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Adsorption of a single polymer chain on a surface: Effects of the potential range
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We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer
chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar
surface via a box potential of depth U and width W is presented and compared to continuum model results
and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on
a simple cubic lattice. We show that the critical value Uc corresponding to the adsorption transition scales as
W−1/ν , where the exponent ν = 1/2 for ideal chains and ν ≈ 3/5 for self-avoiding walks. Lattice corrections
for finite W are incorporated in the analytical prediction of the ideal chain theory Uc ≈ ( π2

24 )(W + 1/2)−2 and
in the best-fit equation for the MC simulation data Uc = 0.585(W + 1/2)−5/3. Tail, loop, and train distributions
at the critical point are evaluated by MC simulations for 1 � W � 10 and compared to analytical results for
ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to
that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of
finite ideal and self-avoiding chains can be presented in a universal reduced form: θ (N,U,W ) = θ (NUc,U/Uc).
By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of
the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains
a limiting universal value 〈R2

g⊥〉/〈R2
g‖〉 = 0.320 ± 0.003 only at N ∼ 5000. Finite-N corrections for this ratio

turn out to be of the opposite sign for W = 1 and for W � 2. We also study the N dependence of the apparent
crossover exponent φeff (N ). Strong corrections to scaling of order N−0.5 are observed, and the extrapolated value
φ = 0.483 ± 0.003 is found for all values of W . The strong correction to scaling effects found here explain why
for smaller values of N , as used in most previous work, misleadingly large values of φeff (N ) were identified as
the asymptotic value for the crossover exponent.
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I. INTRODUCTION

The study of polymer adsorption from a solution onto
a solid surface has a long history [1] and is important for
many applications such as adhesion, surface coating, wetting,
adsorption chromatography, etc. [2]. A fundamental issue is
the phase transition associated with the adsorption-desorption
transition point of a very long single polymer chain grafted to
the surface [3,4]. It is widely believed that generic features
of this problem can be elucidated by the study of simple
coarse-grained models. The first exact analytical theory of
adsorption for an infinitely long single polymer chain was
presented in 1965 by Rubin [5] for a random walk on a
regular lattice with equal probability of each step in all
directions, including back steps (immediate return). Later,
different variations of the lattice model of a polymer chain
were widely exploited. These included partly or fully directed
walk models [6–8], nonrestricted random walks with different
statistical weights of kinks [9] (this allowed taking into account
the effect of chain stiffness), and restricted random walks
where immediate return was forbidden [10] (thus, the excluded
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volume effects of the nearest-neighbor segments were taken
into account). The influence of excluded volume interactions
between monomer units on the adsorption behavior and,
in particular, on the adsorption-desorption transition point
was investigated numerically intensively (see Ref. [11] with
references) and by renormalization group methods [4]. A
considerable number of works was devoted to the study of
regular and statistical (random) copolymer adsorption onto
homogeneous solid substrate or onto heterogeneous surface
bearing adsorbing and inert sites; see Ref. [12] as an example.

However, some important aspects, such as the precise value
of the “crossover exponent” φ [4] at the adsorption transition,
are still controversial and constitute an important gap in our
understanding of this problem.

In many of the cited papers, lattice models of polymer
chains were used and the interactions of monomer units with
the adsorbing surface was modeled as a square-well potential
of a unit width equal to the chain segment size. In other words,
the attractive part of the adsorption potential was extended
only to the first lattice layer adjacent to the surface.

A considerable advantage of lattice models is the possibility
of obtaining analytical expressions for the partition function
of infinitely long adsorbed homopolymers and, in certain
cases, for heteropolymer chains. Another attractive feature of
lattice polymer models is a small number of model parameters
involved that describe the model.

022604-11539-3755/2013/87(2)/022604(16) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.022604


LEONID I. KLUSHIN et al. PHYSICAL REVIEW E 87, 022604 (2013)

In coarse-grained off-lattice bead-spring models of a
flexible chain, various forms of the effective surface inter-
action were assumed. As an example, in Refs. [13–15] the
surface interaction was specified by a square-well potential.
In Refs. [16,17] this potential has a form of Lennard-Jones
type with different exponents: 4–10, 3–9, and 1–12. The width
of these potentials was never varied. One generally expects
that universal properties near the adsorption transition (critical
exponents, scaling functions, etc. [4]) should not depend on
details of the potential, but this has never been systematically
checked.

An analytical theory of polymer adsorption for a continuum
ideal chain model was developed by Lépine and Caillé [18]
and Eisenriegler et al. [19]. In this theory, the monomer-surface
potential was replaced by the de Gennes boundary condition
[20,21] imposed on the Green’s function. Continuum theories
were formulated in terms of a phenomenological parameter c

(the pseudopotential amplitude), which defines the boundary
condition for the diffusion equation describing a Gaussian
polymer chain. The interaction parameter c captures both the
adsorption and repulsion effects of the real potential and relates
them to the structure of a long grafted chain. The main advan-
tage of the continuum theory is that it allows an exact analytical
solution for the Green’s function of finite chains, yielding their
partition function as well as geometric characteristics. There is
a rather extensive range of applications of the continuum model
to different adsorption problems considered in the literature,
especially in liquid chromatography [22] and in colloid science
[23]. The availability of closed analytical expressions for
the partition functions of ideal lattice and continuum model
chains allows a mapping between the lattice adsorption energy
parameter and the phenomenological parameter c and provides
the latter with a molecular interpretation [24]. This allows us
to attribute a molecular physical meaning to the interaction
parameter c.

The range of the adsorption interaction in real situations
can, indeed, vary from one system to another. One experimen-
tal way of changing this range pertains to ionizable polymers
where the Debye screening length can be affected by salt
concentration. However, adding salt not only changes the
potential range but also affects its general shape. One could
argue that surface modification with grafted chains used in
reverse-phase absorbents is another experimental realization
of an effective potential that extends over a range that can be
changed from few angstroms to a few nanometers. Currently,
the chains used for surface modification are quite short, in the
range of C5–C18 with the layer thickness on the order of 1 nm.
It was shown that the critical adsorption energy does depend
on the molecular mass of the grafted chain of the reverse phase
[22]. Recent advances in surface modification by polymer
brushes with grafted chains of much larger molecular mass
bring potential possibilities of providing attractive potentials
extending to tens of nanometers. The focus of our investigation
was exactly the effects of the potential width on single-chain
adsorption. While for universal properties pertaining to the
limit of infinitely long chains such effects are supposed to be
nonexistent, we gain insight into their role for chains of finite
lengths.

The paper is organized as follows. Section II introduces the
lattice and continuum models and lists the main approaches

that are valid for finite chains and in the infinite chain limit.
Section III describes the results as a function of the potential
width at the critical adsorption point for all the models and
introduces the scaling laws and the lattice corrections. With
the pruned-enriched Rosenbluth method (PERM), the critical
point estimation of self-avoiding chains with high precision is
demonstrated. Universality of adsorption properties of finite
chains is then shown and explained on the basis of the notion
of segment renormalization. The tail, loop, and train size
distributions at the critical point are evaluated by use of Monte
Carlo (MC) simulations for 1 � W � 10 and compared to
the analytical results for ideal chains and the predictions of
the scaling theory. The length-dependent scaling behavior
of the universal ratio between the normal and the lateral
components of the gyration radius and the crossover exponent
near the adsorption transition are investigated. The correction
to scaling is also considered. Section IV presents some remarks
on the problems related to the analysis of simulation data in
estimating the adsorption critical point and in the evaluation
of universal constants associated with critical behavior. We
also pose the question of rationalizing the broad range of
critical energies found in the literature in view of the effects
of the potential width. The appendix provides the details of
derivations of the generating functions and the analysis of
their singularities.

