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Smectic order, pinning, and phase transition in a smectic-liquid-crystal cell with a random substrate
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We study smectic-liquid-crystal order in a cell with a heterogeneous substrate imposing surface random
positional and orientational pinnings. Proposing a minimal random elastic model, we demonstrate that, for a
thick cell, the smectic state without a rubbed substrate is always unstable at long scales and, for weak random
pinning, is replaced by a smectic glass state. We compute the statistics of the associated substrate-driven
distortions and the characteristic smectic domain size on the heterogeneous substrate and in the bulk. We find
that for weak disorder, the system exhibits a three-dimensional temperature-controlled phase transition between
a weakly and strongly pinned smectic glass states akin to the Cardy-Ostlund phase transition. We explore
experimental implications of the predicted phenomenology and suggest that it provides a plausible explanation
for the experimental observations on polarized light microscopy and x-ray scattering.
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I. INTRODUCTION

A. Motivation and background

Research on ordered condensed matter systems subject to
bulk random heterogeneities has been an active field. Consider-
able progress has been made, providing a better understanding
of real materials, where quench disorder is always present
[1–8]. Recently, attention has turned to systems where the
heterogeneity is confined to a surface, e.g., nematic [9–11] and
smectic-liquid-crystal cells [12] with dirty substrates. These
surface disordered systems are of considerable interest and
exhibit phenomenology qualitatively distinct from their bulk
disordered counterparts.

The commonly observed Schlieren texture [13] is a
manifestation of such surface pinning in nematic cells.
Recent studies also include photoalignment and dynamics
in self-assembled liquid crystalline monolayers [14,15], as
well as memory effects and multistability in the alignment
of nematic cells with a heterogeneous random anchoring
substrate [16]. The existence of the corresponding phenomena
in smectic liquid crystals has been recently revealed in
ferroelectric smectic-C cells in a bookshelf geometry [17,18].
This latter system exhibits long-scale smectic layer distortions,
driven by collective random surface pinning, and awaits a
detailed theoretical description.

A schematic of such a smectic-liquid-crystal cell is
illustrated in Fig. 1, with a “dirty” front substrate imposing
two types of surface disorders: surface random orientational
pinning of local nematic order and surface random positional
pinning of smectic layers. Generically, such surface pinning
leads to elastic and plastic smectic disordering, latter
characterized by proliferation of topological defects, e.g.,
dislocations. In this paper, we focus on the simpler limit of
weak disorder, where the topological defects are either not
present at long scales or are sufficiently dilute, whereby they
can be neglected for a range of experimentally relevant length
scales. Clearly, this leaves a rich and challenging regime of
strong pinning to future studies.

B. Summary of the results

We explore surface pinned smectic cell, focusing on the
bookshelf geometry [with the coordinate system shown in

Fig. 1, where y is perpendicular to the substrate and points
into the cell, x (along smectic layer) and z (along smectic
layer normal) are parallel to the substrate]. As we will show in
Sec. VIII in the homeotropic geometry, the effects of random
substrate reduce to that of a random-field xy model in (d − 1)
dimensions and are significantly less strong than in this more
common bookshelf geometry.

Using a harmonic elastic description of smectic-liquid-
crystal order with surface quenched disorder, which charac-
terizes a thick smectic cell subject to surface heterogeneities,
we studied the distortion of the smectic layers on the surface,
characterized by Larkin (Imry-Ma)-like [19,20] length scales
given by ξx , ξz ∼ ξ 2

x /λ that relates the distortion along the
layer normal (z) and parallel to the layer (x) from either
random orientational or random positional pinning, where λ =√

K/B is the standard smectic-liquid-crystal length, typically
comparable to the layer thickness a [21]. In the regime of
dominant surface orientational pinning we find (with �f the
associated mean-squared pinning strength)

ξf
x = c

B2λ3a2

�f

≈
√

λξ
f
z . (1)

For the dominant surface positional disorder (of mean-squared
strength �v) we instead find

ξv
x =

(
3c

B2λ3a2

�v

)1/3

≈ √
λξv

z , (2)

where c = 4π2

π−2 ≈ 34.6. In the presence of both types of sur-
face disorders, the domain size is determined by a combination
of these two lengths as discussed later in Sec. IV B.

Adapting the standard Imry-Ma-Larkin analysis to the
problem at hand, we find that long-range smectic order on
the heterogeneous substrate is unstable against surface random
orientational pinning in a d-dimensional system with d < d

f

lc ,
where

d
f

lc = 4, (3)

and for the surface random positional pinning in a d-
dimensional system with d < dv

lc, where

dv
lc = 6. (4)
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FIG. 1. (Color online) A schematic of a half-infinite smectic-
liquid-crystal cell in the presence of surface random pinning, with
the region enclosed by dashed line indicating a domain of area ξx ×
ξz (ξz ∼ ξ 2

x /a) within which the perturbative treatment of surface
disorder is valid. The smectic long-range order is destroyed by an
arbitrarily weak surface disorder beyond the domain size.

Thus, on sufficiently long scales, long-range smectic order
in a three-dimensional cell is unstable to arbitrarily weak
random pinning of statistically isotropic (nonrubbed) sub-
strate. Below these lower critical dimensions arbitrarily weak
pinning destabilizes long-range smectic order. Within the
resulting finite smectic domains the correlations of smectic
layer distortions grow as a power law of in-plane separation
and decay exponentially into the bulk of the cell, with the
characteristic length at depth y > ξx set by y itself.

We employed the functional renormalization group (FRG)
[22–26] to assess the effectively strong nonlinear pinning
physics on scales beyond the smectic domain size. The most
interesting and potentially experimentally relevant prediction
of this analysis is a three-dimensional (3D) Cardy-Ostlund-like
(CO) [27] phase transition at a temperature Tg from a weakly
disordered smectic for T > Tg (where on long scales the
surface positional pinning is averaged away by thermal fluctu-
ations) to a low-temperature disorder-dominated smectic glass
for T < Tg . In the latter phase, the positional disorder flows to
a CO fixed line at which the correlations of layer distortions
asymptotically are characterized by the orientational pinning
alone but with an effective strength additively enhanced with
(Tg − T )2. The high- and low-temperature phases are distin-
guished by (among other features) the effective temperature-
dependent orientational pinning strength

δf (T ) ≡ �f (T )/�f , (5)

given by

δf (T ) =
{

1, for T > Tg,

1 + 9
8π2

ξ
f
x

a

(
1 − T

Tg

)2
, for T � Tg.

(6)

The long-scale smectic layer correlations on the substrate (at
y = 0) are characterized by C(x,z) = 〈[u0(x,z) − u0(0,0)]2〉,

the full behavior of which is given in Eq. (103) with limits

C(x,z) ≈ a2

{
πx/ξx(T ), for x � √

λz,√
2π

√
z/ξz(T ), for x 	 √

λz,
(7)

with the temperature-dependent sizes

ξx(T ) = ξf
x /δf (T ), (8)

ξz(T ) = ξf
z /δ2

f (T ). (9)

These predictions remain valid only on scales shorter than the
distance between unbound dislocations and the scale ξNL

x (�
ξ

f
x for weak pinning), beyond which the nonlinear elasticity

may become important.
We also study various experimental features of our predic-

tions for the polarized light microscopy. We suggest that the
highly anisotropic domain (as shown in Fig. 1) induced by
surface disorder is a plausible explanation for the commonly
observed stripes in thin smectic cells [18]. We further argue that
the 3D smectic glass transition predicted above (illustrated in
Fig. 5) may have already been observed as the aforementioned
precipitous x-ray peak broadening in cooled smectic-liquid-
crystal cells with a random substrate [17,18], which is expected
to have a peak width proportional to ξ−1

z (T ), as shown in Fig. 2.
Although further systematic detailed studies are necessary to
test this conjecture, based on the robustness of our theoretical
prediction, we expect this transition to be quite generic in
smectic-liquid-crystal cells with heterogeneous substrates.

The remainder of this paper is organized as follows. In
Sec. II we present a simple model of a thick (half-infinite)
bookshelf smectic cell with surface heterogeneity and derive
the effective surface theory by dimensional reduction where
bulk modes are integrated out. In Sec. III, the Imry-Ma
argument is used to estimate the domain size at which the
influence of random pinnings becomes large. In Sec. IV, the
surface random positional pinning is treated within the Larkin,
perturbative approximation, which allows us to compute
exactly the short-scale correlation functions. In Sec. V we
present a functional renormalization group analysis to treat
fully nonlinear positional pinning necessary for character-
ization of long-scale correlations. We demonstrate that, at
finite T , this analysis predicts a 3D Cardy-Ostlund–like phase

Tg

v

randomly pinned
smectic glass thermal smectic

ξz 1

kz

Sz kz

T

ξz 1 T

FIG. 2. (Color online) X-ray scattering peak width (thick smooth
curve, as indicated by the top right inset) as a function of temperature.
The peak broadens below CO transition temperature Tg . The phase
transition is indicated by the flow of random positional disorder
strength to a nonzero fixed line value �∗

v(T ) for T < Tg .
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transition. Possible features of observation under polarized
microscopy and x-ray scattering are analyzed in Sec. VI. In
Sec. VII, the importance of nonlinear elasticity is studied
using a renormalization group method to show that it is
less relevant, thereby justifying the validity of the harmonic
elastic treatment, and the stability of the orientational order
and relevant length scales are also discussed. In Sec. VIII
we derive a theory for a surface disordered smectic cell with
layers parallel to the substrates and show that it mimics a
familiar bulk disordered xy model in one lower dimension.
We conclude in Sec. IX with a brief summary of the work and
future directions. The technical details of our calculations are
relegated to Appendices A–E.

II. MODEL

A. Bulk elasticity

We will focus on a smectic cell in the experimentally and
theoretically more interesting bookshelf geometry. We choose
the coordinate system as illustrated in Fig. 1, so the smectic
layers lie parallel to the (x,z) plane, with the average layer
normal and director n̂ along the z axis. The random substrate
is located at y = 0 and running perpendicular to the y axis.

Neglecting elastic nonlinearities [28], we model a half-
infinite bookshelf geometry smectic cell with a heterogeneous
substrate by an energy functional

Hbulk =
∫

dd−1x

∫ ∞

0
dy

[
K

2
(∇2

⊥u)2 + B

2
(∂zu)2

]
+ Hpin,

(10)

in which u(x,y) is the distortion of smectic layer at position
r = (x,y) and in 3D x = (x,z) spans the 2D random substrate
and y is the axis into the bulk of the cell.

B. Surface pinnings

The surface pinning energy of the substrate is given by

Hpin = Hy + Hdn + Hdρ, (11)

including uniform pinning of the layers, coupling of the
substrate with the directors n̂, and smectic density ρ(x) on
the y = 0 substrate, respectively.

To stabilize the bookshelf cell geometry, a uniform com-
ponent of the pinning is realized on the y = 0 substrate via

Hy =
∫

dd−1x
W ′

2
(n̂ · ŷ)2, (12)

which dictates the layers to be perpendicular to the substrate.
In experiment, this is imposed by a uniform structureless
treatment of the substrate [29,30].

Generically, the interaction between the substrate and
the liquid crystal also includes the coupling between the
nematic director n̂ and the local random pinning axis, g(x) =
(gx,gy,gz), as well as the coupling between the smectic density
ρ(x) and the local random scalar potential U (x). These are
determined by the substrate’s local chemical and physical
structure (composition, roughness, rubbing, etc.). The nematic

director n̂ is pinned by the local random pinning axis g(x), with

Hdn = −
∫

dd−1x [n̂ · g(x)]2 . (13)

We approximated this weak pinning by specializing to
the smectic state, with the layer normal n̂ taken along
ẑ
√

1 − δn2 + δn and δn ≈ −∇⊥u [7,12]. With this, Hdn

becomes

Hdn ≈
∫

dd−1x
{[

g2
z (x) − g2

x(x)
]
(∂xu)2

+ [
g2

z (x) − g2
y(x)

]
(∂yu)2 − 2gx(x)gy(x)(∂xu)(∂yu)

+ 2gx(x)gz(x)(∂xu) + 2gy(x)gz(x)(∂yu)
}
. (14)

For a rubbed substrate used in the experiment [18,30], the
alignment is highly anisotropic such that |gz| � |gx | ∼ |gy |
and pinning of layer normal along ẑ is imposed. Combining
with Eq. (12) and averaging over microscopic scales, we find

Hy + Hdn ≈
∫

dd−1x

[
W

2
(∂yu)2 + WQ

2
(∂xu)2 − h(x)(∂xu)

]
,

(15)

in which

W = W ′ + 2
[
g2

z (x) − g2
y(x)

]
,

WQ = 2
[
g2

z (x) − g2
x(x)

]
, (16)

h(x) = −2gx(x)gz(x).

For strong pinning W
2 (∂yu)2, the linear terms in (∂yu) in

Eq. (14) can be neglected and ∂yu is taken to be 0. Determined
by the local chemical and physical structure, h(x) is expected
to be short ranged, with variance

h(x)h(x′) = �f δd−1
a (x − x′), (17)

where · · · is the ensemble average and δ(d−1)
a (x) is a (d −

1)-dimensional short-ranged function set by the scale on the
order of the molecular size a. The precise form of δd−1

a (x) has
no qualitative effect on the long-scale (longer than its range)
behavior which is our focus here, and the effectiveness of field
description of the system already averages out details on scales
shorter than a. Thus, it can be replaced by a δ function δd−1(x)
without loss of generality.

