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Competition between line tension and curvature stabilizes modulated phase patterns on the surface
of giant unilamellar vesicles: A simulation study
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When prepared in the liquid-liquid coexistence region, the four-component lipid system distearoyl-phospha-
tidylcholine–dioleoyl-phosphatidylcholine–palmitoyl,oleoyl-phosphatidylcholine–cholesterol (DSPC-DOPC-
POPC-Cholesterol), with certain ratios of DOPC and POPC, shows striking modulated phase patterns on the
surface of giant unilamellar vesicles (GUVs). In this simulation study, we show that the morphology of these
patterns can be explained by the competition of line tension (which tends to favor large round domains) and
curvature, as specified by the Helfrich energy functional. In this study we use a Monte-Carlo simulation on the
surface of a GUV to determine the equilibrium shape and phase morphology. We find that the patterns arising
from these competing interactions very closely approximate those observed, that the patterned morphologies
represent thermodynamically stable configurations, and that the geometric nature of these patterns is closely tied
to the relative and absolute values of the model parameters.
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I. INTRODUCTION

Model systems provide an important way to study and
understand the behavior of multicomponent lipid bilayer mem-
branes. The three-component lipid system distearoyl-phos-
phatidylcholine–dioleoyl-phosphatidylcholine–cholesterol
(DSPC-DOPC-Cholesterol) has a well-characterized phase
diagram, with a region of liquid-liquid (Lo + Ld ) coexistence
that is readily observable in giant unilamellar vesicle (GUV)
studies as large round domains [1,2]. This mixture is a
useful model for understanding the general nature of bilayers
containing a high melting lipid (DSPC), a low melting lipid
(DOPC), and cholesterol.

If we replace the low melting lipid, DOPC, with POPC
(palmitoyl, oleoyl-phosphatidylcholine), we find a stark dif-
ference in the phase morphology. Performing GUV imaging
studies on the POPC-containing system reveals that the
liquid-liquid coexistence region appears uniform, unlike the
macroscopic phase domains seen with DOPC-containing
mixtures. However, FRET, ESR [3], and neutron scattering
studies [4] show that liquid-liquid coexistence is present with
POPC. This observation implies that phase separation occurs
in the POPC-containing system on the nanometer scale, thus
not resolvable by ordinary light microscopy. Given the large
body of data from studies of animal cell plasma membranes
that supports the occurrence of Lo + Ld phase domains [5–7],
and given that the size scale, shapes, and connectivities of
phase-separated domains might be involved in the fundamental
behaviors of animal cells, understanding the membrane in
terms of a nonrandom physical mixture might be important.

A four-component mixture containing DSPC, DOPC,
POPC, and cholesterol enables study of the full range of
phase morphologies, from domain size scale of nanometers
to microns, that could occur in cell membranes. On the
DOPC-heavy side of this phase diagram we expect large
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macroscopic domains, whereas on the POPC-heavy side we
expect GUVs to appear uniform (nanodomains). The relative
amounts of DOPC and POPC can be controlled precisely in
order to study the macro-to-nano transition [8]. The relative
amount of DOPC and POPC can be described by ρ, given as,

ρ ≡ χDOPC

χDOPC + χPOPC
, (1)

where χDOPC and χPOPC are the mole fractions of DOPC and
POPC, respectively. In this way, ρ = 1.00 corresponds to a
three-component mixture with DOPC as the only low-melting
component and ρ = 0.00 corresponds to a three-component
mixture with POPC as the only low-melting component. The
trajectory defined by varying ρ from 0.00 to 1.00 pierces the
tetrahedral composition space, with endpoints located on the
POPC and DOPC faces. For both experimental and simulation
studies, the mole fractions of DSPC and CHOL are held fixed
unless otherwise stated.

When DSPC and CHOL are held at particular mole frac-
tions within the liquid-liquid coexistence region, for example,
χDSPC = 0.45 and χCHOL = 0.25, and the value of ρ is varied,
a patterning of the phases is observed in the composition range,
0.15 < ρ < 0.25 [8]. This range can be termed the “modulated
phase window” and for these particular compositions is
characterized by thin stripes of Ld phase within a more
abundant Lo phase, as shown in Fig. 1. The overall pattern
can resemble striped or honeycomb-like structures, each with
a characteristic periodicity. For this particular composition
(χDSPC = 0.45,χCHOL = 0.25), macroscopic domains are ob-
served when ρ > 0.25 and uniform GUVs are observed when
ρ < 0.15 [8].