II. MODEL AND APPROACHES

We consider a polymer chain attached by one end to a
planar adsorbing surface and having the other end free. The
adsorbing surface interacts with monomer units of the chain
via a potential V (z). The surface potential has a square-well
shape with the depth U (U > 0) and the width W (Fig. 1)

V (z) =
{−U, 0 < z � W

0, z > W
. (1)

Here and below we will measure all thermodynamic charac-
teristics in units of temperature kBT .

A. Analytical approach for an ideal chain in the continuum
using the quantum-mechanical analogy

For the model of ideal polymer chains (N Kuhn segments
of length b are randomly linked [25]) in the continuum, the
standard approach exploits the quantum-mechanical analogy
and admits the exact solution for the partition function of
a polymer chain in an external potential V (r). The partition
function of a chain with two ends fixed at the points r0 and

(a) (b)

FIG. 1. (a) Square-well adsorption potential and (b) schematic
view of end-grafted polymer chain in a finite-range potential well in
the adsorbed and desorbed (flower) states.
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r (called the Green’s function) obeys the following partial
differential equation:

∂G(r0,r,s)

∂s
= b2

6

∂2G(r0,r,s)

∂r2
− V (r)G(r0,r,s), (2)

where b is the Kuhn segment length, Nb is the chain’s contour
length, s is the continuous monomer index, and r is the vector
specifying the position of the corresponding segment.

For the continuum chain model the path-integral representa-
tion of the partition function leads to an equivalent formulation
in terms of a Green’s function of a partial differential equation
(analog of the Schrödinger propagator). If the partition
function is dominated by the ground-state contribution, as
in the case for the adsorbed state, the description simplifies
dramatically [20,21]. The chemical potential per monomer,
μ, is then analogous to the quantum-mechanical energy of the
localized ground state and G(r0,r,s) = exp(−μs)ψ(r0)ψ(r) is
given by the solution of the eigenvalue problem:[

−b2

6

d2

dz2
+ V (r)

]
ψ = μψ. (3)

For the rectangular potential of Eq. (1) the bound state exists
if the potential well is deeper than the critical value,

Uc = π2b2

24W 2
. (4)

The chemical potential is given by

μ = −U + 4

π2
Ucx

2, (5)

where x is the smallest root of the transcendental equation [26]

x cot x = −
√

π2

4

U

Uc

− x2. (6)

It follows from Eqs. (5) and (6) that x = x(U/Uc), the
chemical potential has a functional form μ = Ucf (U/Uc),
and the adsorption order parameter (the bound fraction of
monomers) θ = −∂μ/∂U must be a function of a single
argument, the reduced potential depth U/Uc.

B. Analytical approach for infinite lattice chains using
generating functions

In the case of an infinitely long ideal polymer chain
adsorbing onto a surface of a lattice, an analytical description
is available in terms of the generating functions (GFs)
approach (or the grand-canonical approach). This method
was successfully applied for the investigation of helix-coil
transitions in polypeptides and polynucleotides and also for
the analysis of phase transitions such as adsorption [9,27] as
well as mechanical desorption of macromolecules with various
stiffness [10] and with excluded volume interactions [13]. The
main object in this approach is the GF (or the grand-canonical
partition function),

�(x) =
∞∑

N=1

ZNxN, (7)

where ZN is the partition function of a polymer chain with
N units, x ≡ exp(μ), where μ is the chemical potential of a
monomer unit. Very often it is much easier to calculate the GF
rather than a canonical partition function ZN . Once the GF
[Eq. (7)] is known, the partition function ZN can be formally
determined as the coefficients of the expansion of �(x) in
powers of x. In the long chain limit, N 
 1, the asymptotic
expression for ZN is even simpler since it is dominated by the
smallest singularity xs of �(x): ZN � x−N

s .
The GF approach is particularly efficient in the cases where

the chain conformation can be represented as an alternation
(not necessary regular) of sequences of different types. This is,
of course, also the case for the chain adsorbed onto a substrate
because each adsorbed conformation can be represented as
a sequence of adsorbed and desorbed groups of monomers.
The adsorbed sequences are called trains, and loops separate
adsorbed sequences. An end piece of a grafted chain without
loops is named a tail. In our ideal chain model different
loops and trains do not interact with each other or with the
tail.

An expression for the GF of adsorbed chains via GFs
of trains, loops, and tails [�S(qx,W ), �L(x), and �T (x),
respectively] reads [9]

�(x) = [1 + �T (x)]2�S(qx,W )

1 − �S(qx,W )�L(x)
, (8)

where q = exp(U ) is the statistical weight of an adsorbed
monomer unit. The equilibrium chemical potential μ(q,W ) =
ln x is obtained from the smallest of the roots of the following
three equations:

1 − �S(qx,W )�L(x) = 0, (9)

1

�S(qx,W )
= 0, (10)

and

1

1 + �T (x)
= 0, (11)

which are the equations for finding singularities associated
with an adsorbed chain with alternating adsorbed and desorbed
sequences [Eq. (9)], a completely adsorbed chain, a train,
[Eq. (10)], and a desorbed tail [Eq. (11)], which has the same
singularity as a desorbed chain in the bulk.

Expressions for �S(qx,W ), �L(x), and �T (x) are given
below; details of the calculations can be found in the appendix.
The GF of trains has the following form:

�S(qx,W ) = sinh(Wω)

sinh[(W + 1)ω]
, (12)

with

ω = ln

[
1 − 4qx

2qx
+

√(
1 − 4qx

2qx

)2

− 1

]
. (13)

The GF of loops is

�L(x) = 2x

1 − 4x + √
(1 − 6x)(1 − 2x)

(14)
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and the GF of tails is

�T (x) = 2x

1 − 6x + √
(1 − 6x)(1 − 2x)

= 1

2

(√
1 − 2x

1 − 6x
− 1

)
. (15)

These results will be used in the following.

C. Finite lattice chains

For the description of finite ideal chains on the lattice, we
used the well-known numerical treatment by transfer-matrix
methods. It is based on a Green’s function formalism first
introduced by Rubin [5,28,29] and later used in the more
general theory of Scheutjens and Fleer [2].

To take into account the excluded volume interactions,
we used self-avoiding chains on the simple cubic lattice.
Numerical simulations were performed using the standard
PERM [30,31]. The chain length in our simulations was
up to N = 6400, and the width of potential was varied in
the interval 1 � W � 10. Since this simulation method was
recently reviewed in detail [31], we do not describe this method
here to save space.