Similarly, the local random scalar potential U (x) is also
expected to be short ranged, and we thereby take it to be
Gaussian characterized by variance

U (x)U (x′) = �Uδd−1
a (x − x′) ≈ �Uδd−1(x − x′), (18)

with strength �U . As studied in the context of bulk disorder
for smectics in, e.g., aerogel [6,7], it couples to the smectic
density on the y = 0 substrate [with u0(x) = u(x,y = 0) the
surface layer displacement]

ρ(x) = ρ0 +
∞∑

n=1

Re{ρne
inq0[z+u0(x)]} (19)

through

Hdρ = −
∫

dd−1xρ(x)U (x) ≈ −
∫

dd−1xV [u0(x),x]. (20)
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We also take the random positional pinning potential V [u0,x]
to be Gaussian with short-ranged variance

V [u0(x),x]V [u′
0(x′),x′]

=
[
ρ2

0 +
∞∑

n=1

ρ2
n

2
Re(einq0[z−z′+u0(x)−u0(x′)])

]
�Uδd−1(x − x′)

= Rv(u0 − u′
0)δd−1(x − x′), (21)

in which the nonlinear variance function Rv(u0 − u′
0) is given

by

Rv(u0 − u′
0)

= �U

(
ρ2

0 +
∞∑

n=1

ρ2
n

2
cos {nq0[u0(x) − u0(x′)]}

)
, (22)

with the first dominant term corresponding to q0 as studied in
Sec. V B.

Putting these terms together, the surface pinning energy is
given by

Hpin ≈
∫

dd−1x

{
WQ

2
(∂xu)2 − h(x)∂xu − V [u0(x),x]

}
,

(23)

where we take the random fields h(x) and V [u0(x),x] to
be characterized by a Gaussian zero-mean distribution with
variances given in Eqs. (17) and (21) and impose ∂yu = 0 on
the y = 0 substrate to satisfy the strong pinning in Eq. (15).
More generically, the random surface torque h may also be
a function the layer distortion u0, with a periodic variance
�f (u0 − u′

0). However, as we will show in Sec. V B, such a
generalization is unnecessary at long scales.

C. Effective surface model

Since the surface disorder is confined to the front substrate
at y = 0, no nonlinearities (within harmonic elastic treatment)
appear in the bulk (y > 0) of the smectic cell. Consequently,
it is convenient to exactly eliminate the bulk degrees of
freedom u(x,y) in favor of the layer distortion field on the
random substrate, u0(x) ≡ u(x,y = 0). This can be done via
a constrained path-integral method by integrating out u(x,y)
with a constraint u(x,y = 0) = u0(x), thereby obtaining an
effective (d − 1)-dimensional Hamiltonian for u0(x) [31].
Equivalently (for T = 0 properties), we can eliminate u(x,y)
by solving the Euler-Lagrange equation

K∇4
⊥u − B∂2

z u = f (x)δ(y), (24)

with f (x)δ(y) representing the boundary condition that im-
poses u0(x) on the substrate. To this end, we Fourier transform
u(x,y) over (x,y), obtaining an algebraic equation for

u(q,qy) =
∫

dd−1xdyu(x,y)e−iq·x−iqyy, (25)

whose solution after Fourier transform over qy becomes (as
shown in Appendix A)

u(q,y) = u0(qx,qz)e
− y√

2λ

√√
λ2q4

x+q2
z +λq2

x

×

⎡
⎢⎣

√√
λ2q4

x + q2
z + λq2

x√√
λ2q4

x + q2
z − λq2

x

× sin

(
y√
2λ

√√
λ2q4

x + q2
z − λq2

x

)

+ cos

(
y√
2λ

√√
λ2q4

x + q2
z − λq2

x

)⎤
⎥⎦, (26a)

≡ u0(qx,qz)φ(q,y), (26b)

where λ = √
K/B is the length that, deep in the smectic

phase, is comparable to the microscopic length a (determined
by the layer thickness or molecular size) and we define a
shape function φ(q,y) that characterizes the extension of
surface-imposed distortions into the bulk (y > 0). In obtaining
Eq. (26), for strong surface pinning (W → ∞) in Eq. (15), we
also impose a constraint ∂yu = 0 at y = 0. More generally,
the relative importance of the sine and cosine contributions
depends on the system and the homogeneous transverse
pinning strength W .

After substituting the above solution into (10) and integrat-
ing out the y (bulk) degrees of freedom in a half-infinite system
(0 � y < ∞), the energy functional simplifies to an effective
surface energy,

Hsurface =
∫

dd−2qxdqz

(2π )d−1


q + WQq2
x

2
|u0(qx,qz)|2

−
∫

dd−1x [h(x)∂xu0 + V (u0,x)] , (27)

confined to the random substrate at y = 0, with


q = B
√

2λ

√
λ2q4

x + q2
z

√√
λ2q4

x + q2
z + λq2

x . (28)

The resulting effective surface Hamiltonian is convenient for
studying the surface properties of the system, with the bulk
properties obtained from Eq. (26). Equivalently, this result
can be obtained by solving the Euler-Lagrange equation and
specifying the boundary conditions, as in the nematic-liquid-
crystal cell with surface disorder [11].

By comparing the induced surface elastic energy 
q ∼ Kq3
x

(qz 	 λq2
x ) with surface pinning due to rubbing on the

substrate, WQq2
x , we obtain an important length scale

lW = K

WQ

. (29)

On longer scales, the surface rubbing dominates, and 
q can be
approximated by 
q ∼ B

√
2λq

3/2
z . In this regime the effective

kernel is given by


q + WQq2
x ≈ B

√
2λq3/2

z + WQq2
x , (30)

with an anisotropic “elasticity” for small qx , which differs
markedly from the bulk smectic elasticity and 
q surface
smectic elasticity without a rubbed substrate.
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However, for a weak pinning WQ this scale can be much
larger than the sample region and thus WQ can be neglected.
For the remainder of the paper we will focus on this more
interesting nonrubbed substrate limit.

D. Replicated model

In treating random heterogeneous systems it is often con-
venient to work with an effective translationally invariant field
theory. This is possible via the standard replica “trick” [32],
at the expense of introducing n replica fields (with the n → 0
limit taken at the end of the calculation). The disorder-averaged
free energy is given by F = −T ln Z = −T limn→0

Zn−1
n

, with

Zn =
∫

[duα
0 ]e−H

(r)
surface[uα

0 ]/T , (31)

where the effective translationally invariant replicated Hamil-
tonian H

(r)
surface[uα

0 ] is given by

H
(r)
surface

=
n∑
α

∫
dd−2qxdqz

(2π )d−1


q

2

∣∣uα
0 (qx,qz)

∣∣2

+ 1

4T

∑
α,β

∫
dd−2xdz�f

∣∣∂x

[
uα

0 (x,z) − u
β

0 (x,z)
]∣∣2

− 1

2T

∑
α,β

∫
dd−2xdzRv

[
uα

0 (x,z) − u
β

0 (x,z)
]
. (32)

The advantage of the dimensional reduction in Sec. II C
is that formally the problem becomes quite similar to the
extensively studied bulk random pinning model [22–24,33]
in one lower dimension but at the expense of a modified
long-range elasticity encoded in 
q, Eq. (28). As we ob-
serve from the coarse-graining procedure, in general the
random orientational pinning may also be field dependent,
with �f [uα

0 (x,z) − u
β

0 (x,z)] a generic periodic function. We
therefore generalized to the form in (32).

III. ESTIMATE OF THE FINITE SMECTIC DOMAIN
SCALES

The qualitative features of the response of the smectic cell
to a heterogeneous substrate can be understood through a
generalization of the Imry-Ma argument [20] to the surface-
pinning problems [9–11]. In this section, we estimate the
characteristic length scales beyond which pinning energies
become significant in distorting smectic order.

A. Bulk Imry-Ma analysis

For an ordered region of Lx × Lz on the heterogeneous
substrate, the distortions decay into the bulk within a depth of
Ly ∼ Lx . Consequently, the elastic energy cost of such region
scales as

Ee ∼ Ld−1
x Lz

[
K

(
a/L2

x

)2 + B(a/Lz)
2]

. (33)

The two elastic contributions balance for L2
x ∼ λLz (where

λ = √
K/B), as an expression of a Virial theorem, justified in

detail in in Sec. IV B. With this anisotropic scaling the elastic

energy reduces to

Ee ∼ Ba2λ2Ld−3
x ∼ Ba2λ(d+1)/2L(d−3)/2

z . (34)

In such a region, the interaction of the layers with the
random positional pinning can lower the energy by a typical
value,

Ev ∼ Vp

√
Np ∼ �1/2

v

√
Ld−2

x Lz

ξ
(d−1)/2
0

a(d−1)/2

∼ �1/2
v Ld/2

x

/√
λ

∼ �1/2
v λ(d−2)/4L(d/4)

z , (35)

where Vp is the typical random pinning strength with zero
mean and variance �v ≈ V 2

p /ξd−1
0 (ξ0 is the pinning correla-

tion length) and Np is the number of surface pinning sites.
Comparing between Ev and Ee shows that for dimension
d < dv

lc = 6, arbitrary weak random positional pinning always
dominates over the elastic energy on sufficiently long scales,

Lx > ξx ∼ (B2/�v)1/(6−d) (36)

and

Lz > ξz ∼ (B2/�v)2/(6−d). (37)

Thus, long-range smectic order is always destabilized on these
long scales by an arbitrarily weak random positional pinning.

Similarly, the random orientational pinning can lower the
energy through interaction with the layers by a typical amount,

Ef ∼ Vh

√
Nha/Lx ∼ �

1/2
f Ld/2−1

x ∼ �
1/2
f L(d−2)/4

z . (38)

Comparing Ef and Ee, we find that arbitrarily weak random
orientational pinning destroys long-range smectic order for
d < d

f

lc = 4 on sufficiently long scales

Lx > ξx ∼ (B2/�f )1/(4−d) (39)

and

Lz > ξz ∼ (B2/�f )2/(4−d). (40)

Reassuringly, as we will see, these length scales, identified
through the Imry-Ma argument, are consistent with the domain
sizes given in Eqs. (61) and (62), obtained through a detailed
field-theoretical calculation.

B. Surface Imry-Ma analysis

A complementary (but equivalent to bulk) way of estimating
the surface-pinning and bulk ordering competition is by
using the substrate model derived in Sec. II C. From the
effective surface theory given in Eq. (27) (with the pinning
of WQ neglected), for an ordered region of Lx × Lz on the
heterogeneous surface, the elastic kernel 
q scales according
to


q ∼ Bλ2L−3
x ∼ Bλ1/2L−3/2

z . (41)

Therefore, the elastic energy cost is given by

Ee ∼ Ld−2
x LzBλ2a2L−3

x ∼ Bλ2a2Ld−3
x (42)

or, in terms of Lz,

Ee ∼ Ld−2
x LzBλ1/2a2L−3/2

z ∼ Bλ1/2a2L(d−3)/2
z , (43)
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with the same scaling as Eq. (34). Comparing with the scaling
of the random pinning energies given in Eqs. (35) and (38),
the Imry-Ma argument of effective surface Hamiltonian leads
to the same critical dimension and characteristic lengths as in
Sec. III A.

IV. SHORT-SCALE “LARKIN” ANALYSIS:
RANDOM-FORCE APPROXIMATION

A. Random-force (linear) approximation

The importance of surface pinning can be assessed by
computing smectic layer distortions 〈u2

0〉 at y = 0 surface
(dominated by the zero-temperature distortions) within the
Larkin approximation [19], which amounts to a linear random-
force approximation, F (x) = ∂u0V [u0(x),x]|u0=0 to the ran-
dom potential V [u0(x),x], with inherited Gaussian statistics
and variance

F (x)F (x′) ≡ �vδ
d−1(x − x′) = −R′′

v (0)δd−1(x − x′). (44)

In momentum space, the pinning energy becomes

Hpin =
∫

dd−1qx

(2π )d−1
[iqxh(qx,qz) − F (qx,qz)]u0(−qx, − qz).

(45)

Within this approximation, the correlation of the layer
distortion on the random substrate (y = 0) is

CLarkin(q) = T


q
+ �f q2

x + �v


2
q

, (46)

including the thermal contribution

CT,Larkin(q) = T


q
(47)

and the contributions from both types of surface disorders,

C�,Larkin(q) = �f q2
x + �v


2
q

. (48)

At long scales of interest, the contribution from thermal
fluctuation is clearly subdominant to the zero-temperature
random pinning driven distortions. We therefore focus on this
latter disorder dominant contribution.

1. Power counting

For various ranges of qx and qz, the elastic kernel 
q exhibits
the following asymptotics:


q ≈
{

B
√

2λq
3/2
z , λq2

x 	 qz,

B
√

2λ2q3
x , λq2

x � qz.
(49)

We note that there is a 2:1 ratio in the powers of qx and qz

that reflects the anisotropy of the underlying smectic state.
This anisotropic scaling is crucial in our estimates below the
critical dimensions for the importance of surface pinning.

The correlation function contribution from random orien-
tational pinning is given by

C�,Larkin(q) = �f q2
x


2
q

≈ �f q2
x(

B
√

2λq
3/2
z + B

√
2λ2q3

x

)2 . (50)

Thus, the scaling of smectic zero-temperature distortions is
approximately given by

〈u2〉 ∼ �f

∫
1/Lx

q2
xd

d−2qxdqz

q6
x

∼ L4−d
x , (51a)

〈u2〉 ∼ �f

∫
1/Lz

q2
xd

d−2qxdqz

q3
z

∼ L(4−d)/2
z , (51b)

and leads to the lower critical dimension d
f

lc = 4 for the random
orientational pinning.

For the random positional pinning, we have

C�,Larkin(q) = �v


2
q

≈ �v(
B

√
2λq

3/2
z + B

√
2λ2q3

x

)2 , (52)

which gives

〈u2〉 ∼ �v

∫
1/Lx

dd−2qxdqz

q6
x

∼ L6−d
x , (53a)

〈u2〉 ∼ �v

∫
1/Lz

dd−2qxdqz

q3
z

∼ L(6−d)/2
z , (53b)

leading to dv
lc = 6 as the lower critical dimension for the

positional pinning.
This agrees with our Imry-Ma analysis of the previous

section and is to be contrasted with the bulk predictions of
Ref. [7], which finds

〈u2〉 ∼ �f

∫
q2

xd
d−1qxdqz(

q4
x + q2

z

)2 ∼
∫

1/Lx

qd+2
x dqx

q8
x

∼ L5−d
x ,

(54a)

〈u2〉 ∼ �v

∫
dd−1qxdqz(
q4

x + q2
z

)2 ∼
∫

1/Lx

qd
x dqx

q8
x

∼ L7−d
x , (54b)

with dbulk
lc = 5 and 7 for for bulk orientational and positional

random pinnings, respectively. Thus, similarly to the surface
disordered nematic cell discussed in Refs. [10] and [11], here,
too, the restriction of the pinning to a surface reduces its lower
critical dimensions down by one.