The underlying mechanism of the formation of modulated
phases in this system has not previously been understood. Our
aim is to model and simulate the formation of these modulated
phases to better understand the transition taking place as
mixture composition moves through this ρ window. We can
then use this model to make predictions about the nature of
nanodomains present in the pure POPC system and eventually
the nature of phase separation on the plasma membrane.
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FIG. 1. Four examples of modulated phase patterns observed
using wide-field fluorescence microscopy. Images are cropped
and contrast adjusted. (a) and (b), composite images of focused
slices of the GUV, the white ring marking the boundary of the
composite image. GUV compositions DSPC-DOPC-POPC-Chol:
(a) 0.487/0.0625/0.188/0.263, (b) 0.45/0.075/0.225/0.25, (c) and (d)
0.395/0.12/0.18/0.305. Dye C12:0 DiI (0.02 mol%) partitions into
Ld . Scale bars, 10 μm, temperature 23◦C.

II. MATERIALS AND METHODS

A. GUV preparation and microscopy

GUV samples were prepared as described in Ref. [8] with
the following modifications: GUVs were swelled at 55◦C
in either 100 mM sucrose or 100 mM glucose and then
cooled to room temperature (23◦C) over 12 h. Samples were
harvested into microcentrifuge tubes (Fisher Scientific) using
large orifice pipet tips (Fisher Scientific) and then let settle for
about 2 h before observation.

Widefield microscopy was performed on a Nikon Diaphot-
TMD inverted microscope at 23◦C using a 60× 1.4NA oil
immersion objective. To minimize light-induced artifacts,
GUVs were first located in bright field mode before illumi-
nation for fluorescence. Samples contained 0.02 mol% C12:0
DiI, imaged with 535- to 550-nm excitation and 565- to
610-nm emission. Images were collected with a Photomet-
rics charge-coupled device camera CoolSNAPHQ2 (Tucson,
Arizona).

Phospholipids were purchased from Avanti Polar Lipids
(Alabaster, AL), cholesterol from Nu Chek Prep (Elysian,
MN), and the fluorescent dye C12:0-DiI (1,1′-didodecyl-
3,3,3′,3′-tetramethylindocarbocyanine perchlorate) from
Invitrogen (Carlsbad, CA). Concentrations of phospholipid
stocks were determined to <1% error with inorganic
phosphate assay [9], and purity checked with thin layer

chromatography in chloroform-methanol-water solvent.
Cholesterol at defined concentration was prepared by standard
gravimetric procedures. Fluorescent dye concentrations
were determined using absorption spectroscopy on an
HP 8452A spectrophotometer (Hewlett-Packard, Palo
Alto, CA).

B. Simulation model

To approach the problem of explaining the appearance of
modulated phases, we constrain our model of the observed
patterns in two ways:

(1) Modulated phases are at a state of thermodynamic
equilibrium. This is supported by the observation that the
patterns do not change over the observation times, persisting
for hours and even days.

(2) Bilayers are phase-separated, the two coexisting phases
are fluid, and the value of ρ changes only the material
parameters describing the energetics of that phase. These
assumptions are reasonable because the compositions under
consideration are squarely within the liquid-liquid coexistence
region of both of the ρ = 0.00 and ρ = 1.00 faces of the phase
diagram tetrahedron [3]. This simplifies the mathematical
model, as we can drop terms in the energy functional that
are not related to morphology (such as any term that depends
only on the local composition).

Our approach uses a competing interactions model [10],
which has been shown to produce modulated phases in many
systems. The formalism states that multiple fields (order
parameters) that couple in a way that opposes the formation of
a single domain with minimal boundary can form equilibrium
honeycomb and striped patterns.

The fields we consider are the local composition and
the local curvature of the membrane [11–13]. These cou-
ple through the composition-dependent material properties
[14–18], which dictate the energetics of bending and stretching
the membrane. We implement this model in simulation to
find the thermodynamic equilibrium state. To do so we
use a Monte-Carlo simulation to sample the configuration
space of fields, then we use the Metropolis Algorithm
[12] to ensure that energy is minimized to within thermal
noise.

Similar simulations have been performed, including the
work of Lipowsky et al., which showed how curvature and
line tension were able to stabilize as many as seven domains
and give rise to a variety of GUV shapes [12]. Simulation
studies of Fan et al. showed that more complicated models,
such as lipid recycling, can stabilize nonequilibrium patterns
on a flat membrane [19]. Other models for the stabilization
of multiple and patterned domains have also been studied,
including a general competing interaction model [20] and
the effects of dipolar repulsion between lipids [21–23]. It has
been shown that electrostatics are too short-range to account
for the many micron length scale we observe in modulated
phases [8].