III. RESULTS AND DISCUSSIONS

A. Adsorption-desorption transition point for ideal chains
on the lattice and in the continuum

The adsorption-desorption transition point in the GF ap-
proach is defined [9] by the condition

�S(q/zV ,W ) = 1, (16)

where zV = 6 is the number of possible steps on the simple
cubic lattice. The critical adsorption energy (see Appendix) is
given by

Uc(W ) = − ln

(
2

3
+ 1

3
cos

π

2W + 1

)
. (17)

At W = 1 Uc(1) = ln( 6
5 ) in accordance with previous results

[5]. At W 
 1, the expansion of Eq. (17) is as follows:

Uc(W ) ≈ π2

24

(
W + 1

2

)−2

, (18)

which provides an excellent asymptotic approximation of the
exact expression [Eq. (17)].

Comparing Eq. (18) with the similar relation for the
continuum model as given by Eq. (4), one can notice that
the only difference consists of a shift in the value of W by 1/2
in the lattice model. This shift is quite familiar and appears
also when matching the entropy of a continuum chain and
a lattice chain in a slit [32]. Interestingly, the same shift was
found in describing the scaling properties of an off-lattice chain
in a slit [33]. For lattice chains, the width of the adsorption
potential cannot be smaller than unity and the maximum
critical adsorption energy is equal to ln(6/5) = 0.182. In the
model for chains in the continuum the potential width W can
be chosen arbitrarily. The critical adsorption energy Uc as a
function of the potential width W is presented in Fig. 2 for
ideal lattice and continuum chains together with the Monte
Carlo data for self-avoiding chains to be discussed shortly.

FIG. 2. (Color online) The dependence of the critical adsorption
energy Uc on the potential width W for lattice chains without excluded
volume interactions [Eq. (17)], continuum chains [Eq. (4)], and self-
avoiding lattice chains (according to Table I).

B. Adsorbed fraction θ and sharpness of the adsorption
transition dθ/dU of finite ideal chains

Figure 3 shows the dependence of the average fraction of
adsorbed units θ and the slope ξ = dθ/dU as functions of
adsorption parameter U calculated for ideal lattice chains at
several chain lengths N = 100, 300, 500, and 1000 and ∞
for various potential widths W . The case W = 1, Figs. 3(a)
and 3(d), was extensively analyzed in the literature before
[3] and is presented here only for the sake of comparison.
Results obtained by the GF approach for infinitely long chains
are shown by solid curves and results calculated numerically
by transfer-matrix techniques for finite chains are shown by
broken curves.

In all cases for N → ∞ the adsorption occurs as a second-
order transition and the curves θ (U ) have a discontinuity in
slope ξ at the critical point U = Uc. The value of ξ is related to
the heat capacity C of the system by the relation C = ξU 2. For
wide potentials, the curves θ (U ) shift to the left and become
sharper, as can be seen from Figs. 3(b) and 3(c). For W = 10
the dependence θ (U ) of infinitely long chain looks like a step
function with Uc close to zero. Note that for the wide potential
W = 10 the behavior of shorter chains N = 50–100 looks as
if the transition occurs at negative adsorption energy.

C. Universality of adsorption for wide potentials in the
case of infinitely long ideal chains

Equation (6) predicts for the continuum model that the
adsorbed fraction θ , and, correspondingly, the reduced slope
ξUc for infinite long chains, are functions of a single parameter
U/Uc(W ). To test this universality for lattice chains we plot the
average fraction of adsorbed units θ and the reduced slope ξUc

vs U/Uc for infinitely long ideal lattice chains versus potentials
with different widths, W = 1, 2, 3, 5, and 10; see Fig. 4. The
limiting shape of the curves for W 
 1 is independent of W

and coincides with the predictions of the continuum model
based on Eqs. (4)–(6). Deviations from the limiting curves are
due to lattice effects. Except for the case W = 1 they are very
small.
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. (Color online) Average fraction of adsorbed units [(a)–(c)] and the transition sharpness ξ = dθ/dU [(d)–(f)] as functions of
adsorption energy U calculated for the potential widths W = 1 (a), W = 3 (b), and W = 10 (c). Several values of chain lengths are chosen, as
indicated.

At the transition point, the slope experiences a jump. The
maximum reduced slope for W = 1 is (25/3) ln(6/5) ≈ 1.519,
and for the continuum limit W → ∞ is π2/8 ≈ 1.234.

D. Determination of the transition points for self-avoiding
lattice chains

Determination of the adsorption-desorption transition point
for chains with excluded volume interactions is always a
difficult problem. To estimate the transition point for self-
avoiding lattice chains, Krawczyk et al. [34] calculated the
heat capacity as a function of the adsorption parameter and
extrapolated the position of the maximum to infinite chain

length N . This method is not very accurate and has an error
of a few percentages. Janse Van Rensburg and Rechnitzer [35]
demonstrated that the analysis of heat capacity data has many
pitfalls.

In the present work we use the method suggested by
Grassberger [36], which is based on the scaling properties
of the partition function. For a single polymer chain grafted
onto an inert solid plane (without any attractive interaction
acting on the monomers) the partition function Q(N ) scales as

Q(N ) ∼ μNNγ1−1. (19)

The values of the effective coordination number on a
simple cubic lattice μ = 4.6840386 ± 0.0000011 and the
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(a) (b)

FIG. 4. (Color online) Average fraction of adsorbed units θ (a) and reduced transition sharpness ξUc (b) plotted versus reduced adsorption
energy U/Uc for infinitely long ideal lattice chains. Several values of potential widths W are chosen, as indicated.

critical exponent γ1 = 0.6786 ± 0.0012 are given in Ref. [36].
De Gennes [20,21] and Barber et al. [37] demonstrated that
the polymer adsorption on the plane in the limit of the infinite
chain is closely related to the surface critical phenomena in the
m vector model of ferromagnets in a semi-infinite geometry
in the limit m → 0. Based on the above analogy Eisenriegler
et al. [19] described the scaling properties of a long chain near a
wall on the basis of the results of the field theory for magnetic
systems. It was shown that the adsorption transition in the
magnetic analogy corresponds to a multicritical point, where
a critical line of (d − 1)-dimensional surface transitions meets
the bulk d-dimensional criticality (“surface-bulk multicritical
point”). According to this analogy, at the adsorption transition
point Uc the partition function Qs(N ) scales similarly as

Qs(N ) ∼ μNNγ s
1 −1, (20)

with the same value of μ but with a different critical exponent,
γ s

1 . Its value was obtained from a second-order ε expansion
[38], γ s

1 � 1.24, and from the massive field theory [39],
γ s

1 = 1.207. The numerical estimation for self-avoiding walks
(SAWs) at W = 1 [36] gives γ s

1 = 1.226 ± 0.002. Estimation
of this critical exponent (and other universal properties related
to the adsorption transition) is a difficult task, because it
requires that Uc should be known very precisely. However,
as we shall see, the estimation of Uc for SAWs is highly
nontrivial and must be done simultaneously with the estimation
of the various critical exponents. Adsorption of a flexible
self-avoiding chain on a plane with the actual width of the
potential, W , will be described by the same exponent γ s

1 as
long as it belongs to the universality class of short-ranged
potentials (W being much smaller than the gyration radius of
the chain).

