state is generally biased in the
direction of respiration to heartbeat. Moreover, coupling in
both directions is dependent on the vagus nerve, because
severing this nerve extinguishes pre-existing coupling.

TABLE I. Pearson’s linear correlation coefficient and Kendall’s
τ for the empirical and theoretical distributions. Both coefficients
are given for the 12 experiments with I > I∗. Statistical significance
is determined from the p-value of each τ . Numbering of the
experiments is consistent with that of Fig. 5.

Experiment R τ Significant (Y/N)

1 0.99 0.92 Y
2 0.95 0.79 Y
3 0.80 0.52 Y
4 0.99 0.95 Y
5 0.99 0.96 Y
6 0.99 0.95 Y
7 0.95 0.79 Y
8 0.99 0.90 Y
9 0.96 0.86 Y
10 0.96 0.83 Y
11 0.92 0.77 Y
12 0.98 0.89 Y
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FIG. 8. (Color online) Coupling coefficients before and after
vagotomy. Coupling coefficients (c’s) for both direction are plotted
against each other for the 12 experiments with I > I∗. The c’s for
experiments where vagotomy was performed are also presented. The
squares have cB→H with values of 2.24 and 1.64. The dotted line
emphasizes the directionality.

IV. CONCLUSIONS

We have presented a protocol that combines mutual infor-
mation with phase oscillator dynamics to quantify coupling in
real oscillators. We have successfully tested our protocol with
a model of two coupled Stuart-Landau oscillators. In addition,
we have applied our protocol to investigate cardiorespiratory
coupling in anesthetized rats. From a physiological perspec-
tive, we have shown that the interaction between heartbeat and

respiration is reciprocal but biased towards the influence of
respiration on heartbeat.

Cardiorespiratory coupling is thought to be a good indicator
of health, because it reflects a balance between the sympathetic
and parasympathetic components of the autonomous nervous
systems which control homeostasis and visceral function [26].
Cardiorespiratory interactions are defined and measured in
different ways; the most popular is the so called respiratory
sinus arrhythmia, by which inspiration tends to delay the
upcoming heartbeat. This frequency modulation is apparent
in the power spectrum of ECG signals as a second peak in
the spectrum below 1 Hz (in humans, but higher in rats),
corresponding to the heartbeat’s frequency modulation due to
respiration. Consistent with the respiratory sinus arrhythmia,
the empirical phase-oscillator model reveals a dominant
influence of respiration on the heartbeat. In addition, the model
also resolves the reciprocal interaction: our analysis shows
that there is a weak but reproducible influence of the heartbeat
on respiration. This suggests that the baroreceptor pathway
depicted in Fig. 1 is also functionally relevant, at least in
anesthetized conditions.

In general, the protocol presented here allows one to
efficiently and reliably resolve functional coupling in real
oscillators.
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