To begin modeling the modulated phases, we first formulate
an energy functional. The three fields that our energy func-
tional depends on are the local phase, φ, the mean curvature,
H , and the Gaussian curvature G.
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C. Local phase field

The local phase at a point, r , on the membrane surface is
given by the φ(r) field,

φ(r) =
{

0 r ∈ Ld

1 r ∈ Lo.
(2)

This binary field allows us to define the phase morphology
on the surface. We also assume that the total amount of each
phase is fixed (that is, we choose where we are along a given
thermodynamic tie line). If we specify the fraction of surface
in the Lo phase by P , then this constraint can be written

1

Atot

∫∫
φ(r)dA = P, (3)

where Atot is the total area of the membrane surface. The value
of Atot is also considered fixed because of the large elastic
modulus of lipid bilayers [12,17,24].

D. Mean curvature field

The mean curvature can be defined as the divergence of the
surface normals,

H (r) = ∇ · �n(r), (4)

which means that mean curvature can roughly be interpreted as
the degree to which the normal vectors point toward (H < 0)
or away from (H > 0) each other. For computational purposes,
we use an alternative definition of the mean curvature relating
to the change in area under normal projection:

If each point in a small patch of area A is projected outwards
a distance �R along the surface normals, then the change in
area �A is related to the mean curvature by

�A = AH (r)�R, (5)

which can be rearranged to give an explicit expression for
H (r),

H (r) = �A

A�R
. (6)

This is known as the first variation of area formula, which
lends itself easily to a general method for calculating curvature
fields on a discrete surface. A diagram of this process is shown
in Fig. 4.

E. Gaussian curvature field

The Gaussian curvature can be locally defined by the
Gauss-Bonnet theorem. Consider a small N -sided polygon
with area A, centered on a point r , that is delimited by
surface geodesics that meet at exterior angles θ1, θ2,...,θN .
The Gaussian curvature at r is

G(r) = 1

A

[
2π −

N∑
i=1

θi

]
. (7)

Gaussian curvature is roughly a measure of the extent to
which parallel lines drawn on the surface are bent toward each
other (G > 0) or away from each other (G < 0).

F. Energy functional

Since we assume that the membrane is already phase sepa-
rated, our Hamiltonian has three major contributions [12,24]:
the line tension term, HP , the mean curvature term, HH , and
the Gaussian curvature term, HG. Thus, the Hamiltonian is
expressed as

H[φ,H,G] = HP + HH + HG. (8)

1. Line tension term (HP )

The line tension is an expression of the unfavorable energy
required to make an interface between the two membrane
phases [8,16,25]. It is defined by multiplying the total
perimeter of the phase boundary, L, by a constant energy per
unit length, γ ,

HP = γL. (9)

It can be shown that for a fixed amount of Ld and Lo phases,
the minimal boundary is achieved when one large round
domain is formed, maximizing the area-to-perimeter ratio.
This drives the system toward macroscopic phase separation.

To determine the value of L strictly from the function φ(r)
is the product of a complicated limiting process. In practice, L
is computed discretely and takes on the form of a simple sum.

2. Mean curvature term (HH )

The mean curvature and Gaussian curvature terms are both
from the Helfrich formulation [12,24]. This defines the energy
of bending the membrane up to quadratic order in the mean
and Gaussian curvatures. The mean curvature expression is
given by

HH =
∫∫

κ[φ(r)][H (r)]2dA, (10)

where κ(φ) is the local bending modulus. This is defined as

κ(φ) =
{

κd φ = 0

κo φ = 1,
(11)

where κd and κo are the bending modulus in the Ld and Lo

phases, respectively.

3. Gaussian curvature term (HG)

The Gaussian curvature term is also from the Helfrich
functional and is defined as

HG =
∫∫

κ̄[φ(r)]G(r)dA, (12)

where κ̄(φ) is defined similarly as

κ̄(φ) =
{

κ̄d φ = 0

κ̄o φ = 1,
(13)

where κ̄d and κ̄o are the Gaussian bending modulus in the Ld

and Lo phases, respectively.
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4. Constraints

In addition to the three terms outlined above, we also
include two harmonic constraint terms to keep the area and
volume of the GUV close to a fixed value (defined at the
outset of the simulation):

HA = Al(Atot − A)2, (14)

HV = Vl(Vtot − V )2, (15)

where Atot and Vtot are the fixed values of the area and volume,
respectively. The harmonic strengths Al and Vl are in practice
kept very large to allow very little fluctuation [12].