Grassberger [36] suggests that γ s
1 can be found exactly at

the critical point from Eq. (20) in the asymptotic limit of large
N as

γ s
1,eff(N ) = 1 + ln

[
Qs(2N )

Qs(N/2)μ3N/2

]/
ln 4 ≈ γ s

1 (N ), (21)

which should be N independent. Corrections to scaling give
rise to some weak dependence on N for shorter chains that
disappears with the increase in N . Renormalization group
theory [4,38–40] implies that these corrections show up by

modifying Eq. (20) as

Qs(N ) ∝ μNNγ s
1 −1(1 + const N−s + · · ·) , (22)

where s(<1) is the leading correction to scaling exponent.
From Eqs. (21) and (22) it is easy to show that, for N → ∞,

γ s
1 (N ) = γ s

1 + cN−s ± · · · , (23)

where c is a (nonuniversal) constant. However, if the adsorp-
tion energy is slightly off, the exact critical value the apparent
exponent γ s

1,eff = γ s
1 (N,U ) demonstrates a noticeable varia-

tion that becomes even more prominent at large N rather than
disappearing. In particular, when the adsorption energy is less
than the critical value, the curve of γ s

1,eff drifts downwards
towards a much lower value of γ s

1 (N ). On the other side
(stronger adsorption), the apparent γ s

1,eff curves upwards since
the scaling form of the partition function acquires an extra
exponential factor.

With the PERM, the partition sum can be estimated directly
and very accurately. Therefore, this way of data analysis is
perfectly suited to the estimation of the critical adsorption
point Uc. It is based on the fundamental relation [Eq. (20)];
the value of γ s

1,eff must converge to a constant in the limit of
large N and the numerical value of this constant γ s

1 is rather
well known and must be the same for all values of the potential
width W .

The results of the calculation of γ s
1,eff according to Eq. (21)

are shown in Figs. 5(a) and 5(b) for two values of W , W = 1
and W = 5. As can be seen, the value of γ s

1,eff practically does
not depend on N at the critical point Uc. This fact implies
that the constant c in Eq. (23) is rather small, but there is no
guarantee that a similar fast convergence to the asymptotic
limit occurs for other quantities, too.

Another popular method for the estimation of the transition
point is based on the behavior of parallel and perpendicular
components of the gyration radius. Descas et al. [41,42] used
scaling arguments showing that, at the transition point, the
ratio Rg⊥/Rg‖ should be independent of N . This criterion
has been applied previously by Metzger et al. [16] and later
by Bhattacharya et al. [15] to determine the critical point
for off-lattice model chains with N < 200. Having the ad-
vantage of a much more precise method based on the direct
evaluation of the partition function we can follow the N

dependence of the ratio 〈R2
g⊥〉/〈R2

g‖〉 and, therefore, evaluate
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FIG. 5. (Color online) Effective exponents γ s
1,eff plotted versus N for W = 1 (a) and W = 5 (b); several values of U are chosen as indicated.

The bold curves indicate the behavior at the estimated critical point.

the accuracy of this gyration radius component criterion. It is
clear from Fig. 6(a) that in the narrow vicinity of the critical
point the ratio increases monotonically up to very large values
of N and acquires the asymptotic value only for N ∼ 5000.
One can conclude that an attempt to estimate the critical point
using the data for relatively small N will lead to a systematic
error in Uc. As the width W of potential increases, the situation
is no better. Interestingly, Fig. 6(b) demonstrates that for
W = 5 the ratio 〈R2

g⊥〉/〈R2
g‖〉 behaves as a decreasing function

of N for N > 100; the asymptotic value is still reached only

for N ∼ 5000. The ratio 〈R2
g⊥〉/〈R2

g‖〉 at the critical adsorption
point in the N → ∞ limit is a universal number but for finite
N it is affected by corrections to scaling, analogously to
Eqs. (22) and (23),(〈

R2
g⊥

〉/〈
R2

g‖
〉)

U=Uc
= Cg[1 + C ′

g(W )N−s + · · ·]. (24)

The amplitude factor C ′
g clearly is nonuniversal and seems to

change its sign close to W = 2 [Fig. 6(c)]. Thus, the variation
of W clearly is very useful to estimate the universal con-
stant Cg ≈ 0.320 ± 0.003 reliably. Obviously, if a simulation
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FIG. 6. (Color online) Ratio between the mean-squared gyration radius components perpendicular and parallel to the surface,
〈
R2

g⊥
〉
/〈R2

g‖〉,
plotted versus N . Data are for W = 1 (a) and W = 5 (b) and for 1 � W � 10 at U = Uc (c). In (a) and (b) the dependencies at the critical
point are shown by bold curves; several values of U are chosen as indicated.
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TABLE I. Estimates of the critical energy Uc, the surface critical
exponent γ s

1 , the crossover exponent φ, and the universal ratio
〈R2

g⊥〉/〈R2
g‖〉 at U = Uc for a self-avoiding chain interacting with

a surface potential of width W on a simple cubic lattice.

W Uc γs φ 〈R2
g⊥〉/〈R2

g||〉
1 0.2857(1) 1.224(3) 0.483(2) 0.316(2)
2 0.1235(2) 1.223(2) 0.483(2) 0.317(2)
3 0.0714(3) 1.222(2) 0.482(2) 0.318(2)
4 0.0474(2) 1.222(2) 0.482(2) 0.319(3)
5 0.0341(2) 1.221(2) 0.482(3) 0.319(3)
6 0.0259(1) 1.221(4) 0.483(4) 0.320(3)
7 0.0204(3) 1.220(5) 0.481(4) 0.320(3)
8 0.0166(2) 1.220(5) 0.482(4) 0.320(3)
9 0.0138(2) 1.210(20) 0.478(8) 0.325(6)
10 0.0117(2) 1.220(20) 0.480(8) 0.322(6)

method does not allow a direct evaluation of the partition
function, the gyration component criterion for localizing the
transition may still be quite practical if large-enough chain
lengths are available. However, all the subsequent conclusions
that crucially depend on the accuracy of Uc have to be taken
with great caution.

Table I summarizes the results obtained for self-avoiding
walks on the simple cubic lattice with the adsorption potential
width W in the range from 1 to 10. These include the value of
the critical energy Uc, the surface critical exponent γ s

1 , the ratio
between the gyration radius components 〈R2

g⊥〉/〈R2
g||〉, and

the crossover exponent φ to be discussed later. Note that the
estimated critical exponents do not depend on W as expected
within the same universality class.

We note that a similar idea, variation of a parameter of
the potential to check for the magnitude of corrections to
scaling (and possibly find a case where the amplitude of
the leading correction to scaling changes its sign, allowing
a more accurate estimation of universal properties), has
been successfully used in other contexts, e.g., Monte Carlo
simulations of critical phenomena in the Ising model. There
one can use, for instance, a model with both nearest (Jnn)
and next-nearest (Jnnn) neighbor exchange interactions, their
ratio being a parameter to be varied. This concept is easily
understood in a real-space renormalization group context,
where the criticality is described by a hypersurface in the space
of coupling constants, and the renormalization group flow on
the critical hypersurface leads to a “fixed point Hamiltonian”
{J ∗

nn, J ∗
nnn, . . .; recall that all coupling constants are taken in

units of kBT throughout}. If for a system the couplings are
at the critical hypersurface but not on the fixed point, one has
nonzero “irrelevant operators”, which are renormalized to zero
under renormalization group flow but give rise to corrections
to scaling [40].