B. Domain size

The utility of the Larkin approximation is that it predicts
the range of its own validity, limited to length scales where
the distortion of u0 is small. From Eqs. (51) and (53) it is
clear that below the respective dlc, the distortions diverge at
long scales, signaling an instability of the smectic state and
associated breakdown of Larkin approximation.

We identify the substrate extent Lx and Lz at which these
smectic distortions grow large to the order of the layer spacing
a as (the so-called) Larkin domain lengths ξx and ξz [3,34].
More specifically, Larkin lengths are defined as〈

u2
0(x,z)

〉 = a2, (55)

which clearly depends on both surface orientational and
positional disorder [22–26,35]. Thus, the values of ξx,z depend
on the relative strengths of these two types of disorder. For
Lx 	 √

λLz in 3D, a simple analysis (with details relegated
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SMECTIC ORDER, PINNING, AND PHASE TRANSITION . . . PHYSICAL REVIEW E 87, 022509 (2013)

to Appendix B) gives

〈
u2

0(x)
〉 ≈

∫
q

�f q2
x + �v


2
q

≈ 1

3c

�v

B2λ3
L3

x + 1

c

�f

B2λ3
Lx,

(56)

with c = 4π2

π−2 ≈ 34.6, leading to the equation for ξx

1

3c

�v

B2λ3
ξ 3
x + 1

c

�f

B2λ3
ξx ≡ a2. (57)

In the opposite limit of Lz < L2
x/λ we instead get

〈
u2

0(x)
〉 ≈ ∫

q

�f q2
x + �v


2
q

≈ 1

3c

�v

B2λ3/2
L3/2

z + 1

c

�f

B2λ5/2
L1/2

z ,

(58)

which leads to the equation for a ξz,

1

3c

�v

B2λ3/2
ξ 3/2
z + 1

c

�f

B2λ5/2
ξ 1/2
z ≡ a2. (59)

As discussed in Appendix B, the above equations are to be
understood in the scaling sense and not as precise quantitative
conditions.

The Larkin lengths ξx,z in Eqs. (57) and (59) give the size of
the smectic domains on the random substrate within which the
elastic energy dominates over the pinning, which is effectively
weak and Larkin approximation is valid.

More generally, in the presence of both types of pinning,
the smectic domain size is determined by the minimum of ξ

f
x,z

and ξv
x,z, calculated in Appendix B,

ξx,z = ξx,z

(
ξf
x,z,ξ

v
x,z

) ≈ min
{
ξf
x,z,ξ

v
x,z

}
, (60)

in which

ξf
z ≈

[
c
B2λ5/2a2

�f

]2

,

(61)

ξf
x = c

B2λ3a2

�f

≈
√

λξ
f
z ,

and

ξv
z ≈

[
3c

B2λ3/2a2

�v

]2/3

,

(62)

ξv
x =

[
3c

B2λ3a2

�v

]1/3

≈ √
λξv

z .

The highly anisotropic domain constructed by ξx and ξz is
illustrated in Fig. 1.

C. Surface correlation at short scales

As shown in Appendix C, with Eq. (46) the C(x,z) =
〈[u0(x,z) − u0(0,0)]2〉 can be easily calculated within the
Larkin regime (x 	 ξx and z 	 ξz), and, along the layer
(x) and layer normal (z) direction, the orientational pinning
contribution is given by

Cf (x,0) ≈ πa2x/ξf
x ,

(63)
Cf (0,z) ≈

√
2πa2

√
z/ξ

f
z ≈

√
2πa2

√
λz/ξf

x ,

0.2 0.4 0.6 0.8
x ξxf

a2
2

a2

3 a2
2

2a2

Cf x,0

0.2 0.4 0.6 0.8 1.0
z ξ zf

a2
2

a2

3 a2
2

2a2

Cf 0,z

FIG. 3. (Color online) The correlation functions on the het-
erogeneous substrate along and perpendicular to the layers, with
dominant orientational disorder valid for (x,z) 	 ξx,z. On longer
scales nonlinear nature of pinning needs to be taken into account,
which we do via RG and matching methods in Sec. V.

where ξ
f
x,z are given in Eq. (61). At short scales x 	 ξx and

z 	 ξz the behaviors of these correlation functions are plotted
in Fig. 3. The contribution from random positional pinning is

Cv(x,0) ≈ 3a2 x2(
ξv
x

)2 ,

(64)

Cv(0,z) ≈
√

8πa2

(
z

ξv
z

)3/2

,

in which ξv
x,z are given in Eq. (62). At short scales, x 	 ξx and

z 	 ξz, these correlation functions are plotted in Fig. 4.
Thus, within finite smectic domains (x,z) 	 ξx,z, on the

random substrate we predict anisotropic power-law correla-
tions given above.

D. Estimate of distortions into the bulk

The nature of the distortions in the bulk of the cell, y > 0,
can be deduced from the u(q,y) in (26) and the distortions
u0(q) on the heterogeneous surface computed above. The main
feature of the u(q,y) is that the amplitude of distortions at
wave vector q = (qx,qz) exponentially decays into the bulk
with length

ξq = 1/D(q) =
(

2λ√
λ2q4

x + q2
z + λq2

x

)1/2

, (65)

where D(q) = 1√
2λ

√√
λ2q4

x + q2
z + λq2

x .
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0.2 0.4 0.6 0.8 1.0
x ξ xv

a2
2

a2

3 a2
2

2a2
Cv x,0

0.2 0.4 0.6 0.8
z ξ zv

a2
2

a2

3 a2
2

2a2

Cv 0,z

FIG. 4. (Color online) The correlation function on the hetero-
geneous substrate along and perpendicular to smectic layers, with
dominant positional pinning, valid only inside Larkin domains,
(x,z) 	 ξx,z. On longer scales an RG analysis is necessary.

For surface smectic order limited by domain size (ξx,ξz)
the characteristic substrate surface wave vector qL is set by
(ξ−1

x ,ξ−1
z ) and leads to

ξy � [
D

(
ξ−1
x ,ξ−1

z

)]−1

=
(

2λ√
λ2ξ−4

x + ξ−2
z + λξ−2

x

)1/2

≈ ξx, (66)

in which ξx ≈ √
λξz is used. Thus, we predict that for y > ξy

(ignoring the more subtle distortions on scales beyond the
Larkin scale, see Sec. V) the smectic surface distortion will
anneal away into the bulk.

This allows us to define a y-dependent smectic domain size
via a Larkin criterion on

〈u2(y)〉 =
∫

ξ−1
x (y),ξ−1

z (y)

�f q2
x


2
q

|φ(q,y)|2 dqxdqz

(2π )2

∼
∫

ξ−1
x (y),ξ−1

z (y)
〈|u0(q)|2〉e−2D(q)y dqxdqz

(2π )2

∼ a2 ξx(y)

ξx

e−2D[ξ−1
x (y),ξ−1

z (y)]y, (67)

where we assume dominant orientational pinning (positional
pinning can be similarly analyzed).

As usual, ξx(y) is set by 〈u2(y)〉 � a2; thus, we have

ξx(y) � ξxe
2y/ξx (y). (68)

A self-consistent solution for this equation is simply

ξx(y) ∼ max (ξx,2y), (69)

showing near healing of smectic order (but see Sec. V) at a
distance ξx into the bulk.

V. PHYSICS ON SCALES BEYOND SMECTIC DOMAINS

On length scales longer than the crossover scales ξx,z,
the distortions of u0 grow into a nonlinear regime, where the
random-force (Larkin) approximation is inadequate, and the
effects of the surface disorders must be treated nonpertur-
batively. As with bulk disorder problems, this can be done
systematically using an FRG analysis [22–26].

A. Renormalization group analysis

We employ the standard momentum-shell RG transforma-
tion [36] by separating the layer distortion field into long- and
short-scale contributions according to uα

0 (x,z) = uα
0<(x,z) +

uα
0>(x,z) and perturbatively in the surface disorder integrate

out the high wave-vector fields uα
0>(x,z) that take support

in an infinitesimal shell /b < qx <  ≡ 1/a, with b = eδ�.
We follow this with a rescaling of lengths and of the long
wavelength part of the field in real space,

x = b x ′, (70)

z = bwz′, (71)

uα
0<(bx ′,bwz′) = bφuα

0 (x ′,z′), (72)

and in momentum space,

qx = b−1q ′
x, (73)

qz = b−wq ′
z, (74)

uα
0<(b−1q ′

x,b
−wq ′

z) = bd−2+w+φuα
0 (q ′

x,q
′
z), (75)

to restore the UV cutoff back to  = 1/a. Because a smectic
liquid crystal is periodic under translations by a multiple of
the layer spacing, it is convenient to choose the arbitrary field
dimension φ = 0 [7] and take w = 2 so the associated smectic
period and length λ = √

K/B are not rescaled under the RG
transformation.

For simplicity and clarity of presentation we focus on an
infinitely thick cell with the Hamiltonian given in Eq. (32),
where both disorder strengths are general functions of u0(x,z),
and employ the functional renormalization group method. The
above rescaling leads to zeroth order RG flows of the effective
couplings, which for a thick cell are given by


′
q(b) = bd
q, (76)

B ′(b) = bd−3B, (77)

�′
f (u,b) = bd−2�f (u), (78)

R′
v(u,b) = bdRv(u), (79)

where T is kept fixed and �f (u) is a periodic function of the
field u.

The Hamiltonian can be separated into three parts,

H
(r)
surface = H0 + H�f

+ H�v
, (80)
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where H�f
and H�v

are given by

H�f
= 1

4T

∑
α,β

∫
dd−2xdz�f

[
uα

0 (x,z) − u
β

0 (x,z)
]

× ∣∣∂x

[
uα

0 (x,z) − u
β

0 (x,z)
]∣∣2

, (81)

H�v
= − 1

2T

∑
α,β

∫
dd−2xdzRv

[
uα

0 (x,z) − u
β

0 (x,z)
]
,

(82)

and H0 has already been given by the elastic term in Eq. (32).
We limit the FRG analysis to one-loop order, performing the

momentum shell integration over the high-wave-vector com-
ponents uα

0> perturbatively in the nonlinearities �f [uα
0 (x,z) −

u
β

0 (x,z)] and �v[uα
0 (x,z) − u

β

0 (x,z)]. The change in the Hamil-
tonian due to this coarse graining is given by

δH (r)
s = 〈

H�f

〉
>

+ 〈
H�v

〉
>

− 1

2T

〈
H 2

�f

〉c
>

− 1

2T

〈
H 2

�v

〉c
>

− 1

T

〈
H�f

H�v

〉c
>

+ · · · . (83)

Relegating the detailed calculations to Appendix D, this
coarse-graining procedure leads to functional RG flow equa-
tions for �f (u) and Rv(u)

∂��f (u,�) = (d − 2)�f (u) + η�′′
f (u) − A

22
R′′

v (u)R
′′′′
v (u)

−A4�f (u)�′′
f (u) − A5[�f (u)�′′

f (u)

−�f (u)�′′
f (0) − �f (0)�′′

f (u)]

−A6
[

1
2�′

f (u)�′
f (u) − �′

f (u)�′
f (0)

]
+A[�′′

f (u)R′′
v (u) − �′′

f (0)R′′
v (u)

−�′′
f (u)R′′

v (0)], (84)

∂�Rv(u,�) = dRv(u) − ζ�f (u) + ηR′′
v (u)

+A
[

1
2R′′

v (u)R′′
v (u) − R′′

v (u)R′′
v (0)

]
+A3

[
1
2�f (u)�f (u) − �f (u)�f (0)

]
−A5[�f (u)R′′

v (u) − �f (0)R′′
v (u)

−�f (u)R′′
v (0)], (85)

in which η = T
2πBλ

, A = π−2
8π2B2λ33 and other coefficients are

nonuniversal constants given in Appendix D.

B. Single harmonic form of positional pinning

In general, the fully nonlinear functions �f (u) and Rv(u)
in (32) need to be treated under the functional renormalization
group coarse graining [7,22–24]. However, at finite tempera-
ture and in 3D, it is clear from Eqs. (84) and (85) that, at long
scales, the pinning is dominated by the field-independent �f

and the lowest harmonic of the positional disorder [7],

Rv(u) = �v cos (q0u)/q2
0 , (86)

where q0 = 2π/a is the smectic wave number. Because, at
finite T , η is nonzero, all higher, n > 1 harmonics of Rv(u) in
Eq. (22) are less relevant with eigenvalues λn = 3 − ηn2q2

0 <

λ1 and, thus, can be neglected.

With these considerable simplifications, the flow of the
surface disorder strengths in Eqs. (84) and (85) reduce to

∂��f = �f + A

42
q2

0�2
v, (87)

∂��v = (
3 − ηq2

0

)
�v − Aq2

0�2
v. (88)

The dimensionless coupling of the random positional pinning,
�̂v = Aq2

0�v = 6π2(a/ξv
x )3, which is dimensionless measure

of the random positional pinning, flows according to

∂��̂v =
(

3 − T q2
0

2πBλ

)
�̂v − �̂2

v. (89)

Taking an ansatz �̂v(�) = f (�)e(3− T q2
0

2πBλ
)�, the solution to this

flow equation can be readily obtained,

�̂v(�) =
(
3 − T q2

0
2πBλ

)
�̂v(0)e(3− T q2

0
2πBλ

)�

(
3 − T q2

0
2πBλ

) + �̂v(0)
[
e(3− T q2

0
2πBλ

)� − 1
] . (90)

Thus, we find that �̂v decays to the �̂∗
v = 0 fixed line for

T > 6πBλ/q2
0 ≡ Tg and flows to fixed line

�̂∗
v =

(
3 − T q2

0

2πBλ

)
(91)

for T < Tg , as illustrated in Fig. 5.
We therefore predict that a 3D surface disordered smectic

cell exhibits a Cardy-Ostlund–like [27] phase transition at
Tg = 6πBλ/q2

0 , between a high-temperature thermal smectic
phase, in which, at long scales, the surface positional pinning is
averaged away by thermal fluctuations and a low-temperature
random-pinned smectic glass phase controlled by the non-
trivial �̂∗

v(T ) fixed line. This surface pinned state (and the
associated transition) is quite similar to the super-rough phase
of a crystal surface grown on a random substrate [37], the 1 + 1
vortex glass phase of flux-line vortices (confined to a plane) in
type II superconductors [34,38], and 3D smectic liquid crystal
pinned by a random porous environment of, e.g., aerogel [7].