III. DISCRETE MODEL

The formalism outlined above is the continuum description
of a phase-separated membrane’s energetics. In order to simu-
late this system it is necessary to find a suitable discretization
scheme that will allow us to faithfully mimic the conformations
of a continuum membrane. To do this we use a triangulated
lattice with an overall spherical topology [12].

This lattice can be described by a set of vertices, edges, and
faces ({vi},{ei}, and {fi}) with Nv ,Ne, and Nf elements, re-
spectively. The number of vertices, edges, and faces also must
satisfy the Euler characteristic of a sphere, Nv − Ne + Nf =
2. To define the topology, we must define the connectivity
of the lattice. With ni the number of neighbors that vi

1 has
(between 3 and 10), we define the three sets

{vij } {eij } {fij },
where vij is the j th neighbor of vertex i. It is important to note
that the sequence of vertices defined by

vi0 → vi1 → · · · → vi(ni−1) → vi0

forms a counter clockwise loop around the parent vertex,
vi . The elements of {eij } define the edges connecting the
vertices vi and vij . The elements of {fij } define the faces
containing the vertices vi , vij , and vi(j+1). These elements
are only defined for 0 � i < Nv and 0 � j < ni . The second
index, j , is assumed to be modulo ni unless stated otherwise.
This geometric construction is shown in Fig. 2.

A. Geometric properties

It is also useful to have the geometric parameters of the lat-
tice at our disposal. Let fi be a face delimited by the three ver-
tices { �w1, �w2, �w3}. The midpoint, normal, area, and volume as-
sociated with this face can all be defined from the geometry as

�m(fi) = 1
3 ( �w1 + �w2 + �w3) (16)

�n(fi) = ( �w2 − �w1) × ( �w3 − �w1)

‖( �w2 − �w1) × ( �w3 − �w1)‖ (17)

1The symbol vi refers to the scalar index of the vertex, while the
symbol �vi refers to the vector position of the vertex.

FIG. 2. Geometric layout of a vertex and its neighboring vertices,
edges, and faces. The sequence of neighbors form a counter-clockwise
loop allowing us to orient the surface normals outward.

A(fi) = ‖( �w2 − �w1) × ( �w3 − �w1)‖
2

(18)

V (fi) = A(fi)[ �w1 · �n(fi)]

3
. (19)

The volume, V (fi), is the volume of the pyramid formed by
connecting its three vertices to the origin. Similarly, let ei be an
edge delimited by the vertices �w1, �w2 and shared between the
two faces g1,g2. The midpoint, normal, and length associated
with this edge are defined as

�m(ei) = �w1 + �w2

2
(20)

�n(ei) = A(g1)�n(g1) + A(g2)�n(g2)

‖A(g1)�n(g1) + A(g2)�n(g2)‖ . (21)

L(ei) = ‖ �w2 − �w1‖. (22)

The normal, �n(ei), is the area weighted sum of the normals
of the two adjacent faces. We may then define the normal,
area, and volume associated with the vertex vi as weighted
sums over the adjacent faces,

�n(vi) =
∑ni−1

j=0 A(fij )�n(fij )∥∥∑ni−1
j=0 A(fij )�n(fij )

∥∥ , (23)

A(vi) = 1

3

ni−1∑
j=0

A(fij ), (24)

V (vi) = 1

3

ni−1∑
j=0

V (fij ). (25)

Last, we define the perimeter to be interpolated between
two adjacent vertices, vi and vij ,

Pij = ‖ �m(eij ) − �m(fi(j−1))‖ + ‖ �m(fij ) − �m(eij )‖. (26)

The fields are defined only on the vertices of the lattice.
For brevity we refer to the values of φ,H,G on the vertex
vi as φi,Hi,Gi . To implement the energy functional outlined
in the previous section, we could compute the values of each
term on a discrete lattice. For the simulation, it is more useful
to compute the local contributions to the energy from each
vertex. The global energy can then be computed as a sum over
all vertices.
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FIG. 3. Close-up of the boundary between the two phases: gray,
Ld phase; black, Lo phase. The discrete interpolated boundary is
shown dashed. The interpolated boundary between two adjacent
vertices (vi and vij ) is shown in thick white, Pij .