It is also interesting to try this approach to estimate
the crossover exponent φ, which can be extracted from
the adsorption energy Es = ∑N

i=1〈ζi〉U , where ζi = 1 if the
monomer labeled by i has a z coordinate normal to the surface
zi � W while ζi = 0 if zi > W . For large N at U = Uc(W )
we must have Es ∝ Nφ . The scaling theory [4,19] implies that
φ is an independent exponent that cannot be related to any
standard critical exponents of the self-avoiding walk problem,

FIG. 7. (Color online) The double logarithmic dependence of the
critical adsorption energy for ideal and self-avoiding lattice chains
on the potential width (W + 1/2). The two straight lines indicate the
power laws, Eqs. (18) and (25).

contrary to early suggestions [20,21]. While early numerical
estimates [19] yielded φ ≈ 0.59, later numerical studies as
well as renormalization group estimates yielded numbers close
to the mean-field value (φMF = 1/2) [35,43]. While Metzger
et al. [16,17] already noted that for chain lengths N � 500 the
simulation results did not yield a clear result, due to the strong
correlation between the best estimate for φ and the estimated
location of the adsorption transition, Descas et al. [41,42] again
suggested φ to be close to the original estimate of Eisenriegler
et al. [19]. However, the recent work of Grassberger [36]
yielded again a much smaller values φ = 0.483(2). We shall
return to this controversy in a later section.

The dependence of the critical adsorption energy Uc on
the potential width W for self-avoiding lattice chains was
presented before in Fig. 2. A log-log plot suggested by the
analytical expression for ideal lattice chains, Eq. (18), reveals
a simple scaling form of Uc(W ); see Fig. 7. All the Monte
Carlo data points are very accurately described by

Uc = 0.585

(W + 1/2)5/3
. (25)

The physical interpretation for the power law, Eq. (25), will be
discussed in the next section.

E. Renormalization and the blob picture at the
adsorption critical point

According to the basic tenets of the critical phenomena
theory and the polymer-magnetic analogy [19] in the presence
of an attractive surface, the chain conformation at critical
conditions is self-similar in the N → ∞ limit. One can
group the segments of the chain into a blob to match the
length scale imposed by the width of the potential, W . For a
self-avoiding chain (where in the bulk the radius R scales with
the number of segments N as R ∼ N3/5 or N ∼ R5/3 [20]),
one expects the number of the original segments (g) in the
blob to scale as g ∼ W 5/3. Here for simplicity, we take for the
exponent ν the Flory values ν = 3/5 rather than the more
accurate number ν ≈ 0.588 suggested by renormalization
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group methods [44,45]. The total energy of the blob in contact
with the surface can be estimated as g(W )U . From very basic
considerations, at the critical condition this energy is of order
kBT or, in reduced units, of order 1. A more concrete statement
follows from self-similarity of the critical chain conformation
with respect to a direct-space renormalization [40]. Repeated
renormalization brings the system to a fixed point which
implies that

g(W )Uc(W ) → const, (26)

at least for large-enough values of W . The fact that the MC
data are very well described by Eq. (25) allows a simple and
direct realization of the self-similarity idea. We define the blob

size according to g(W ) = B(W + 1
2 )5/3 and impose a natural

condition g(1) = 1. This fixes the proportionality coefficient
B to give

g(W ) =
(

2W + 1

3

)5/3

. (27)

Extending the condition, Eq. (26), down to the lowest value
W = 1 (which is, to some extent, a brute-force exercise)
leads to the following blob picture prediction for the critical
adsorption point:

Uc(W ) = Uc(1)

(
2W + 1

3

)−5/3

(28)
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FIG. 8. (Color online) Effective crossover exponent φeff plotted versus N , and N−0.5 for W = 1 [(a) and (c)] and W = 5 [(b) and (d)],
respectively. Several values of U are chosen, as indicated. At the critical point Uc, the effective crossover exponent φeff plotted versus N−0.5 (e)
and n−0.5 (f) for 1 � W � 10.
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with no fitting parameters. Taking the well-known litera-
ture value [36] Uc(1) = 0.2857, one arrives at Uc(W ) =
0.562(W + 1/2)−5/3 Amazingly, this expression describes the
Monte Carlo data of Table I quite accurately with the relative
error of less than 4% for all W from 2 to 10.

F. Crossover exponent φ for SAWs

The crossover exponent φ plays a key role in the analysis of
polymer adsorption. It determines how the number of contacts
scales with N exactly at the critical point [4,19]. It also controls
the temperature dependence of the adsorption energy as well as
the shape of the density profile in the adsorption region [4,19].
As a surface critical exponent it cannot be deduced from the
known bulk critical exponents. Determination of its value has
been a subject of extensive work as mentioned above, and the
results generated some debate. In particular, it was realized that
simulation-based estimates are very sensitive to the accuracy
of the critical point estimation. As we are able to determine
the critical point with an error at least an order of magnitude
smaller than most of the other methods, it is worthwhile to
revisit the problem here.

A more refined way of determining φ was suggested by
Grassberger [36] based on the scaling form for the adsorbed
fraction θ (N,U,W ), θ (N,U,W ) ∝ Nφ−1 as N → ∞. Follow-
ing the logic explained in Sec. III D, one defines the effective
crossover exponent

φeff(N,U,W ) = ln

(
4θ (2N,U,W )

θ (N/2,U,W )

) /
ln 4 (29)

and plots it as a function of N in order to catch its asymptotic
value. Contrary to the effective exponent γ s

1,eff , which reaches
the asymptotic plateau (φeff ≈ φ) starting from relatively
small N , the apparent crossover exponent contains significant
corrections to scaling so eventual extrapolation is required.

The curves of φeff(N,U,W ) versus ln N are presented in
Figs. 8(a) and 8(b) for two values of W . The central curve
always shows the behavior of φeff(N,U,W ) at the critical
point Uc(W ) estimated earlier and presented in Table I. Apart
from Uc we show other curves for two values U above Uc

and two below Uc. For both cases, W = 1 and W = 5, the
effective crossover exponent continues to decrease, even for
N > 5000. To extrapolate we plot φeff(N,U,W ) vs 1/

√
N ,

see Fig. 8(c), assuming that corrections to scaling are of order
N−1/2. A reasonably good linear behavior of the apparent
exponent at the best estimate of the critical point supports
this assumption. However, for W = 5 this plot of φeff vs.
1/

√
N exhibits more curvature [Fig. 8(d)], and this reflects

a systematic dependence on W [Fig. 8(e)]. However, a much
more regular behavior is found when one uses the number
of blobs n rather than the number of bonds N as a variable
[Fig. 8(f)]. Extrapolated results are summarized in Table I. All
the values obtained for different potential width are very close
to each other, which is, again, consistent with the fact that we
are in a single universality class. It is clear that the value of φ

is definitely below 0.5 but the difference is quite small.