The dimensionless coupling of the surface ran-
dom orientational pinning, �̂f = Aq4

0�f = 8π4a/ξ
f
x , flows

Tg
T

v

FIG. 5. (Color online) RG flow of �̂v in d = 3: for T < Tg =
6πBλ/q2

0 , it flows to a fixed line �̂∗
v = (3 − T q2

0
2πBλ

) and for T > Tg it
flows to disorder-free fixed line �̂∗

v = 0. This corresponds to a glass
transition at Tg from a high-temperature thermal smectic phase to a
lower-temperature randomly pinned smectic glass.
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according to

∂��̂f = �̂f + π2�̂2
v. (92)

From this equation, we learn that even if the bare value of
�̂f is zero, under coarse graining, at long scales the random-
field pinning, �v , generates a nonzero random orientational
pinning �̂f (�). Since for T > Tg , �̂v → 0, the flow of �̂f

reduces to ∂��̂f = �̂f , with a trivial solution �̂f (�) = �̂f e�.
It is clear that the random orientational pinning is strongly
relevant, even in the high-temperature phase, T > Tg , with the
latter distinguished by the irrelevance of the positional pinning,
�̂v → 0.

In contrast, in the low-temperature phase, T < Tg , the di-
mensionless strength of surface positional disorder approaches
a nonzero value, �̂v → �̂∗

v > 0. Replacing �̂v in Eq. (92) by
its fixed point value, we obtain

�̂f (�) = [�̂f + π2(�̂∗
v)2]e� − π2(�̂∗

v)2. (93)

Similarly to the bulk disorder result [7], as � → ∞, this has the
same asymptotic behavior as in the high-temperature phase,
�̂f 0e

�, but with the enhanced nonuniversal amplitude �̂f 0

acquiring an additional contribution that scales with (Tg − T )2

for T < Tg .

C. Matching analysis

As discussed earlier, correlation function on scales shorter
than the Larkin domain size can be computed within the
random-force approximation in Sec. IV. However, at scales
longer than the domain size, effective pinning grows large
(compared to the elastic energy) and can, therefore, no longer
be treated perturbatively within the random-force model.
Nevertheless, we can utilize the RG and matching method
to effectively overcome this difficulty. It allows us to establish
a relation between a correlation function at long scales (beyond
the domain size), which is impossible to calculate directly due
to the aforementioned infrared divergences, to this correlation
function at short scales (below the domain size), which
can be easily calculated in a controlled perturbation theory
[7,11,23,24,37,39,40] of Sec. IV.

For T < Tg , the surface positional disorder is relevant.
However, near the Cardy-Ostlund transition Tg , (3 − ηq2

0 ) 	
1, and the fixed point value of dimensionless positional pinning
is small (�̂∗

v 	 1). Making use of the matching method, we
establish a relation between replicated correlation functions at
short and long scales:

Cαβ

[
qx,qz; 
q(0),�f (0),�v(0)

]
≡

〈
uα

0 (qx,qz)u
β

0 (q ′
x,q

′
z)

〉
δ2(q + q′)

= e(1+ω)�Cαβ[e�qx,e
ω�qz; 
q(�),�f (�),�v(�)]. (94)

We then choose the value of � = ln (/qx) so the rescaled
momentum qx is at the cutoff  and, therefore, the correlation
function on the right-hand side of the above equation can be

safely evaluated perturbatively. This gives

Cαβ[qx,qz; 
q(0),�f (0),�v(0)]

=
(



qx

)1+ω

Cαβ[,(/qx)ωqz; 

∗
q(�∗),�f (�∗),�v(�∗)],

(95)

and for � → ∞ corresponds to long scales with qx → 0, where
�∗ is big enough so the disorder strengths on the right-hand
side can be replaced by their fixed values.

Safely calculating the correlation function at the cutoff scale
on the right-hand side using the Larkin analysis of Sec. IV A
we obtain

Cαβ[,(/qx)ωqz; 

∗
q(�∗),�f (�∗),�v(�∗)]

= T δαβ


q(�∗)
+ �f (�∗)2 + �v(�∗)


2
q(�∗)

, (96)

where the �∗-dependent parameters the recursion relations
Eqs. (77)–(79) at �∗ = ln (/qx):


q(�∗) =
(



qx

)3


q, (97)

�f (�∗) = �̂f (�∗)

A(�∗)q4
0

= 

qx

[
�f + π2

Aq4
0

(�̂∗
v)2

]
, (98)

�v(�∗) = �̂v(�∗)

A(�∗)q2
0

= �̂∗
v

Aq2
0

. (99)

Here A(�) = A is a constant given by Eq. (D13). In the last two
equations we have taken qx to be small enough and, therefore,
�∗ large enough so the �̂v(�∗) has flowed to its fixed point
value given in Sec. V B, and the low-temperature solution of
�̂f (�) is used, with �∗ large enough that the second term in
Eq. (93) can be ignored.

Combining these ingredients, we therefore find

Cαβ[qx,qz; 
q,�f ,�v]

= T δαβ


q
+

�f

[
1 + ξ

f
x

8π2a
(�̂∗

v)2
]
q2

x + q3
x

3
1

Aq2
0
�̂∗

v


2
q

, (100)

in which 
q is the bare long-range surface elasticity kernel
given in (28), �f is the bare strength of orientational disorder
strength, and �̂∗

v is the fixed value given in (91). It is easy to see

that the q3
x

3 �̂
∗
v term arising from the random positional pinning

is negligible as qx → 0 compared with the contribution of
the surface orientational pinning. Thus, the smectic phonon
correlation functions in the high- and low-temperature phases
are only subtly distinguished by the enhanced amplitude of
surface orientational pinning from �f to

�f (T ) = �f

[
1 + ξ

f
x

8π2a
(�̂∗

v)2

]
. (101)

The above matching calculation gives the long-scale
momentum-space surface correlation function

C(q) = �f δf (T )q2
x


2
q

, (102)
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FIG. 6. (Color online) The exact correction to the long-scale
dimensionless strength of the orientational pinning as a function of
temperature, obtained by numerically integrating Eqs. (90) and (92)
for different “bare” values of the positional disorder: �̂v = 0.1 and
�̂v = 0.2. As a comparison, the dashed curve is the approximation
based on the fixed point value of �̂v used in Eqs. (5), (6), and (93).

in which δf (T ) = �f (T )/�f , as given in Eq. (6), distin-
guishes the high- (T > Tg) and low- (T < Tg) temperature
phases.

Moreover, the correction to the orientational disorder at
long scales, �f (T ) − �f , that we approximated in Eq. (92)
by the fixed point value of the positional disorder which
is zero for T > Tg and quadratic in (Tg − T ) for T < Tg ,
is quantitatively inaccurate. The exact solution of the flow
equation for �̂f given in Eq. (92) with �̂v(�) in (90) leads
to a long-scale correction of �̂f in the correlation function
that depends on the “bare” value of �̂v and is nonzero for
T > Tg , as shown in Fig. 6. This difference does not change
the qualitative behavior of the system, e.g., the experimental
feature of the x-ray scattering peaks described in Sec. VI B.
However, it may be important for quantitative comparison with
experiments.

D. Surface correlation function at long scales

As discussed in Appendix E, the full behavior of the real-
space long-scale correlations can be summarized as

C(x,z) = �f (T )

4π2B2λ3
xf (t), (103)

in which t = λz
x2 and f (t) (plotted in Fig. 7) is given by

f (t) = π (π − 2) + π

[
2 + 2e− 1

4t

√
πt − πerfc

(
1

2
√

t

)]

+
√

2

3
√

t

[
3t


(
−1

4

)



(
3

4

)
1F2

(
−1

4
;

1

2
,
5

4
;

1

64t2

)

−


(
1

4

)



(
5

4

)
1F2

(
1

4
;

3

2
,
7

4
;

1

64t2

) ]
, (104)

where 1F2(a1; b1,b2; x) is the generalized hypergeometric
function. The limiting behavior of f (t) is given by

f (t) ≈
{

π (π − 2) − 4πt2, for t 	 1,

2.64
√

t, for t � 1.
(105)

In the (x,z) plane, the above limits correspond to regions
near the x and z axes, where simple asymptotic form of the

0 1 2 3 4
t0.8

1.0

1.2

1.4

1.6

f t
2

FIG. 7. (Color online) The value of dimensionless function f (t)
with t = λz/x2, which has limiting behaviors given in Eq. (105).

correlation function C(x,z) is available, as shown in Fig. 8. In
real space along x, it is given by

C(x,0) ≈ 2
(π − 2)�f (T )

4π2B2λ3

πx

2
= πa2δf (T )x/ξf

x = πa2x/ξx(T ), (106)

where ξx(T ) = ξ
f
x /δf (T ). Along z we instead find

C(0,z) ≈ 2a2δf (T )

√
π

2

√
z

ξ
f
z

=
√

2πa2
√

z/ξz(T ), (107)

where ξz(T ) = ξ
f
z /δ2

f (T ). Thus, at long scales the correlation
function asymptotically scales identically to that in the
Larkin’s perturbative regime, (63), but with an amplitude
enhanced below Tg , as illustrated in Fig. 9.

Within the harmonic elastic theory (i.e., neglecting elastic
nonlinearities and dislocations) we expect the above predic-
tions to be asymptotically exact. We explore the role of elastic
nonlinearities in Sec. VII A, where we show that they indeed
are expected to modify our predictions on scales longer than the
nonlinear length scale ξNL but leave the challenging problem
of their study to future research.

FIG. 8. (Color online) The long-scale surface phonon correlation
function C(x,z), exhibiting limiting behavior C(x,z) ∼ x and

√
z for

small and large values of t = λz/x2, respectively.
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FIG. 9. (Color online) The two-point smectic phonon correlation
function along x and z axes on the random substrate at y = 0. For
temperature T > Tg the correlation is the same as the short-scale
result, (63), while below Tg it is modified by the enhanced amplitude
δf (T ) [(5) and (6)].

VI. EXPERIMENTAL PREDICTIONS

We next explore the experimental signatures of our predic-
tions for the surface pinned smectic cell, focusing on polarized
light microscopy and x-ray scattering.

A. Cross-polarized light microscopy

In smectic cells with weak random substrate pinning,
the molecular orientation is expected to vary slowly in the
bulk, and under standard conditions we expect the Mauguin
limit be valid with polarization of light following local optic
axis. Under such conditions, a convenient geometry to probe
the substrate-driven smectic distortion is that of a crossed
polarizer-analyzer pair, with the polarizer aligned with a well
rubbed back substrate. In this geometry, the transmission van-
ishes in the absence of smectic distortions. Thus, transmitted
light directly images the optic axis distortions on the front
heterogeneous substrate [10,11]. This provides a sensitive way
to investigate statistics of the surface smectic layer distortions
∂xu0(x,z) in a smectic cell weakly pinned by a dirty substrate.

Here, we only consider smectic order distortions on the
short scales (within the Larkin regime) of thick smectic cells
where the effects are most pronounced. The subtle long-scale
asymptotic behavior predicted here is unlikely to be accessible
in current experiments, as it requires currently unavailable
detailed quantitative analysis. Short-scale treatment below can
also be readily generalized to long scales. We take the back
substrate to be rubbed and, therefore, with the optic (nematic)
axis well aligned along the z axis, while near the front y = 0

substrate the smectic order is subject to random orientational
and positional pinning of the dirty substrate.

As alluded to above, in this weakly pinned Mauguin limit
optical transmission is determined by the azimuthal distor-
tions of the optic axis (layer normal) orientation φ0(x,z) =
φ(x,y,z)|y=0 on the random substrate. In this geometry with
the polarizer at the back substrate along the z axis, and analyzer
at the front substrate along the x axis, the transmitted optical
field is given by

Eout(x,z) = Ein sin φ0(x,z) ≈ −Ein
∂u0(x,z)

∂x
. (108)

This gives the polarized light microscopy intensity,

Iout(x,z) ≈ Iin|∂xu0(x,z)|2. (109)

Thus, the average transmitted intensity is proportional to
the variance of the smectic layer normal fluctuations on the
heterogeneous substrate,

I out

Iin
≈ |∂xu0(x,z)|2. (110)

From the local intensity we can also obtain a correlation
function of the transmitted intensity, related to spatial smectic
phonon correlations:

CI (x − x ′,z − z′) = Iout(x,z)Iout(x ′,z′)

≈ I 2
in|∂xu0(x,z)|2|∂x ′u0(x ′,z′)|2

≈ I
2
out

{
1 + 2

[
∂xu0(x,z)∂x ′u0(x ′,z′)

|∂xu0(x,z)|2
]2}

,

(111)

where we utilized Gaussian approximation valid at short
scales.

1. Surface random orientational pinning

For a dirty substrate where the orientational pinning
dominates over positional disorder, the transmitted intensity
averaged over the Larkin domain can be straightforwardly
calculated and is given by

I out

Iin
= |∂xu0(x,z)|2

= �f

∫
dqxdqz

(2π )2
q4

x

1


2
q

= (π − 2)�f

4π2B2λ3

∫ 1/a

1/ξL
x

dqx

≈ �f

cB2λ3a
. (112)

The smectic bulk modulus dependence can, in principle, be
probed through its well-understood temperature dependence
[8,41].