B. Discrete line tension

To compute the line tension contribution at the vertex vi ,
we sum up the contributions to the boundary from each vertex
and its neighbors,

Li =
ni−1∑
j=0

(
1 − δφiφij

)
Pij , (27)

where the Kronecker δ ensures that only portions of boundary
for which the adjacent vertices have opposite phase are
counted. The contour used to interpolate the phase interface is
shown in Fig. 3. The line tension contribution of vertex vi is
then

HP (vi) = γLi. (28)

C. Discrete mean curvature

The mean curvature, Hi , is calculated on each vertex using
a discrete approximation to the first variation of area formula.
The disk-shaped region around the vertex with initial area
A(vi) is projected out a distance �R along the normals of the
edges, as shown in Fig. 4. Let the two faces g

(1)
ij and g

(2)
ij be

defined by the three points,

g
(1)
ij ≡ {�vi, �m(fi(j−1)), �m(eij )}, (29)

g
(2)
ij ≡ {�vi, �m(eij ), �m(fij )}. (30)

FIG. 4. The process of mean curvature computation. The initial
star-shaped region around a vertex is projected along the surface
normals a distance �R to produce the shaded gray umbrella region
with a difference in area �A.

The projected faces G
(1)
ij and G

(2)
ij are given by

G
(1)
ij ≡ {�vi + �R�n(vi), �m(fi(j−1))

+�R�n(fi(j−1)), �m(eij ) + �R�n(eij )}, (31)

G
(2)
ij ≡ {�vi + �R�n(vi), �m(eij )

+�R�n(eij ), �m(fij ) + �R�n(fij )}. (32)

The change in area under projection can then be defined as
a sum of the change in area of each face:

�A =
ni−1∑
j=0

[
A

(
g

(1)
ij

) − A
(
G

(1)
ij

) + A
(
g

(2)
ij

) − A
(
G

(2)
ij

)]
. (33)

Now the mean curvature can be defined as

Hi = �A

A(vi)�R
. (34)

The mean curvature term of the energy functional can now
be defined on this vertex as

HH (vi) = κ(φi)H
2
i A(vi). (35)

D. Discrete Gaussian curvature

The Gaussian curvature field is calculated by taking the
angle deficit of the star-shaped region around a given vertex
[12], vi , as shown in Fig. 5. With the angle between two edges
given by ei∠ej , the angle deficit and Gaussian curvature can
be written as

θij = [eij∠ei(j+1)], (36)

Gi = 2π − ∑ni−1
j=0 θij

A(vi)
. (37)

The Gaussian curvature term of the energy functional is
now given by

HG(vi) = κ̄(φi)GiA(vi). (38)

E. Additional constraints

In addition to the three terms of our Hamiltonian, we must
also include constraint terms that keep the discrete model from

FIG. 5. Process of Gaussian curvature computation. The angle
between adjacent edges is summed around a given vertex to compute
the angle deficit.
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taking on impossible configurations. There are five additional
constraints we must impose on the lattice:

The areas of individual triangles on the surface are con-
strained to vary not too far from their initial value. Let A0(fi)
be the initial area of the face fi . The local area constraint is

CA(fi) =
{

0 |�A(fi)| � alA0(fi)

∞ |�A(fi)| > alA0(fi)
, (39)

where �A(fi) = A(fi) − A0(fi). The parameter al gives the
maximal wiggle room of the triangles as a fraction of its initial
area; al = 0 implies a rigid lattice.

The length of the edges is also constrained in a similar
manner [12]. Let L0(ei) be the initial length of a given edge,
ei . The local edge length constraint is

Ce(ei) =
{

0 |�L(ei)| � elL0(ei)

∞ |�L(ei)| > elL0(ei),
(40)

where �L(ei) = L(ei) − L0(ei). Again, the parameter el gives
a wiggle room as a fraction of the initial length of that edge.

The next constraint is a convexity constraint on the shape
of the closed surface. This constrains the normal vector of any
face to lie within the 45◦ cone about the vector connecting the
midpoint to the origin,

Cn(fi) =
{

0 [ �m(fi)∠�n(fi)] � π/4

∞ [ �m(fi)∠�n(fi)] > π/4.
(41)

This keeps the faces from flipping over and contributing
negative volume to the calculations. Notice that each of these
constraints are defined on the faces and edges. They can
be redefined on the vertices of the lattice as sums over the
neighboring faces and edges of that vertex,

CA(vi) =
ni−1∑
j=0

CA(fij ), (42)

Ce(vi) =
ni−1∑
j=0

Ce(eij ), (43)

Cn(vi) =
ni−1∑
j=0

Cn(fij ). (44)

Next we have the two global constraints,

GA = Al

(
Atot −

Nv−1∑
i=0

A(vi)

)2

, (45)

GV = Vl

(
Vtot −

Nv−1∑
i=0

V (vi)

)2

. (46)

Both of these constraints serve to keep the total area and
volume of the surface close to the fixed values Atot and Vtot.