G. Adsorbed fraction and renormalized segment in finite chains

For finite chains the average fraction of adsorbed units θ

generally depends on three parameters: the chain length N

FIG. 9. (Color online) Average fraction of adsorbed units, θ , for
ideal lattice chains as a function of reduced adsorption energy, U/Uc,
calculated for different chain lengths, N , and several potential widths,
W , keeping the same amount of (W + 1/2) blobs as n = 10.

and the potential parameters W and U . We have demonstrated
that in the limit N → ∞ the potential parameters enter only
through the combination U/Uc(W ). The blob picture of the
chain at the critical adsorption point suggests that finite-size
effects should be determined by the number of renormalized
segments n(W ) = N/g(W ), each representing a blob of linear
size W . Thus, the adsorbed fraction must have the functional
form θ (n(W ),U/Uc(W )) with only two independent variables.

In analogy to Sec. III E, we define an ideal W blob
containing gid = ((2W + 1)/3)2 monomer units. The ad-
sorbed fraction θ (n,U/Uc) vs U/Uc for ideal lattice chains
is presented in Fig. 9 for different potential widths W and
different chain lengths N adjusted in such a way that the
number of W blobs was fixed as n = 10. The nearly universal
curve that is obtained in this way demonstrates the correctness
of such scaling.

The same scaling ansatz was checked for self-avoiding
polymer chains with the appropriate changes in the expressions
for g(W ) and Uc(W ) defined now according to Eqs. (25) and
(27), respectively. Figure 10 displays the adsorbed fraction vs
U/Uc for three different values of the number of (W + 1/2)
blobs, n = 10, 20, 80, where each curve includes data points
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FIG. 10. (Color online) Average fraction of adsorbed units, θ ,
plotted versus U/Uc for chains with excluded volume interactions.
Chain lengths are chosen such that the numbers of (W + 1/2) blobs
are fixed at n = 10, 20, and 80 (from top to bottom) for 1 � W � 10.
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FIG. 11. (Color online) (a) Loop length distribution Ploop(m) of SAWs with chain length N = 6400 at the adsorption transition point Uc (W )
for 1 � W � 8. (b) m3/2Ploop(m) plotted versus m. The solid curves indicate the asymptotic behavior for ideal lattice chains according to the
leading term and the next terms of Eq. (30) in [(a) and (b)], respectively. For a self-avoiding chain at the critical point the theory predicts
almost the same slope (−1 − φ) for φ ≈ 0.483 in (a). Note that the downward bending trend of the slope for N � 2000 is an effect due to the
finiteness of chain length of our SAWs. The dashed straight line in (b) shows the slope predicted for the asymptotic power law for SAWs.

for 1 � W � 10. Collapse of the data strongly supports the
scaling ansatz.

At this point we stress that the (W + 1/2) blobs introduced
to match the potential range have the meaning of renormalized
segments that can belong to the adsorbed trains as well as
to loops or to the tail. They should not be confused with
the common notion of adsorption blobs defined to match the
adsorption correlation length. In contrast to the (W + 1/2)
blob, which depends only on the width of the potential but not
on its depth nor on the chain length, the size of the adsorption
blob may change dramatically, depending on the proximity to
the critical point.

H. Loop and tail distributions at the transition point

The loop length distribution for the ideal lattice infinite
chain at the critical point can be derived from the correspond-
ing GF �L(x), Eq. (14), by performing its singularity analysis
(see, e.g., Ref. [46]): The probability to find loops containing

m segments is

Ploop(m) ≈ m−3/2

√
3

2π

(
1 − 3

2m
+ · · ·

)
. (30)

For a self-avoiding chain at the critical point the distribution of
loop lengths has a form Pc(m) ∼ m−1−φ [13]. The crossover
exponent φ determines the behavior of the chemical potential
near the critical point μads ∼ (U − Uc)1/φ and characterizes
the order of the phase transition. Our best estimates of the
crossover exponent φ ≈ 0.483 for 1 � W � 10 are presented
in Table I. MC results of the loop length distribution Ploop(m)
for SAWs with N = 6400 at the critical point under the
potential of various widths 1 � W � 8 are shown in Fig. 11.
The loop distribution is independent of the potential width
(which is to be expected according to the loop definition) and
is very well described by a power law with the power −(1 + φ)
predicted by the theory. Since φ is very close to 1/2, the leading
power law of the loop distributions at the transition points for
ideal and self-avoiding chains almost coincide [Fig. 11(a)].
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FIG. 12. (Color online) (a) Tail length distribution of SAWs with N = 6400 at the critical point Uc (W ) for 1 � W � 8. The solid curve
shows the distribution of continuum Gaussian chains, Eq. (32). (b) Same data as shown in (a) but plotted on a log-log scale for m/N < 0.5.
The best fit line with slope −0.45, the line with predicted slope −(1 − γ1) = −0.321 in Ref. [13], and the line with slope −1/2 predicted for
ideal chains are also shown for comparison.
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FIG. 13. (Color online) (a) Train length distribution of ideal lattice chains with N = 1000 at the critical points Uc (W ) for 1 � W � 8.
Several values of W are included, as indicated. (b) Typical train length S extracted from the exponential part of the distribution Ptrain(m) in (a)
plotted versus (W + 1) on a log-log scale.

Figure 11(b) shows corrections to m−3/2 scaling for ideal and
self-avoiding chains. Ideal chains are described by Eq. (30).
In the case of SAWs, corrections stem from three different
origins. First, for small loops, the probability is noticeably
reduced, similar to what is seen in ideal chains. Second, there
is a consistent (though small) correction due to the difference
between the ideal and the excluded volume loop exponents
(3/2 vs 1 + φ). This factor, i.e., m−1−φ , is shown in Fig. 11(b)
by the dashed line. Finally, a sharp downward turn in the MC
data at larger values of m is due to finite chain length, which
results in a cut-off of the distribution tail.

The tail length distribution of ideal lattice infinite chains
can be derived from the GF �T (x). At the adsorption transition
point it has the form

Ptail(m) ≈ 1√
6πm

(
1 + 1

16m2
+ · · ·

)
. (31)

The distribution of infinite-length self-avoiding chains at the
critical point was proposed in [13] as Ptail(m) ∼ m−β , where
β = 1 − γ1 ≈ 0.3214.

The tail length distribution of continuum Gaussian chains
was calculated in Ref. [24]. In contrast to the GF approach,
the continuum theory can operate with the partition function
of a finite polymer chain. According to the continuum theory,
the tail length distribution at the critical point is nonmonotonic

and symmetric:

Ptail(m) ≈ N

π
√

m(N − m)
. (32)

Analytical predictions for infinite chains mentioned above, by
the very nature of the grand-canonical ensemble approach, can
describe only the falling branch of the tail length distribution
corresponding to m � N . Monte Carlo data for the tail length
distribution of SAWs with N = 6400 at the critical point are
presented in Fig. 12 for the potential widths 1 � W � 8. The
analytical equation for the ideal chain, Eq. (32), is shown
by a solid curve. The tail length distribution obtained in our
simulations is nonmonotonic but has some asymmetry, in
contrast to Eq. (32). The fact that the distribution is completely
insensitive to the potential width is quite natural in view of the
universality class argument. The log-log plot of the tail length
distribution at relatively small values of m < N/2 is compared
to infinite chain predictions in Fig. 12(b). The best-fit slope
−0.45 is closer to the predicted value for ideal chains rather
than to the scaling prediction of Ref. [13].