In the regime of dominant orientational disorder, the
transmission intensity-intensity correlation function along the
x axis, CI (x,0) can be straightforwardly computed by noticing
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that

∂xu0(x + x ′,z)∂x ′u0(x ′,z)

|∂xu0(x,z)|2
= a

∫ 1/a

0
cos (qxx)dqx

= sin (x/a)

x/a
. (113)

and, thus, we find

CI (x,0) = I
2
out

{
1 + 2

[
sin (x/a)

x/a

]2 }
. (114)

Similarly, the light intensity-intensity correlation along the
z axis is given by

CI (0,z) = I
2
out

{
1 + 2

[√
πa

2z
CF

(√
2z

πa

)]2}
, (115)

where CF (z) = ∫ z

0 cos (πt2/2)dt is the Fresnel integral.
These correlation functions probe surface orientational

order, that for weak pinning is long-range ordered, with
structure only on the scale of the layer spacing a.

2. Surface random positional pinning

For cells dominated by positional pinning the average
transmission intensity is given by

I out

Iin
= |∂xu0(x,z)|2

= (π − 2)�v

4π2B2λ3

∫ 1/a

1/ξx

dqx

q2
x

≈ (π − 2)�v

4π2B2λ3
ξx, (116)

where we cutoff the average by the smectic domain size, ξx �
ξv
x , given in Eq. (62).

The intensity-intensity correlation function along the x axis
calculated from (111) is given by

CI (x,0) ≈ I
2
out

{
1 + 2

[
1

ξx

∫ 1/a

1/ξx

cos (qxx)

q2
x

dqx

]2
}

≈ I
2
out

[
1 + 2

(
1 − πx

2ξx

)2
]

, (117)

where we have extended the upper bound of integral to infinity,

1

ξx

∫ 1/a

1/ξx

cos (qxx)

q2
x

dqx ≈ − πx

2ξx

+ cos

(
x

ξx

)
+ x

ξx

Si

(
x

ξx

)

≈ 1 − πx

2ξx

, (118)

valid for 0 < a 	 x 	 ξx and where Si(z) = ∫ z

0
sin (t)

t
dt is the

sine integral function.

Similarly, at constant x along the layer normal, the intensity
correlation function is given by

CI (0,z) = I
2
out

⎧⎨
⎩1 + 2

[
1

2
√

ξz

∫ 1/a

1/ξz

cos (qzz)

q
3/2
z

dqz

]2
⎫⎬
⎭

≈ I
2
out

[
1 + 2

(
1 −

√
πz

2ξz

)2
]

= I
2
out

(
3 − 4

√
πz

2ξz

+ πz

ξz

)
, (119)

valid for 0 < a 	 z 	 ξz. The intensity-intensity correlations
decay to their asymptotic (transmission) value on the scale of
smectic domains ξx,z.

In fact, we expect the intensity-intensity correlations pre-
dicted by Eqs. (114), (115), (117), and (119) to be observable
in crossed polarized light microscopy on a thick smectic cell
with a single dirty substrate.

B. X-ray scattering and characteristic lengths

Experimental studies of a smectic cell [17,18] observed
that the smectic x-ray scattering peak broadens significantly as
temperature lowers towards the A-C transition. In this section,
we analyze the x-ray scattering utilizing the smectic cell model
and its analysis from earlier sections.

Following standard treatment of x-ray scattering of a
smectic liquid crystal [42–44], for a wave vector kz near
kz = ±q0 = ±2π/a, the scattering intensity is proportional to
the structure function S(�k), which is the Fourier transform of
the density-density correlation function. The smectic density
ρ(�r) periodic along z can be represented by

ρ(�r) =
∑

n

ρne
iqn[z+u(�r)], (120)

where qn = nq0 = 2nπ/a.
From this we obtain

S(�k) ∝
∑

n

ρ2
n

∫
d�re−i�k·�reiqnz〈eiqn[u(�r)−u(0)]〉. (121)

Focussing on the lowest order n = 1 peak at q0, and using
a Gaussian approximation for the statistics of u distortions
(expected to be valid on short scales), we find

S(�k) ∝
∫

d�re−i(kz−q0)z−i�k⊥·�r⊥e− q2
0
2 〈[u(�r)−u(0)]2〉. (122)

For smectic distortions confined to the vicinity of the
random substrate [45], the structure function reduces to

S(kx,k̃z) =
∫

dxdze−ik̃zz−ikx ·xe− q2
0
2 C(x,z), (123)

in which k̃z = kz − q0.
A detailed analysis of the peak requires the full form of the

phonon correlation function C(x,z), which is only available at
long scale but is somewhat complicated to analyze. However,
as discussed by Chen and Toner [44], the behavior near and
away from the Bragg peak is respectively controlled by long-
and short-length-scale correlations.

For kx <
√

λ−1k̃z, the main contribution to the structure
function comes from x >

√
λz > ξx ; thus, approximation
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C(x,z) ≈ πa2x/ξx(T ) can be used. At finite kz we thereby
have

S(kx,k̃z) ∼ Sx(kx) =
∫

dxe−ikxxe−2π3x/ξx (T )

= 4π3/ξx(T )

k2
x + 4π6[ξx(T )]−2

, (124)

where the peak width is given by �kx = 2π3[ξx(T )]−1 ∝
δf (T ).

For
√

λ−1k̃z < kx , similarly, a long-scale phonon correla-
tion can be approximated as C(x,z) ≈ √

2πa2√z/ξz(T ), and
at finite kx the structure function

S(kx,k̃z) ∼ Sz(k̃z)

=
∫

dze−ik̃zze−2π2
√

2π
√

λz/ξx (T )

= 2π3ξz(T )

[k̃zξz(T )]3/2

{
cos

[
2π5

k̃zξz(T )

]

×
[

1 − 2FC

(
2π2√
k̃zξz(T )

)]
+ sin

[
2π5

k̃zξz(T )

]

×
[

1 − 2FS

(
2π2√
k̃zξz(T )

)]}

≈ ξz(T )

2π5

{
1 − 15[k̃zξz(T )]2

16π10

}
, for k̃zξz(T ) 	 1,

(125)

in which FC(x) and FS(x) are Fresnel integrals. Thus, we
find that the Sz(k̃z) peak width is given by �k̃z ∝ [ξz(T )]−1 ∝
δ2
f (T ).

Above details of the peak profile are summarized in Fig. 10.
We thus predict that the x-ray peak widths along kx and k̃z

will broaden with reduced temperature below the CO phase-
transition temperature Tg . This prediction for the finite smectic
order characterized by ξx,z(T ) may have already been observed
as the aforementioned precipitous x-ray peak broadening in
cooled smectic liquid crystal cells with a random substrate
[17,18]. More detailed experimental studies are necessary to
verify this conjecture.

Away from the Bragg peak, the structure function is
dominated by a short-scale correlation, well approximated by

e− q2
0
2 C(x,z) ≈ 1 − q2

0
2 C(x,z). At large kx and k̃z we thus obtain

S(kx,k̃z) ≈ q2
0

2
C�(kx,k̃z), (126)

with limits

S(kx,k̃z) ≈ q2
0

2

�f k2
x + �v

2B2λ

√
λ2k4

x + k̃2
z − λk2

x

k̃2
z

(
λ2k4

x + k̃2
z

)
≈

⎧⎨
⎩

π2�f

2B2λ4a2
1
k4
x

for kx �
√

λ−1k̃z,

π2(�f k2
x+�v)

B2λa2
1
k̃3
z

for kx 	
√

λ−1k̃z,
(127)

as illustrated in Fig. 10.

T Tg

T Tg

1
kx2 kx2

1
kx4

kx

kz

kx

Sx kx

T Tg

T Tg

1 kz kz 2

1

kz
3

kx

kz

kz

Sz kz

FIG. 10. (Color online) Structure function from Eqs. (124), (125),
and (127), showing the x-ray scattering peak profile at finite kx and k̃z

for T > Tg and T < Tg , in which the position of the plotted profile
function is shown on the Bragg peak by a dashed line in the inset of
each figure. The peaks broaden at temperatures below Tg .

VII. LIMITS OF VALIDITY

A. Analysis of elastic nonlinearity

So far we have limited our analysis (see Sec. II) of a
smectic cell with a random substrate to a harmonic elastic
description neglecting the nonlinear elasticity. However, these
are known to be important in smectic systems in the presence
of thermal [28,46] and quenched random [7,47] fluctuations. In
this section, we formulate the treatment of these nonlinearities
and estimate their effects in surface disordered smectic cells.

A complete description that includes elastic nonlinearities
and random surface pinning (the latter limited to a Larkin
harmonic description) is captured by the replicated energy
functional

H (r) = Hbulk + Hpin

=
∑

α

∫
dd−2xdz

∫ ∞

0
dy

×
{

K

2
(∇2

⊥uα)2 + B

2

[
∂zu

α − 1

2
(∇⊥uα)2

]2
}

− 1

2T

n∑
α,β

∫
dd−2xdzdyδ(y)

× [
�f ∂xu

α
0 (x,z)∂xu

β

0 (x,z) + �vu
α
0 (x,z)uβ

0 (x,z)
]

=
∑

α

∫
dd−2xdz

∫ ∞

0
dy

[
K

2
(∇2

⊥uα)2 + B

2
(∂zu

α)2
]
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− 1

2T

n∑
α,β

∫
dd−2xdzdyδ(y)

× [
�f ∂xu

α
0 (x,z)∂xu

β

0 (x,z) + �vu
α
0 (x,z)uβ

0 (x,z)
]

−
∑

α

∫
dd−2xdzdy

B

2
(∂zu

α) (∇⊥uα)2

+
∑

α

∫
dd−2xdzdy

B

8
(∇⊥uα)4 (128)

≡ H0 + H1. (129)

To assess the influence of H1 nonlinearities we perform
(d − 1)-dimensional coarse graining at fixed y, perturbatively
in H1, which allows us to utilize the harmonic correlation
function derived in Sec. IV,

C(qx,qz,y) = 〈|u(qx,qz,y)|2〉

=
(

T


q
δα,β + �f q2

x + �v


2
q

)
φ2(q,y), (130)

where φ(q,y) is given in Eq. (26). The lowest nontrivial
correction is given by

δH = − 1

2T

〈
H 2

1

〉c
>

= −B2

4T

∑
α,β

∫
dd−2xdydzdd−2x ′dy ′dz′

× [∂zu
α(x,y,z)]

[
∂zu

β(x ′,y ′,z′)
]

× (〈[∇⊥uα(x,y,z)][∇′
⊥uβ(x ′,y ′,z′)]〉>)2, (131)

where the correlator of short-scale modes is given by
[see (130)]

〈[∂xuα(x,y,z)][∂x ′uβ(x ′,y ′,z′)]〉>
=

∫
dd−2kxdkz

(2π )d−1

(
T δαβ


k
+ �f k2

x + �v


2
k

)
k2
xe

ikx (x−x ′)

× eikz(z−z′)φ(k,y)φ(k,y ′). (132)

Redefining variables X = (x + x ′)/2, δx = x − x ′, Z = (z +
z′)/2, and δz = z − z′, the dominant contribution is given
by

δH = 1

2

∑
α

∫
dd−2XdZ

∫
dydy ′δB(y,y ′)

× [∂zu
α(X,y,Z)][∂zu

α(X,y ′,Z)], (133)

where

δB(y,y ′) = −B2

2T

∫
dd−2δxdδz

× (〈[∇⊥uα(x,y,z)][∇′
⊥uβ(x ′,y ′,z′)]〉>)2

= −B2

2T

∫
dd−2kx

(2π )d−2

dkz

2π

(
T


k
+ �f k2

x + �v


2
k

)2

× k4
xφ

2(k,y)φ2(k,y ′) (134)

≈ −B2
∫

dd−2kx

(2π )d−2

dkz

2π

�f k2
x + �v


3
k

× k4
xφ

2(k,y)φ2(k,y ′). (135)

Fourier transform with respect to X and Z, (133) gives

δH = 1

2

∑
α

∫
dd−2qxdqz

(2π )d−1

∫
dydy ′δB(y,y ′)q2

z

∣∣uα
0 (q)

∣∣2

φ(q,y)φ(q,y ′)

≡ 1

2

∑
α

∫
dd−2qxdqz

(2π )d−1
δB(q)q2

z

∣∣uα
0 (q)

∣∣2
, (136)

in which the momentum-dependent correction to the smectic
compressional modulus in the effective surface theory, δB(q),
is given by

δB(q) =
∫

dydy ′δB(y,y ′)φ(q,y)φ(q,y ′)

= −B2
∫

dd−2kx

(2π )d−2

dkz

2π

�f k2
x + �v


3
k

k4
xb

2(q,k),

(137)

with the function b(q,k) given by

b(q,k) =
∫ ∞

0
dyφ2(k,y)φ(q,y). (138)

We thus obtain the effective randomly surface pinned
smectic model that includes the effect of smectic nonlinear
elasticity. Although formally well defined, so far we have not
succeeded in systematically treating this correction analyti-
cally. We leave such an analysis to future studies.

Focusing on the leading exponential contribution allows us
to carry out y and y ′ integrals, giving

δB(q) ≈ −B2
∫

dd−2kxdkz

(2π )d−1

�f k2
x + �v


3
k [2D(k) + D(q)]2 k4

x, (139)

where D(q) = 1√
2λ

√√
λ2q4

x + q2
z + λq2

x , and, thus, in the
q → 0 limit it gives

δB(q → 0) ≈ δB0 ≈ −B2

4

∫
dd−2kxdkz

(2π )d−1

�f k2
x + �v


3
kD

2(k)
k4
x

∼ �f

B
L5−d

x + �v

B
L7−d

x (140)

Equating δB0q
2
z to the harmonic kernel in Eq. (28) allows

us to define nonlinear crossover length ξNL,x beyond which
nonlinear elastic effects must be taken into account. Focusing
on orientational pinning (that we showed is dominant at long
scales, see Sec. V), we find

δB0q
2
z

∣∣
qz=(ξNL,z)−1 ∼ 
q,

(141)
�f

Bλ2
(ξNL,x)5−d−4 ∼ K(ξNL,x)−3,

which gives

ξNL,x ∼ (K2/�f )1/(4−d), (142)

as the length above which the nonlinear elasticity dominates
[48].