Another hidden constraint is that the total amount of each
phase be fixed,

1

Atot

Nv−1∑
i=0

φi = P, (47)

but this constraint is already imposed in the Monte-Carlo
algorithm we use in the simulation. The total energy of the
system is summarized as

H = GA + GV +
Nv−1∑
i=0

[
1

2
HP (vi) + HH (vi) + HG(vi)

]

+
Nv−1∑
i=0

[CA(vi) + Ce(vi) + Cn(vi)]. (48)

The factor of 1/2 is included in front of HP to take into
account that each piece of boundary is double counted.

F. Monte Carlo simulation

The Monte Carlo simulation works in two stages, one
corresponding to phase exchanges and one corresponding to
vertex movements [12].

Stage 1: For the phase exchanges we choose two vertices
at random, vi and vj . If they have different phases (φi �= φj )
then we swap the two phases and calculate the change in
energy using the discrete Hamiltonian defined above, �E.
This procedure is then accepted with the probability e−�E/kT .
If the move is rejected then the system is returned to the
previous configuration. Since phases are only exchanged
between vertices, the conservation of total phase is trivially
imposed so long as the initial configuration has a specified
phase fraction P .

Stage 2: Similarly, for the vertex movements we choose
a random vertex vi and a random unit direction in space �r .
We then move the vertex a small distance (about 0.1% of the
radius of the GUV) in that direction. All of the curvature and
constraint fields are updated and the change in energy, �E, due
to this perturbation is calculated. It is accepted with probability
e−�E/kT . If it is rejected, then the vertex is moved back to its
original position.

This procedure is iterated a large number of times (roughly
10 000×Nv with phase exchanges and vertex movements
performed in a 2:1 ratio) and annealed at a linear rate from high
temperature until the system has achieved a minimal energy
state to within thermal fluctuations. This minimal energy state
defines the equilibrium morphology that we would expect to
observe in experiments where GUVs have had adequate time
to anneal.

IV. RESULTS AND DISCUSSION

A. Curvature and line tension can produce modulated phases

Implementing the discrete model outlined above yielded
the appearance of modulated phases similar to those observed
experimentally on GUVs in this four-component system. The
simulation shows a strong periodic pattern arising from the
competition between the line tension and curvature terms.
Shown in Table I is the canonical parameter set that gives
rise to a strong modulated phase pattern.

The parameters shown here were found by trial and error
search of the parameter space. The bending moduli here are
about one order of magnitude higher than the experimental
values reported for some (different) lipid mixtures. The
reported values put the typical bending moduli at values of
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TABLE I. Canonical parameter set that is found to produce
modulated phases.

Parameter Value Unit

γ 0.01 pN
κd 10 × 10−19 J
κo 100 × 10−19 J
κ̄d −10 × 10−19 J
κ̄o −100 × 10−19 J
R 25 μm
P 0.5 N/A

around κd = 2 × 10−19 J and κo = 8 × 10−19 J [14,15,18].
Notice that we have set κ ≈ −κ̄ for both the Ld and Lo phases
in accordance with the observation that κ̄/κ ≈ −0.9 [26].

The line tension reported here is two orders of magnitude
below typical experimentally reported values, γ ≈ 1.2 pN
[14,18]. Line tension values in our simulation of modulated
phases should be smaller than those measured experimentally
because the values of line tension reported in the literature
correspond to large macroscopic domains (the shape and
stability of macroscopic domains being the principle method
of extracting this parameter).

We identify two reasons for this seeming discrepancy: First,
line tension cannot be measured by any method yet reported
in the regime of modulated phases. With near-certainty we
can say that it must be much lower for such mixtures; second,
given that we used only the bending energies as the interactions
that oppose line tension, then if additional interactions are
in play besides these bending energies, the line tension to
produce modulated phase morphology would be larger. We
are considering other potential long-range interactions (such
as dipolar repulsion arising from the molecular structure of the
lipids) to include in future simulations to test this hypothesis.