I. Train length distribution at the transition point

It is well known that the train length distribution of
ideal lattice chains decays exponentially [Ptrain ∝ exp(−m/S)]
for W = 1 at the critical point [47] and is given by
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FIG. 14. (Color online) Same as Fig. 13 but data are for SAWs with N = 6400.
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ln Ptrain(m) = m ln(4/5) + const. For W > 1 the train length
distributions do not show exactly an exponential decay.
Numerical transfer-matrix calculations for finite ideal chains
of length N = 1000 are presented in Fig. 13(a). The decay
length of the exponential part of the distribution, S, has the
meaning of a typical train length; its variation with W is
shown in Fig. 13(b). The ideal-chain scaling, S ∝ (W + 1)2,
is reasonably well satisfied. The shift of the potential width
by 1 is consistent with the lattice effect mentioned above in
the discussion of the scaling form of critical energy and the
blob size. The only difference is that the definition of a train
includes boundary conditions at two surfaces instead of one,
hence, the doubling of the 1/2 shift.

Similar curves for self-avoiding chains are presented in
Fig. 14. The only noticeable difference is that the typical train
length now scales as S ∝ (W + 1)5/3.

IV. DISCUSSION

Two aspects are worth discussing in connection to the re-
sults presented above. The first relates to the debate concerning
the value of the crossover exponent φ. Descas et al. [42]
clearly demonstrated that there exists a strong correlation
between the best estimates for the critical adsorption point
and for the crossover exponent. However, the situation is even
more complicated. The PERM method allows a very accurate
determination of the critical point: The error is less than 0.05%
in the case W = 1, which is at least an order of magnitude
better than when using common MC methods that do not
allow direct evaluation of the partition function. The effective
crossover exponent φeff(N ) was evaluated as the slope of the
ln ms vs ln N curve, where ms is the number of contacts with
the surface. The slope is taken over the interval from N/2 to
2N , the two points being symmetric on the log scale, thus
providing a central derivative evaluated at point ln N . The
results of Fig. 8(a) shows that the slope keeps decreasing up
to the largest values of N explored in our simulation. This
suggests important corrections to scaling due to subleading
terms that can be summarized as φeff(N ) ≈ φ(1 + AN−s ),
where s is close to 0.5. Note, that since φ by itself is close
to 0.5, the subleading term with exponent t in the asymptotic
expansion of the number of contacts ms ∼ Nφ + BNt is a very
weak function of N, possibly even a constant or a logarithm.
From the practical point of view, any simulation in a limited
range of N (e.g., 50 < N < 200) will inevitably produce the
data that can be described only by an effective crossover
exponent, even if the critical point is localized exactly.

Second, we think that our results may help to rationalize
simulation results on polymer adsorption found in the literature
for various polymer models. Bhattacharya et al. [13] used
an off-lattice model with a rectangular surface potential; the
critical energy was estimated to be Uc ≈ 1.69. On the other
hand, a much-studied standard simple cubic lattice model has
the critical energy of 0.286. The question of why these values
differ by about an order of magnitude is never addressed since
the common wisdom states that the critical energy is model
dependent and one should concentrate on the universal features
of the phenomenon. This is, of course, true, but an explanation
of these huge variations would be satisfying. Inspection of the
model [13] shows that the potential was chosen to be very
narrow, W ≈ 0.4b, where b is the segment length. For this

potential Eq. (4) gives Uc ≈ 2.5. Keeping in mind that the
continuum description may not be good for W < b and does
not account for the excluded volume effects, the difference
between the two values is rather modest.

Note that if the potential width is large compared to the
Kuhn segment, both lattice and off-lattice ideal chain models
can be naturally further reduced to a continuum description in
terms of Brownian trajectories. Critical point determination
and weak adsorption can be reduced to an eigenvalue problem
of the Edwards equation. Standard dimensional analysis of
the eigenvalue problem leads to a very general result: an
affine stretching of the potential curve by a factor of W

always changes the critical energy parameter by a factor of
W−2 irrespective of the specific shape of the potential; this
is a generalization of the effect discussed above for lattice
chains. MC simulation results and their analysis presented
above suggest that a similar scaling of the critical energy by
factor W−5/3 should be valid for the critical point in the case
of chains with excluded volume interactions.

With off-lattice models the choice of the potential shape
allows for more variation and this results in a very broad range
of the critical energy values. For example, two adsorption
potentials were used by Metzger et al. in off-lattice MC
simulations [16]:

U1(z) = ε(z−9 − f1z
−3), (33)

U2(z) = ε(z−10 − f2z
−4), (34)

with f1 = 100 and f2 = 2.5. The obtained critical value of the
adsorption energy was εc ≈ 0.01 in the first case and εc ≈ 1.6
in the second case. These potentials could be characterized
by their depth Umin and position of the minimum zmin. One
readily finds that U1min = −2ε(f1/3)3/2 and z1min = (3/f1)1/6

while U2min = −(3/2)ε(2f2/5)5/3 and z2min = (5/2f2)1/6. So
when we consider the product Uminzmin at ε = εc we find a
number −0.02(f1/3)4/3 ≈ −2.15 with respect to Eq. (33), but
−2.4(2f2/5)3/2 ≈ −2.4 in the second case. Compared in this
way, the energy scales for adsorption are not so dissimilar as
on first sight. However, such a scaling differs from the scaling
appropriate for the square-well potential.
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APPENDIX: CALCULATION OF GENERATING
FUNCTIONS

The GF for trains, loops, and tails is expressed as

�i(x) =
∞∑

n=1

�i(n) xn, (A1)

where i = {S,L,T }, where �i(n) is the number of confor-
mations corresponding to each sequence of the type i of
length n.
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FIG. 15. Decomposition of a loop in a slit. Black boundary is solid (impenetrable) while white boundary is penetrable.

1. Calculation of the generating function of adsorbed
sequences and loops

In contrast to the “traditional” lattice model of polymer
adsorption where the monomer-surface interaction takes place
only in the first lattice layer adjacent to the adsorbing plane,
in the case of a square-well potential of finite width W , a
train can be considered as being “squeezed” into a slit of the
width W. Moreover, each train connects two loops (or the last
loop and the tail). Hence, each train itself can be considered
as a loop localized in the slit of a width W : It starts and
ends in the layer z = W and has monomer units at z < W .
The last monomer, however, is followed by the step to the
layer z = W + 1. Obviously, the GF depends on the width W ;
therefore, we denote this partition function as �S(x,W ). The
GF of “true” loops in the half-space is obtained by taking the
limit W → ∞, hence, �L(x) = �S(x,∞).

To calculate the GF of such “localized loops” we should
take into account the following two possibilities schematically
shown in Fig. 15:

(1) The loop can never enter the interfacial layer z =
W + 1.