Based on this we expect that although nonlinear elasticity is
relevant below dNL

f = 4 for the orientational pinning, it is only
relevant at length scales much larger than the (Larkin) domain
size ξx . Thus, to study system properties at length scales
smaller than the nonlinear length ξNL,x , it is safe to ignore the

022509-15



QUAN ZHANG AND LEO RADZIHOVSKY PHYSICAL REVIEW E 87, 022509 (2013)

nonlinear elasticity. Here we employed this approximation and
left the full analysis of nonlinear elasticity for future study [49].

B. Stability of orientational order

All of the above analysis of smectic (positional) order was
predicated on the assumption that the long-range nematic (ori-
entational) order is stable. Below we examine this assumption.

In the limit of dominant orientational pinning, the mean-
squared distortion of orientational order on the heterogeneous
substrate at y = 0 is given by

〈|δn(x)|2〉 ≈ 〈|∂xu(x)|2〉
= �f

∫
dqxdqz

(2π )2
q4

x

1


2
q

= (π − 2)�f

4π2B2λ3

∫ 1/a

1/L

dqx

≈ �f

cB2λ3a

= a/ξf
x 	 1. (143)

Evidently, orientational order is indeed long ranged for weak
orientational pinning.

In contrast, we find that for dominant positional pinning, the
distortion of nematic director diverges at long scales according
to

〈|δn(x)|2〉 ≈ 〈|∂xu0(x,z)|2〉

= (π − 2)�v

4π2B2λ3

∫ 1/a

1/L

dqx

q2
x

≈ (π − 2)�v

4π2B2λ3
L. (144)

This implies that the orientational order is destroyed at scales
above

ξO,x = cB2λ3

�v

= 1

3

(
ξv
x

)3/
a2 � ξv

x , (145)

set by the condition on L such that δn ≈ 1. Similarly, along z,
the length scale beyond which the mean-squared orientational
distortion 〈|δn(x)|2〉 grows to order 1 is

ξO,z ≈
(

cB2λ5/2

�v

)2

∼ ξ 2
O,x/λ � ξv

z . (146)

Naively this purely harmonic calculation implies that the
analysis and prediction of previous sections are only valid up to
this finite nematic domain scale, ξO,x and ξO,z. However, based
on Eq. (100) and the supporting RG and matching analysis,
we note that at long scales the positional pinning becomes
subdominant to purely orientational pinning, whether it is
relevant for T < Tg or irrelevant for T > Tg (in the former
case just modifying the strength of the effective orientational
pinning). Thus, we conclude based on this and Eq. (143)
that the orientational order is indeed stable for weak smectic
surface pinning.

VIII. SMECTIC CELL WITH HOMEOTROPIC
ALIGNMENT

So far our focus has been on a smectic cell in the bookshelf
geometry, corresponding to molecular alignment parallel to
the substrate, with the smectic layer normal lying in the plane
of the substrate. As we demonstrated in previous sections,
random surface pinning in this geometry has significant
qualitative effects on the smectic order, even in the bulk of
the cell, destabilizing it on a random substrate.

In this section, for completeness, we also analyze a cell
with a homeotropic alignment, with smectic layers running
parallel to the substrate. As we show below, in this geometry
the problem reduces to that of a surface-pinned xy model. It
thereby maps onto the previously studied planar nematic order
with surface random pinning [10,11].

In this homeotropic geometry the cell is described by the
Hamiltonian

Hsm =
∫

dd−1x

∫ w

0
dz

[
K

2
(∇2

⊥u)2 + B

2
(∂zu)2

]
+ Hpin,

(147)

with the layer normal ẑ perpendicular to the substrate.
Substrate randomness introduces distortions in the preferred
layer normal

n̂ = (δnx,δny,ẑ)/
√

1 + δn2
x + δn2

y, (148)

leading to pinning energy

Hpin

=
∫

dd−1xdzδ(z){−W (n̂ · ẑ)2 − [n̂ · g(r)]2 − V (u,r)}

≈
∫

dd−1xdzδ(z)

[
−W + W

2

(
δn2

x + δn2
y

) − h(x) · δn

−V (u,x)

]

≈
∫

dd−1xdzδ(z)

[
W

2
(∇⊥u)2 − h(x) · (∇⊥u) − V (u,x)

]
.

(149)

Above we made use of the approximate relation between
gradient of the smectic layers and the nematic director
deviation δn = (δnx,δny,0) ≈ ∇⊥u, and in the last equation
ignored irrelevant constants. The first pinning term encodes
the average substrate homeotropic alignment, [n̂ · g(r)]2 ∼
h(x) · (∇⊥u) captures the random orientational pinning on the
substrate, and the last term is the random positional pinning at
z = 0.

As for the bookshelf geometry, it is convenient to carry out
the dimensional reduction to the surface field u(x,y,z)|z=0 ≡
u0(x,y) at z = 0 in a half-infinite cell. To this end we solve
the corresponding Euler-Lagrange equation subject to the
substrate boundary condition,

K∇4
⊥u(x,y,z) − B∂2

z u(x,y,z) = 0,

whose solution for a thick cell is given by

u(q,z) = u0(q)e−λq2z. (150)
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Plugging this back into the bulk Hamiltonian and integrating
over the z degrees of freedom for z > 0, we obtain the effective
surface Hamiltonian

H surf
sm =

∫
d2q

(2π )2


0

2
q2|u0(q)|2

−
∫

dd−1xdzδ(z) [h(x) · (∇⊥u) + V (u,x)] , (151)

where


0 =
√

KB + W. (152)

In the momentum space the random pinning is given by

Hpin = −
∫

d2q

(2π )2
[iq · h(−q)u0(q) + f (−q)u0(q)] .

(153)

Thus, as anticipated in the Introduction, in this homeotropic
geometry the effects of the random substrate in a smectic
cell reduce to that of a well-studied random-field 2D xy
model [22,27,33,37,50] for the displacement of the smectic
layer in contact with the random substrate. In a weak pinning
limit (where effects of dislocations and of nonlinear elasticity
can be safely neglected) it is predicted to lead to weak
breakdown of long-ranged smectic order with log-squared
phonon correlations [34,37,51]. The random substrate pinning
is significantly less disruptive in this geometry and can be
used to test numerous theoretical predictions for the 2D
random-field xy model [10,11].

IX. CONCLUSIONS

A. Summary

Motivated by a number of liquid crystal experiments on
smectic cells [17,18], in this paper we studied the smectic-
liquid-crystal order perturbed by a randomly heterogeneous
substrate. Demonstrating that the resulting random surface
pinning comes in two, orientational and positional, forms, we
introduced a general model for a heterogeneous smectic cell
and analyzed the response and stability of its smectic order
to a random substrate. We thereby demonstrated rigorously
that smectic long-range order in a thick cell (without a
rubbed substrate) at long scales is unstable to arbitrarily
weak surface disorder, replaced by random smectic domains
whose size and correlations on the heterogeneous substrate
and in the bulk we have computed. We showed that for weak
random pinning the smectic order is thereby replaced by
a three-dimensional smectic-glass-like state, that undergoes
a temperature and pinning-driven Cardy-Ostlund-like phase
transition between a high-temperature weakly pinned smectic
and a low-temperature smectic glass, where smectic layers in
bookshelf geometry are strongly pinned by the dirty substrate.

We computed the statistics of the induced positional and
orientational distortions within and on scales beyond the
smectic domains. We also analyzed the transmission signal
in the polarized light microscopy and the x-ray scattering
structure function in such a smectic cell. We showed that these
can be used to experimentally probe our predictions of the finite
smectic correlation length and the statistics of the substrate
induced smectic textures. Based on this, we suggested that

the precipitous broadening of the x-ray peak with reduced
temperature observed by Jones and Clark [17,18] may be
associated with the predicted smectic glass phase transition.
More systematic experimental and theoretical studies are
necessary to explore this further. Finally, we also demonstrated
that in the geometry where layers run parallel to the random
substrate, the distortions on the substrate are governed by the
well-studied 2D random-field xy model.

B. Future directions

While our current study makes significant progress toward
understanding of randomly surface-pinned smectics, it also
stimulates a number of interesting open questions that we
leave to future research. Probably the most challenging of
these is the nature of the locally smectic state in the presence
of strong random surface pinning. This regime will exhibit
distortions beyond the elastic approximation, resulting in the
proliferation of dislocations that are notoriously difficult to
treat analytically, requiring sophisticated numerical analysis.

A more systematic (e.g., RG) treatment of nonlinear elas-
ticity, which we only briefly touched on via a self-consistent
scaling analysis, is another challenging problem requiring a
simultaneous treatment of pinning and elastic anharmonicities.

Throughout this manuscript we have also assumed that the
average strain of the pinned smectic state vanishes. While this
is true in equilibrium, experimental observations [17,18,52]
suggest that the system may have difficult time equilibrating as
the bulk layer spacing changes significantly with temperature,
while the layers remain pinned at the random substrate. Thus,
as the system is cooled into the smectic state, we expect
a significant buildup of strain near the random substrate,
with the relaxation rate limited by nucleation and motion
of edge dislocations. It is clear that accounting for this
background strain is crucial for a detailed understanding of
current experiments [17,18]. We are currently exploring this
interesting effect [49].

Finally, our earlier work on nematic cells [10,11] and
current study of smectic cells [12] lend themselves to general-
izations to a broad array of other liquid-crystal phases, such as,
for example, the cholesteric and smectic-C states. The effect
of the random substrate depends qualitatively on the nature of
the phases and we leave their analysis to future studies.

We hope that the present study will stimulate further
theoretical and experimental work on these and many other
open questions.
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APPENDIX A: SOLUTION OF THE EULER-LAGRANGE
EQUATION

In this appendix, we study the solution to the Euler-
Lagrange equation of the smectic-liquid-crystal cells subject
to a boundary condition of a random surface texture u(x,y =
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0,z) = u0(x,z) or equivalently random force f (x,z) as in (24),

K∇4
⊥u − B∂2

z u = f (x,z)δ(y),

where we used a surface pinning force

Hpin = −
∫

dxdydzδ(y)f (x,z)u(x,y,z), (A1)

to encode the boundary condition u(x,y = 0,z) = u0(x,z).
In Fourier space Eq. (24) reduces to[

K
(
q2

x + q2
y

)2 + Bq2
z

]
u(qx,qz,qy) = f (qx,qz), (A2)

giving

u(qx,qz,qy) = f (qx,qz)

K
(
q2

x + q2
y

)2 + Bq2
z

. (A3)

Then, for y > 0, we have

u(qx,qz,y) =
∫ ∞

−∞

dqy

2π

f (qx,qz)eiqyy

K
(
q2

x + q2
y

)2 + Bq2
z

= f (qx,qz)

2πB

∫ ∞

−∞
dqy

eiqyy

λ2
(
q2

x + q2
y

)2 + q2
z

= f (qx,qz)

2πB
√

λ

∫ ∞

−∞
dqy

eiqyy(
λq2

x + q2
y

)2 + q2
z

, (A4)

with the associated length λ = √
K/B, qy = √

λqy , and y =
y/

√
λ. As shown in Fig. 11, (A4) can be readily evaluated by

use of a contour integration, closing the contour in the upper
half of the complex plane. Defining qp = √−λq2

x + iqz, the
four poles are given by ±qp and ±q∗

p. Closing the contour in
the upper half-plane, we find

u(qx,qz,y) = f (qx,qz)

2πB
√

λ

∫ ∞

−∞
dqy

eiqyy

(qy − qp)(qy − q∗
p)(qy + qp)(qy + q∗

p)

= f (qx,qz)

2πB
√

λ
2πi

[
eiqpy

(qp − q∗
p)(qp + qp)(qp + q∗

p)
+ e−iq∗

py

(−q∗
p − qp)(−q∗

p − q∗
p)(−q∗

p + qp)

]

= f (qx,qz)

2B
√

λ
i

[
eiqpy

4iqpRe(qp)Im(qp)
+ e−iq∗

py

4iq∗
pRe(qp)Im(qp)

]

= f (qx,qz)

2B
√

λ

1

2Re(qp)Im(qp)
Re

[
eiqpy

qp

]
(A5)

and

q2
p = −λq2

x + iqz = ∣∣q2
p

∣∣ei[π−arctan ( qz

λq2
x

)]
, (A6)

with |q2
p| = √

λ2q4
x + q2

z . Noting that

qp = (
λ2q4

x + q2
z

)1/4
e
i[ π

2 − 1
2 arctan ( qz

λq2
x

)]
, (A7)

Re(qp) = (
λ2q4

x + q2
z

)1/4
sin

[
1

2
arctan

(
qz

λq2
x

)]

= 1√
2

√√
λ2q4

x + q2
z − λq2

x , (A8)

qx
2 qzqx

2 qz

qx
2 qzqx

2 qz

FIG. 11. (Color online) The integral (A4) represented by a
contour integral closed in the upper-half of the complex plane with
poles shown.

Im(qp) = (
λ2q4

x + q2
z

)1/4
cos

[
1

2
arctan

(
qz

λq2
x

)]

= 1√
2

√√
λ2q4

x + q2
z + λq2

x , (A9)

we find

u(qx,qz,y) = f (qx,qz)

2B
√

2λ

1

qz

√
λ2q4

x + q2
z

e
− y√

2λ

√√
λ2q4

x+q2
z +λq2

x

×
[√√

λ2q4
x + q2

z − λq2
x

× cos

(
y√
2λ

√√
λ2q4

x + q2
z − λq2

x

)

+
√√

λ2q4
x + q2

z + λq2
x

× sin

(
y√
2λ

√√
λ2q4

x + q2
z − λq2

x

)]
. (A10)

On the y = 0 substrate,

u0(qx,qz) ≡ u(qx,qz,y = 0)

= f (qx,qz)

2B
√

2λ

√√
λ2q4

x + q2
z − λq2

x

qz

√
λ2q4

x + q2
z

. (A11)
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Combining this with Eq. (A10) allows us to express u(qx,qy,y)
in terms of this substrate deformation,

u(qx,qz,y)

= u0(qx,qz)e
− y√

2λ

√√
λ2q4

x+q2
z +λq2

x

[√√
λ2q4

x + q2
z + λq2

x√√
λ2q4

x + q2
z − λq2

x

× sin

(
y√
2λ

√√
λ2q4

x + q2
z − λq2

x

)

+ cos

(
y√
2λ

√√
λ2q4

x + q2
z − λq2

x

)]
,

given as Eq. (26) in the main context.