In order to ensure that the modulated phases are not an
artifact in the simulation, we ran the simulation on much higher
resolution lattices to see if the patterns persist. Figure 6 shows a
side-by-side view of the patterns on a lattice containing 10 000
vertices and one containing 40 000 with the same parameter
set. The poor scaling of the simulation with vertex number
makes examination of much higher resolution problematic.

FIG. 6. Modulated phases can be simulated. Comparison of the
pattern on a low resolution (10 000 vertex) lattice (a) to the pattern on
a high resolution (40 000 vertex) lattice (b) shows that the patterning
is not an artifact of the triangulation.

FIG. 7. Direct comparison of modulated phases observed experi-
mentally on the surface of GUVs to patterns produced in simulation.
(a) Simulation with P = 0.75 (a2) showing stripe-like patterns similar
to those on an actual GUV (a1). (b) Simulation with P = 0.75 and
κo = −κ̄o = 300 × 10−19J showing honeycomb patterns (b2). GUV
in (a1) was taken from Fig. 1(c) for comparison with simulated
GUV (a2). GUV composition (DSPC-DOPC-POPC-CHOL) in (b1)
is 0.45/0.09/0.21/0.25. C12:0 DiI (0.02 mol%) was used in both (a1)
and (b1). Scale bars 10 μm, temperature 23◦C.

Figure 7 shows that with the same parameters as above,
but with P = 0.75, simulated patterns very closely match
experimental patterns observed on GUVs.

B. Modulated phases are thermodynamically stable

One important issue about modulated phases is whether or
not the patterns are thermodynamically stable or instead are a
kinetically trapped state. The minimal energy morphology of
a phase-separated GUV in the absence of curvature is known
to be a single round macroscopic domain [27], minimizing the
perimeter-to-area ratio of the domain.

To determine the thermodynamic stability of the modulated
phases we compared the energy of a single round domain
morphology to that of a modulated phase morphology. We first
artificially generated a GUV with a single round domain by
turning off the shape exchange portion of our Monte Carlo
simulation, and then we allowed the GUV to equilibrate.
This gave a single round domain but did not contain the
energetic contributions of the thermal fluctuations. To capture
the thermal fluctuations we performed a second-stage equili-
bration where phase exchanges were turned off and the shape
exchanges were allowed to equilibrate.

As Fig. 8 shows, the energy of the single round domain
morphology exceeds that of the modulated phase morphology,
indicating that the modulated phase morphology is more
thermodynamically stable.
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FIG. 8. With the parameters given in Table I, the modulated phase
morphology (a) is the lowest energy state. The single round domain
mophology (b) has higher energy, and the melted lattice (c) has the
highest energy and most phase boundary.

All of the simulations shown here were started from a
melted state (vertex phases randomly dispersed). A second
test of the stability of the modulated phases was to start the
system off in a single large domain state and then allow the
system to relax to see if it still transitions to a modulated phase
morphology. This process is shown in Fig. 9.

Starting from a macroscopically phase-separated GUV, a
transition to modulated phases appears, again indicating that

FIG. 9. Macroscopic domains transition to modulated phases.
Energy as function of Monte-Carlo steps starting from a single
macroscopic domain, which breaks up and eventually stabilizes to
the modulated phase pattern. The simulation can take a long time to
equilibrate as shown by the continually decreasing energy, but the
pattern does not change appreciably in the tail end of the curve. The
slight increase in energy at the beginning is probably compensated by
the increase in entropy as the domain boundary begins to disintegrate.

the modulated phases are thermodynamically more stable than
the single round domain. Notice that the energy increases at
the beginning of the simulation, seemingly in contradiction
of the second law of thermodynamics. This is because we have
plotted only the enthalpic part of the free energy, neglecting
the increase in entropy as the domain begins to break apart.

C. The physical parameters of the phases and the GUV dictate
the phase morphology

The simulation model shown here has seven tunable
parameters, each affecting the energy landscape in some
complex way. It is useful to do some exploration of how
these parameters change the nature of the morphology. Moving
along a tie line at a fixed value of ρ will only change the amount
of each phase (P ) on the surface without affecting any of the
other parameters. This process is shown in Fig. 10 for three
different values of P .

The line tension, γ , has a large effect on the phase
morphology. The curvature and the line tension terms work
in tandem to produce the modulated phases. If this balance
is perturbed, the system abruptly transitions to a melted or
macroscopically phase-separated morphology, Fig. 11.