(2) The loop starts with several steps in the interfacial layer
z = W and then enters the next-to-interfacial layer, z = W −
1, and forms a loop starting and ending in this layer and returns
to the interfacial layer where a new loop is formed.

In terms of the GFs the decomposition presented in Fig. 15
is written as follows:

�S(x,W ) = x

1 − zSx
· zV − zS

2

+ x

1 − zSx
· zV − zS

2
�S(x,W − 1)�S(x,W ),

(A2)

where zV and zS are the number of possible lattice steps that
can be made in three and two dimensions (i.e., in the bulk
and in the surface), respectively. For the simple cubic lattice,
zV = 6 and zS = 4.

Therefore, we obtain the following recursion relation for
�S(x):

�S(x,W ) = zV − zS

2
x

[
1 − zSx − zV − zS

2
x�S(x,W − 1)

]−1

.

(A3)

The starting point (the initial condition) is the GF in the
zero width (W = 0) slit: �S(x,0) = 0. Applying Eq. (A3) we
obtain

�S(x,1) = x(zV − zS)/2

1 − zSx
, (A4)

where one easily recognizes the GF of the chain on the surface.
By iterating Eq. (A3) one can see that �S(x) can be represented

in the form of generalized continued fraction,

�S(x,W ) = x(zV − zS)/2

1 − zSx − x2(zV −zS )2/4

1−zSx− x2(zV −zS )2/4
1−...

. (A5)

It is known that a continued fraction is a rational function that
can be represented as a ratio of two polynomials [48]:

�S(x,W ) = AW (x)

BW (x)
, (A6)

where the polynomials An(x), Bn(x) satisfy the same second-
order recurrence relation (with different initial conditions),
namely

Tn+2(x) = (1 − zV x)Tn+1(x) − x2

(
zV − zS

2

)2

Tn(x), (A7)

where T = {A,B}. The initial conditions are

A0(x) = 0, A1(x) = x
zV − zS

2
, (A8)

B0(x) = 1, B1(x) = 1 − zSx. (A9)

Using these initial conditions, the solution of Eq. (A7) for
An(x) and Bn(x) can be found,

An(x) = zV − zS

2
x

[(
1 − zSx + 

2

)n

−
(

1 − zSx − 

2

)n]
,

(A10)

Bn(x) = 1



[(
1 − zSx + 

2

)n+1

−
(

1 − zSx − 

2

)n+1
]

,

(A11)

where  = √
(1 − zV x)[1 − (2zS − zV )x]. Then

�S(x,W )

= (zV − zS)x
(1 − zSx + )W − (1 − zSx − )W

(1 − zSx + )W+1 − (1 − zSx − )W+1
.

(A12)

This expression can be expressed in more compact form,

�S(x,W ) = sinh(Wϕ)

sinh[(W + 1)ϕ]
, (A13)

where

cosh ϕ = 1 − zSx

(zV − zS)x
, (A14)

or, equivalently,

ϕ = ln

[
1 − zSx

(zV − zS)x
+

√
(1 − zSx)2

(zV − zS)2x2
− 1

]
. (A15)
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This result completely coincides with the generating function
of a loop in the slit obtained by DiMarzio and Rubin 30
years ago using the transfer matrix approach (with the only
difference being an additional factor (zV − zS)/2, which is the
weight of the step preceding the first monomer unit of the
loop).

From Eq. (14) the GF of the loops in thee half-space �∞(x)
is readily obtained:

�L(x) = �S(x,∞) = (zV − zS)x

1 − zSx + 
. (A16)

Now let us analyze the obtained expression.

2. Adsorption-desorption transition point

In the adsorption-desorption transition point the smallest
singularity corresponding to the adsorbed chain state is equal
to xV = 1/zV . As was shown by Birshtein [9], the transition
point �L(1/zV ) = 1 and the equation for finding the critical
adsorption energy (critical depth of the adsorption potential
U ) has a very simple form,

�S(q/zV ,W ) = 1, (A17)

where q = eU is the statistical weight of the adsorbed segment
(by “adsorbed” we mean a segment that “falls into the potential
range”, i.e., is localized in the attraction zone 0 < x < W ).

The following equation:

�S(x,W ) = sinh(Wϕ)

sinh[(W + 1)ϕ]
= 1 (A18)

in terms of ϕ, has a purely imaginary solution, ϕ = π i
2W+1 ,

where i = √−1. Hence,

1 − zSx

(zV − zS)x
+

√
(1 − zSx)2

(zV − zS)2x2
− 1 = exp

(
π i

2W + 1

)
(A19)

and

x = 1

zS + (zV − zS) cos π
2W+1

. (A20)

To obtain a solution of Eq. (A17), x should be substituted by
q/zV and we get

qc = zV

zS + (zv − zS) cos 2π
2W+1

= 1

1 − a + a cos π
2W+1

or

Uc = − ln

(
1 − a + a cos

π

2W + 1

)
, (A21)

where a = (zV − zS)/zV is the probability of making a step
between layers (for simple cubic lattice a = 1/3). In the large
W limit

Uc ≈ a

2

(
π

2W + 1

)2

= a

8

(
π

W + 1
2

)2

. (A22)

3. Smallest singularity of the generating function �S(x,W )

It is also instructive to study singularities of the GF
�S(x,W ) because this issue is related to the problem similar
to that studied in the present paper. Namely the smallest singu-
larity of �S(x,W ) gives us the free energy of a macromolecule
localized in a narrow slit of width W . (Note that the “full”
GF of the macromolecule in the slit does not reduce, strictly
speaking, to the GF of loops; but these two functions do have
the same smallest singularity.)

From Eq. (12) it is clear that the desired singularity
of �S(x,W ) is associated with the smallest root of the
denominator on the right-hand side: sinh[(W + 1)ϕ] = 0.

Again, in terms of ϕ, this equation has a purely imaginary
solution, ϕ = i π

W+1 . By expressing ϕ in terms of x, Eq. (A15),
we obtain the smallest singularity of �S(x,W ),

xc = 1

zS + (zV − zS) cos π
W+1

. (A23)

When a macromolecule is put in the slit, it loses entropy as
compared to the bulk. On the other hand, if the macromolecule
gains an additional energy in the slit (for example, in the case
when the slit if filled by the solvent, which is more preferential
for the macromolecule than the bulk solvent), localization
may be favorable. This may correspond, for example, to the
following model system: A grafted macromolecule is put in
the slit filled by a preferential solvent. There is a narrow hole
in the wall which is impenetrable for slit and bulk solvents but
the macromolecule can penetrate through this pore. (Note that
we do not consider here kinetic aspects of this problem, like
the time necessary for the chain to escape through the narrow
pore and so on.)

If a monomer acquires a negative energy, −U , correspond-
ing to an additional statistical weight q = eU , the bulk-to-slit
transition occurs if u/zV = xc, where xcis given by the above
formula. From this we obtain the expression for the critical
adsorption energy Uc,

Uc = − ln

(
1 − a + a cos

π

W + 1

)
. (A24)

In the large-W limit,

Uc ≈ a

2

(
π

W + 1

)2

. (A25)
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