APPENDIX B: DOMAIN SIZE IN THE SURFACE
DISORDERED SMECTIC CELL IN

BOOKSHELF GEOMETRY

In this appendix we present the details of the analysis of
the Larkin lengths setting the domain size and shape within
which smectic order is stable and the weak random pinning is
treated perturbatively. To make analytical progress we focus on
extreme limits of dominant positional pinning �v or dominant
orientational pinning �f , but not both. The calculation here
is only precise in the scaling sense and is not quantitatively
accurate.

1. Larkin lengths for dominant surface orientational pinning

Focusing on the case of dominant random orientational
disorder and generalizing the analysis to d dimensions with
(d − 2)-dimensional x, we find that the smectic phonon
variance is given by

〈
u2

0(x,z)
〉 = �f

2B2λ

∫
dd−2qxdqz

(2π )d−1
q2

x

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

) .

(B1)

This integral is divergent at small q and needs cutoffs set by
the domain size Lx and Lz. For Lx 	 √

λLz, one can integrate
qz out, cut off the IR integration by qx ∼ 1/Lx , and find

�f

4πB2λ

∫
dd−2qx

(2π )d−2

π − 2

λ2q2
x

= (π − 2)�f

4πB2λ3

Sd−2

(2π )d−2

∫ 1/a

1/Lx

qd−3
x dqx

q2
x

= (π − 2)�f

4πB2λ3
Cd−2

1

4 − d
L4−d

x , (B2)

diverging for d < dlc = 4, where Sd is the surface area of a
d-dimensional unit sphere and Cd = Sd/(2π )d . Defining the
Larkin domain size ξ

f
x as the length scale over which urms is

on the order of smectic layer spacing, we find

ξf
x =

[
4(4 − d)π

(π − 2)Cd−2

B2λ3a2

�f

]1/(4−d)

, (B3)

which for the physically relevant case of d = 3 is given by

ξf
x = c

B2λ3a2

�f

, (B4)

in which c = 4π2

π−2 ≈ 34.6.
At the lower critical dimension of d = 4, urms diverges

logarithmically, leading to

ξf
x = a exp

[
4π

π − 2

(2π )2

S2

B2λ3a2

�f

]
. (B5)

Similarly, for the Larkin length along z, integrating over qx

first, we find〈
u2

0(x,z)
〉

= �f

2B2λ

∫
dqz

2π

∫
dd−2qx

(2π )d−2
q2

x

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

)
= �f

2B2λ

Sd−2

(2π )d−2

∫
dqz

2π

∫ ∞

0

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

) qd−1
x dqx

= �f

2πB2λd/2+1

Sd−2

(2π )d−2



(

1
2 − d

4

)



(
d
4

) − π3/2 sec
(

dπ
4

)
4
√

π

×
∫ 1/a

1/Lz

dqzq
d
2 −3
z

= 1

2B(d)

�f

B2λd/2+1

L
2−d/2
z

2 − d/2
, (B6)

in which
1

B(d)
= 1

π

Sd−2

(2π )d−2



(

1
2 − d

4

)



(
d
4

) − π3/2 sec
(

dπ
4

)
4
√

π
. (B7)

This gives

ξf
z =

[
(4 − d)B(d)

B2λd/2+1a2

�f

]2/(4−d)

, (B8)

which in the physically relevant three dimensions reduces to

ξf
z =

[
B(3)

B2λ5/2a2

�f

]2

, (B9)

where B(3) ≈ 37.5 is roughly the same as c. At the lower
critical dimension we instead find

ξf
z = a exp

[
2

B(4)

B2λ3a2

�f

]
. (B10)

2. Larkin lengths for dominant surface positional pinning

For a smectic cell where positional disorder dominates, the
variance of smectic distortions is given by

〈
u2

0(x,z)
〉 =

∫
dqx

2π

∫ ∞

−∞

dqz

2π

�v

2B2λ

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

)
= �v

4πB2λ

∫
dqx

2π

π − 2

λ2q4
x

= �v

4πB2λ

2(π − 2)

2πλ2

∫ 1/a

1/Lx

dqx

q4
x

= (π − 2)�v

12π2B2λ3
L3

x, (B11)

which diverges as L3
x in 3D.
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Consequently, the Larkin length along x is given by

ξv
x =

[
3c

B2λ3a2

�v

]1/3

. (B12)

Similarly, the Larkin length along z is instead given by

ξv
z =

[
A(3)

B2λ3/2a2

�v

]2/3

, (B13)

where A(3) = 12π5/2

16
2( 5
4 )−

√
2π3

≈ 39.83, roughly the same as c.

More generally, in d dimensions the variance is given by

〈
u2

0(x,z)
〉 = �v

4πB2λ

∫
dd−2qx

(2π )d−2

π − 2

λ2q4
x

= (π − 2)�v

4πB2λ3

Sd−2

(2π )d−2

∫ 1/a

1/Lx

qd−3
x dqx

q4
x

= (π − 2)�v

4πB2λ3
Cd−2

1

6 − d
L6−d

x , (B14)

which is diverging for d < dv
lc = 6, leading to the Larkin length

along x given by

ξv
x =

[
4(6 − d)π

(π − 2)Cd−2

B2λ3a2

�v

]1/(6−d)

. (B15)

And, similarly along z,

ξv
z =

[
(6 − d)A(d)

3

B2λd/2a2

�v

]2/(6−d)

, (B16)

in which

1

A(d)
= 1

π

Sd−2

(2π )d−2



(
1 − d

4

)



(
d−2

4

) − π3/2 csc
(

dπ
4

)
12

√
π

.

(B17)

At the lower critical dimension d = 6, urms diverges
logarithmically, leading to

ξv
x = a exp

[
4π

π − 2

(2π )4

S4

B2λ3a2

�v

]
, (B18)

ξv
z = a exp

[
2A(6)

3

B2λ3a2

�v

]
. (B19)

APPENDIX C: CALCULATION OF CORRELATION
FUNCTIONS AT SHORT SCALES (LARKIN REGIME)

Here we present the details of the correlation function
of smectic phonons u0(x,z) on the dirty substrate, y = 0,
focusing on the short-scale Larkin regime. In 3D it is given by
a Fourier transform of Eq. (48),

C(x,z) = 〈[u0(x,z) − u0(0,0)]2〉
= 2

∫
dqz

2π

dqx

2π

�f q2
x + �v

(
q)2
(1 − eiqxx+iqzz), (C1)

where within the Larkin regime the integrations are bounded
by the intermediate length scales ξx,z given in Sec. IV B. We
treat the two forms of orientational and positional pinnings
individually, for simplicity assuming one or the other (but not
both) dominates.

1. Dominant surface orientational disorder

With dominant surface orientational disorder, the correla-
tion function is given by

Cf (x,z) = 〈[u0(x,z) − u0(0,0)]2〉

=
∫

dqz

2π

dqx

2π

�f q2
x

2B2λ

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

)
× (1 − eiqxx+iqzz). (C2)

For the dependence along x, we first integrate out qz, obtaining
(for x 	 ξx)

Cf (x,0) ≈ 2
(π − 2)�f

4π2B2λ3

∫ ∞

1/ξ
f
x

q−2
x [1 − cos (qxx)]dqx

≈ 2
(π − 2)�f

4π2B2λ3

πx

2
≈ πa2x/ξf

x . (C3)

For the dependence along z, we instead have

Cf (0,z) ≈ 2
a2

2
√

ξ
f
z

∫ ∞

1/ξ
f
z

dqz

1 − cos (qzz)

q
3/2
z

≈
√

2πa2
√

z/ξ
f
z , (C4)

where the definition of ξ
f
x,z is given in Sec. IV B. These

correlation functions with dominant orientational disorder are
plotted in Fig. 3.

2. Dominant surface positional disorder

With dominant random positional pinning, the correlation
function in 3D is given by

Cv(x,z) = 〈[u0(x,z) − u0(0,0)]2〉

= 2
∫

dqz

2π

dqx

2π

�v

2B2λ

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

)
× (1 − eiqx ·x+iqzz). (C5)

Focusing first on the x dependence at z = 0, we integrate out
qz and find

Cv(x,0)

≈ 2
(π − 2)�v

4π2B2λ3

∫ ∞

1/ξv
x

q−4
x [1 − cos (qxx)] dqx

≈ 2
(π − 2)�v

4π2B2λ3

[∫ 1/x

1/ξv
x

q−4
x

(qxx)2

2
dqx +

∫ ∞

1/x

q−4
x dqx

]

= (π − 2)�v

4π2B2λ3
ξv
x x2, (C6)

where we simplified the integral by separating it into qx <

1/x and qx > 1/x parts with corresponding approximations.
Utilizing the condition from Sec. IV B and Appendix B that
(π−2)�v

4π2B2λ3 = 3a2/(ξv
x )3, the correlation function reduces to a

simple form,

Cv(x,0) ≈ 3a2 x2(
ξv
x

)2 . (C7)

Equivalently, this integral can be evaluated exactly in terms
of special functions and then a small x 	 ξv

x limit is taken.
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Consistent with the above estimate, we find

Cv(x,0)

≈ 2
(π − 2)�v

4π2B2λ3

∫ ∞

1/ξv
x

qd−7
x [1 − cos (qxx)]dqx

= 2
(π − 2)�v

4π2B2λ3

{
1

3

(
ξv
x

)3 + 1

6
ξv
x

[
x2 − 2

(
ξv
x

)2]
cos

(
x

ξv
x

)

+ 1

6
x

(
ξv
x

)2
sin

(
x

ξv
x

)
− x3

12

[
π − 2 Si

(
x

ξv
x

)] }

≈ 3a2 x2(
ξv
x

)2 , (C8)

where Si(z) = ∫ z

0 sin (t) dt
t

is the sine integral function.
To obtain the short-scale z dependence of the correlation

function, we instead first integrate over qx , obtaining

Cv(0,z) ≈ 2
�v

4π2B2λ

16
2
(

5
4

) −
√

2π3

2
√

πλ

∫ ∞

1/ξv
z

dqz

1 − eiqzz

q
5/2
z

≈ 2
�v

4π2B2λ

16
2
(

5
4

) −
√

2π3

2
√

πλ

2
√

2π

3
z3/2

≈
√

8πa2

(
z

ξv
z

)3/2

, (C9)

where the definition of ξv
z from Sec. IV B was used. The

correlation functions with dominant positional disorder are
plotted in Fig. 4.

As discussed in the main body of the paper, the validity
of this perturbative analysis is limited to short scales of the
Larkin regime. To understand the behavior at longer distance,
where the Larkin treatment breaks down, we utilize the
renormalization group analysis.

APPENDIX D: FRG ANALYSIS TO THE SECOND ORDER

In this appendix we present the details of the FRG analysis
by evaluating each term in Eq. (83). Averaging over the high-
wave-vector fields in the surface orientational disorder term in
Eq. (83), we find〈
H�f

〉
>

= 1

4T

∑
α,β

∫
dd−2xdz

∫
κ

�̃f (κ)

× 〈
eiκ[uα

0 (x,z)−u
β

0 (x,z)]
∣∣∂x

[
uα

0 (x,z) − u
β

0 (x,z)
]∣∣2〉

>

= 1

4T

∑
α,β

∫
dd−2xdz

∫
κ

�̃f (κ)eiκ[uα
0<(x,z)−u

β

0<(x,z)]

× 〈
eiκ[uα

0>(x,z)−u
β

0>(x,z)]
∣∣∂x

[
uα

0<(x,z) − u
β

0<(x,z)

+uα
0>(x,z) − u

β

0>(x,z)]
∣∣2〉

>

= 1

4T

∑
α,β

∫
dd−2xdz

∫
κ

�̃f (κ)eiκ[uα
0<(x,z)−u

β

0<(x,z)]

× 〈
eiκ[uα

0>(x,z)−u
β

0>(x,z)]
{∣∣∂x

[
uα

0<(x,z) − u
β

0<(x,z)
]∣∣2

+ ∣∣∂x

[
uα

0>(x,z) − u
β

0>(x,z)
]∣∣2}〉

>
, (D1)

in which the cross term is linear in u> and, thus, vanishes
in momentum-shell RG. The key part of the first term in the
above equation is〈

eiκ[uα
0>(x,z)−u

β

0>(x,z)]
〉
>

= 1

Z>
0

∫ [
duα

0>

]
eiκ[uα

0>(x,z)−u
β

0>(x,z)]e−H>
0 /T = e−κ2fαβ ,

(D2)

in which Z>
0 is the partition function of the high-wave vector

components of the system

Z>
0 =

∫ [
duα

0>

]
e−H>

0 /T , (D3)

and fαβ is given by

fαβ = C>
T,αα(0) − G>

T,α,β (0)

=
∫ 

e−δ�

dd−2qx

(2π )d−2

∫ ∞

−∞

dqz

2π

T


q
(1 − δαβ)

≡ η(1 − δαβ)δ�. (D4)

For d = 3 it is easy to show that η = T
2πBλ

, which is a constant
under the renormalization flow. We can see that with the
expansion e−κ2fαβ = 1 − κ2fαβ + · · · , the zeroth-order term
contributes through rescaling and the first-order term leads to
the random orientational pinning nonlinearity

δ�
(1)
f (u) = η�′′

f (u)δ�, (D5)

with ′ indicating derivation respect to u.
Clearly, the average in the last term of Eq. (D1) contributes

to the surface positional pinning nonlinearity Rv(u). To lowest
order, we calculate the average〈

eiκ[uα
0>(x,z)−u

β

0>(x,z)]
∣∣∂x

[
uα

0>(x,z) − u
β

0>(x,z)
]∣∣2〉

>

≈ 〈∣∣∂x

[
uα

0>(x,z) − u
β

0>(x,z)
]∣∣2〉

>

= 2
∫ 

e−δ�

dd−2qx

(2π )d−2

∫ ∞

−∞

dqz

2π

T q2
x


q
(1 − δαβ)