At high line tension we noticed a large degree of kinetic
trapping caused by the very large energy barrier to a single
phase exchange. This caused nonequilibrium stabilization
of multiple small domains. Kinetic trapping of domains by
curvature is an experimentally observed phenomenon [28],
but we are interested in studying equilibrium configurations.

The difference in bending rigidity between the Lo and
Ld controls the width of the Ld lines and the size of the

FIG. 10. (Color) Phase morphologies change as the phase fraction
(P ) is varied. (a1) P = 0.75; (a2) mean curvature map showing how
the modulated phases and the geometry of the membrane couple.
Curvature units in the color scale are μm−1; (b) P = 0.5; (c) P =
0.25. The single pixel domains are not static structures but transiently
flicker in and out of existence due to thermal fluctuations of the
membrane shape in the Lo regions.
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FIG. 11. Phase morphologies change as line tension is varied. (a)
γ = 0.005 pN. (b) γ = 0.02 pN. (c) γ = 0.03 pN. (d) γ = 1.5 pN.

Lo domains. Figure 12 shows a series of increasing bending
rigidity of the Lo phase while keeping moduli of the Ld phase
fixed.

All of the simulations shown here are performed on R =
25-μm GUVs. What affect, if any, does the size of the GUV
have on the nature of the patterns? We find that scaling the
radius of the GUV is energetically equivalent to scaling the

FIG. 12. Phase morphologies change as the bending moduli (κo

and κ̄o) of the Lo phase are varied. (a) κo = −κ̄o = 200 × 10−19J. (b)
κo = −κ̄o = 300 × 10−19J. (c) κo = −κ̄o = 500 × 10−19J. (d) κo =
−κ̄o = 1000 × 10−19J.

line tension,

H[R,γ ] = γL +
∫

S

κ(φ)H 2 + κ̄(φ)GdA. (49)

Scaling R by a factor a will scale all linear quantities by
the same factor and all area quantities by a2. Note that under
this scaling the area fraction of each phase, P , is held fixed,
so the actual area of each phase must change accordingly (by
a factor of a2).

H[aR,γ ] = γ (aL) +
∫

S

κ(φ)(H/a)2 + κ̄(φ)(G/a2)(a2dA),

(50)

= γ (aL) +
∫

S

κ(φ)H 2 + κ̄(φ)GdA, (51)

= H[R,aγ ]. (52)

Thus, scaling the GUV size is equivalent to scaling the line
tension, as in Fig. 11. See Supplemental Material for a detailed
proof of these scaling relations [29].

V. CONCLUSION AND FUTURE DIRECTIONS

We have shown that the Helfrich model can explain the exis-
tence of modulated phase patterning: Patterns obtained through
simulation closely match those experimentally observed on
the surfaces of GUVs in the four-component system DSPC-
DOPC-POPC-CHOL and represent thermodynamically stable
configurations. The parameters of line tension and bending
energies yield a range of different patterns (including striped,
honeycomb, and macroscopic), depending on their relative
and absolute values. This successful modeling provides a
foundation for systematic study of the control of domain size
in phase-separated biological membranes.

A. Future Studies

(1) Spherical topology can break the symmetry of the
curvature fields. By performing simulations on flat planar
lattices, we will examine if patterning persists.

(2) Accurate measurements of the various model parame-
ters are central to relating our simulations to the experimental
system. We plan to use the microscopy-based method used by
Semrau et al. [14] to measure elastic parameters as a function
of ρ in our four-component system. These experimentally
determined parameters will enable us to test the validity
and accuracy of the simulation in faithfully representing the
energetics of phase separation in our four-component bilayer
mixture.

(3) Membrane tension might have a strong influence on
modulated phases. In all of the simulations shown here the
global volume constraint, GV , is omitted to allow water to
equilibrate across the membrane. Including a global volume
constraint and setting the equilibrium volume, Vtot, lower or
higher than that of a uniform sphere enables simulation of
the changes in membrane tension caused by osmotic stress.
We plan to compare such simulations with an experimental
system where GUVs are subjected to a change in osmotic
pressure across the membrane.

(4) Our model makes the strong prediction that the ratio
of vesicle diameter to line tension is the key parameter,
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along with bending energies, that control domain morphology.
Studies are underway to verify the size and line tension scaling
relation by correlating phase morphology with vesicle size,
both experimentally and in simulations.

(5) The phase coexistence itself, as well as line tension
and bending moduli, are sensitive to temperature. As a further
study of modulated phase equilibrium, we will compare the
temperature dependence found in the simulations with exper-

imental observations of the temperature-controlled GUVs on
the microscope stage.
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