≡ 2ζ (1 − δαβ)δ�, (D6)

while for d = 3 we have ζ = 2

2πBλ
, which contributes

δR(1a)
v (u) = −ζ�f (u)δ�. (D7)

We now consider the surface positional disorder in Eq. (83),

〈
H�v

〉
>

= −
∑
α,β

1

2T

∫
dd−2xdz

〈
Rv

[
uα

0 (x,z) − u
β

0 (x,z)
]〉

>

≈ −
∑
α,β

1

2T

∫
dd−2xdz

〈
Rv

[
uα

0<(x,z) − u
β

0<(x,z)
] + 1

2
R′′

v

[
uα

0<(x,z) − u
β

0<(x,z)
][

uα
0>(x,z) − u

β

0>(x,z)
]2

〉
>

= −
∑
α,β

1

2T

∫
dd−2xdz

{
Rv

[
uα

0<(x,z) − u
β

0<(x,z)
] + 1

2
R′′

v

[
uα

0<(x,z) − u
β

0<(x,z)
]〈[

uα
0>(x,z) − u

β

0>(x,z)
]2〉

>

}
, (D8)
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in which the first term gives a correction through rescaling, the linear order term in uα
0> makes a vanishing contribution, and the

last term

δR(1b)
v (u) = ηR′′

v (u)δ�, (D9)

[together with Eq. (D7)] gives a first-order contribution to the surface positional disorder.
To study the second-order contribution in the RG, we start with the (Rv)2 term in (83) and obtain

− 1

2T

〈
H 2

�v

〉c
>

= − 1

(2T )3

∑
α1,β1,α2,β2

∫
dd−2xdz

∫
dd−2x ′dz′〈Rv

[
u

α1
0 (x,z) − u

β1
0 (x,z)

]
Rv

[
u

α2
0 (x ′,z′) − u

β2
0 (x ′,z′)

]〉c
>

= − 1

8T 3

∑
α1,β1,α2,β2

∫
x,z

∫
x ′,z′

R′′
v

[
u

α1
0<(x,z) − u

β1
0<(x,z)

]
R′′

v

[
u

α2
0<(x ′,z′) − u

β2
0<(x ′,z′)

]

× 1

4

〈[
u

α1
0>(x,z) − u

β1
0>(x,z)

]2[
u

α2
0>(x ′,z′) − u

β2
0>(x ′,z′)

]2〉c
>
, (D10)

in which the average is given by

1
4

〈[
u

α1
0>(x,z) − u

β1
0>(x,z)

]2[
u

α2
0>(x ′,z′) − u

β2
0>(x ′,z′)

]2〉c
>

= [C>
T (δx,δz)]2(

δα1α2 + δα1α2δβ1β2 − δα1β2δβ1β2 − δα2β1δβ1β2

)
, (D11)

where δx = x − x ′ and δz = z − z′, and the three-replica correction contributed by the δα1α2 term is irrelevant relative to the
two-replica terms and is, thus, neglected. The second-order contribution from the random positional pinning then becomes

− 1

2T

〈
H 2

�v

〉c
>

= − 1

8T 3

∑
α,β

∫
x,z

∫
x ′,z′

[C>
T (δx,δz)]2

{
R′′

v

[
uα

0<(x,z) − u
β

0<(x,z)
]
R′′

v

[
uα

0<(x ′,z′) − u
β

0<(x ′,z′)
]

− 2R′′
v

[
uα

0<(x,z) − u
β

0<(x,z)
]
R′′

v (0)
}

≈ − 1

8T 3

∑
α,β

∫
x,z

∫
δx,δz

[C>
T (δx,δz)]2

{
R′′

v

[
uα

0<(x,z) − u
β

0<(x,z)
]
R′′

v

[
uα

0<(x,z) − u
β

0<(x,z)
]

+ 1

2
R′′

v

[
uα

0<(x,z) − u
β

0<(x,z)
]
R

′′′′
v

[
uα

0<(x,z) − u
β

0<(x,z)
]∣∣∂x

[
uα

0<(x,z) − u
β

0<(x,z)
]
δx

∣∣2

− 2R′′
v

[
uα

0<(x,z) − u
β

0<(x,z)
]
R′′

v (0)
}
, (D12)

with

Aδ� = 2

4T 2

∫
δx,δz

[C>
T (δx,δz)]2 = 1

2T 2

∫ 

e−δ�

dd−2qx

(2π )d−2

∫ ∞

−∞

dqz

2π

T 2


2
q

(D13)

and

A2δ� = 1

4T 2

∫
δx,δz

(δx)2[C>
T (δx,δz)]2 ≈ 1

4T 2

∫ 

e−δ�

dd−2qx

(2π )d−2

∫ ∞

−∞

dqz

2π

T 2q−2
x


2
q

(D14)

as the main part of the contribution. We then have the second-order contribution from the random positional pinning as

δR(2a)
v (u) = A

[
1
2R′′

v (u)R′′
v (u) − R′′

v (u)R′′
v (0)

]
δ�, (D15)

and

δ�
(2a)
f (u) = −A2R

′′
v (u)R(4)

v (u)δ�. (D16)

For d = 3, we have

A = π − 2

8π2B2λ33
, (D17)

A2 = π − 2

16π2B2λ35
= A/(22). (D18)

The second-order contribution of the random orientational pinning �f in (83) is

− 1

2T

〈
H 2

�f

〉c
>

= − 1

32T 3

∑
α1,β1,α2,β2

∫
x,z

∫
x ′,z′

〈
�f

[
u

α1
0 (x,z) − u

β1
0 (x,z)

]∣∣∂x

[
u

α1
0 (x,z) − u

β1
0 (x,z)

]∣∣2

×�f

[
u

α2
0 (x ′,z′) − u

β2
0 (x ′,z′)

]∣∣∂x

[
u

α2
0 (x ′,z′) − u

β2
0 (x ′,z′)

]∣∣2〉c
>
, (D19)
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which, after separating the high- and low-wave-vector components, becomes

〈
�f

(
u

α1β1
0

)∣∣∂xu
α1β1
0

∣∣2
�f

(
u

α2β2
0

)∣∣∂x ′u
α2β2
0

∣∣2〉c
>

= �f

(
u

α1β1
0<

)
�f

(
u

α2β2
0<

)〈(
∂xu

α1β1
0>

)2(
∂x ′u

α2β2
0>

)2〉c
>

+ 2�f

(
u

α1β1
0<

)�′′
f

(
u

α2β2
0<

)
2

(
∂x ′u

α2β2
0>

)2〈(
∂xu

α1β1
0>

)2(
u

α2β2
0>

)2〉c
>

+ 4�′
f

(
u

α1β1
0<

)
�′

f

(
u

α2β2
0<

)
∂xu

α1β1
0< ∂x ′u

α2β2
0<

〈
u

α1β1
0> u

α2β2
0> ∂xu

α1β1
0> ∂x ′u

α2β2
0>

〉c
>

+ · · · ,

(D20)

where, for simplicity of notation, we defined [uα1
0 (x,z) − u

β1
0 (x,z)] = u

α1β1
0 . The average in the first term of (D20) is given by

(neglecting the three replica contribution)

〈(
∂xu

α1β1
0>

)2(
∂x ′u

α2β2
0>

)2〉c
>

= 4[C>
T,∂ (δx,δz)]2

(
δα1α2δβ1β2 − 2δα1β2δβ1β2

)
, (D21)

in which the correlation of the x derivative of the layer
fluctuation, C>

T,∂ , is

C>
T,∂ (δx,δz) = 〈∂xu0>(x,z)∂xu (x + δx,z + δz)〉> . (D22)

Similarly to (D12), this term provides the second-order
contribution as

δR(2b)
v (u) = A3

[
1
2�f (u)�f (u) − �f (u)�f (0)

]
δ�, (D23)

δ�
(2b)
f (u) = −A4�f (u)�′′

f (u)δ�, (D24)

where

A3δ� = 1

2T 2

∫
δx,δz

[C>
T,∂ (δx,δz)]2 (D25)

and

A4δ� = 1

4T 2

∫
δx,δz

(δx)2[C>
T,∂ (δx,δz)]2. (D26)

The average in the second term of (D20) is〈(
∂xu

α1β1
0>

)2(
u

α2β2
0>

)2〉c
>

= 4[C>
T,∂/2(δx,δz)]2

(
δα1α2δβ1β2 − δα1β2δβ1β2 − δα2β1δβ1β2

)
,

(D27)

where the correlation C>
T,∂/2 is defined through

C>
T,∂/2(δx,δz) = 〈u0>(x,z)∂xu(x + δx,z + δz)〉> . (D28)

It is easy to see that this term contributes to the random
orientational pinning nonlinearity

δ�
(2c)
f = −A5[�f (u)�′′

f (u) − �f (u)�′′
f (0) − �f (0)�′′

f (u)],

(D29)

with

A5 = 1

2T 2

∫
δx,δz

[C>
T,∂/2(δx,δz)]2. (D30)

The average in the third term of (D20) is〈
u

α1β1
0> u

α2β2
0> ∂xu

α1β1
0> ∂x ′u

α2β2
0>

〉c
>

= 4{C>
T (δx,δz)C>

T,∂ (δx,δz) + [C>
T,∂/2(δx,δz)]2}

× (
δα1α2δβ1β2 − 2δα1β2δβ1β2

)
, (D31)

which contributes to the random orientational pinning nonlin-
earity through

δ�
(2d)
f (u) = −A6

[
1
2�′

f (u)�′
f (u) − �′

f (u)�′
f (0)

]
, (D32)

with

A6 = 4

T 2

∫
δx,δz

{C>
T (δx,δz)C>

T,∂ (δx,δz) + [C>
T,∂/2(δx,δz)]2}.

(D33)

The contribution to the Hamiltonian from the cross term,
the third term in (D20), is

− 1

T

〈
H�f

H�v

〉c
>

= 1

8T 3

∑
α1,β1,α2,β2

∫
x,z

∫
x ′,z′

〈
�f

[
u

α1
0 (x,z) − u

β1
0 (x,z)

]
× ∣∣∂x

[
u

α1
0 (x,z)−u

β1
0 (x,z)

]∣∣2
Rv

[
u

α2
0 (x ′,z′)−u

β2
0 (x ′,z′)

]〉c
>
.

(D34)

Similarly, we can separate the long- and short-scale field and
keep only the leading-order contribution, thus

〈
�f

[
u

α1
0 (x,z) − u

β1
0 (x,z)

]∣∣∂x

[
u

α1
0 (x,z) − u

β1
0 (x,z)

]∣∣2
Rv

[
u

α2
0 (x ′,z′) − u

β2
0 (x ′,z′)

]〉c
>

= 1
4�′′

f

(
u

α1β1
0<

)
R′′

v

(
u

α2β2
0<

)(
∂xu

α1β1
0<

)2〈(
u

α1β1
0>

)2(
u

α2β2
0>

)2〉c
>

+ 1
2�f

(
u

α1β1
0<

)
R′′

v

(
u

α2β2
0<

)〈(
∂xu

α1β1
0>

)2(
u

α2β2
0>

)2〉c
>

+ · · · . (D35)
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The average in the first term of (D35) is easy to calculate as〈(
u

α1β1
0>

)2(
u

α2β2
0>

)2〉c
>

= 4[C>
T (δx,δz)]2

(
δα1α2δβ1β2 − δα1β2δβ1β2 − δα2β1δβ1β2

)
,

(D36)

and it contributes

δ�
(2e)
f (u) = A[�′′

f (u)R′′
v (u) − �′′

f (0)R′′
v (u)

−�′′
f (u)R′′

v (0)]δ�, (D37)

with constant A given in (D13).
The average in the second term of (D35) is〈(
∂xu

α1β1
0>

)2(
u

α2β2
0>

)2〉c
>

= 4[C>
T,∂/2(δx,δz)]2

(
δα1α2δβ1β2 − δα1β2δβ1β2 − δα2β1δβ1β2

)
,

(D38)

and it contributes

δR(2f )
v = −A5[�f (u)R′′

v (u) − �f (0)R′′
v (u)

−�f (u)R′′
v (0)]δ�, (D39)

with A5 given in (D30).
These second- and lower-order contributions sum up into

flow equations of the nonlinearities given as Eqs. (84) and (85)
in Sec. V A.

APPENDIX E: FULL BEHAVIOR OF LONG-SCALE
CORRELATION FUNCTION

The RG and matching analysis in Sec. V predicts that the
long-scale smectic phonon correlation is dominated by random
orientational pinning, with strength �f (T ) = �f δf (T ). The
correlation is given by

C(x,z) = 2
∫

dqz

2π

dqx

2π

�f (T )q2
x

2B2λ

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

)
×(1 − eiqxx+iqzz), (E1)

in which the integrations can be safely extended to infinity
with our focus on long-scale behavior. Given A as a positive

number, it is easy to observe a relation whereby

C(
√

Ax,Az) =
√

AC(x,z), (E2)

which is consistent with the results shown in Eq. (7), and, on
the x or z axis,

C(x,0) ∝ x, and, C(0,z) ∝ √
z. (E3)

The correlation thus can be characterized by

C(x,z) ∝ xf

(
λz

x2

)
, (E4)

in which, at different limits of the ratio t = λz/x2,

f (t) = const, for t → 0,
(E5)

f (t) ∝ √
t, for t → ∞.

Redefining variables

(u,v) = (
x2q2

x ,zqz

)
, (E6)

so (qx,qz) = (
√

u/x,v/z), Eq. (E1) then becomes

C(x,z) = �f (T )

π2B2λ

∫ ∞

0
dqz

∫ ∞

0
dqxq

2
x

√
λ2q4

x + q2
z − λq2

x

q2
z

(
λ2q4

x + q2
z

)
× [1 − cos (qxx) cos (qzz)]

= �f (T )x

4π2B2λ3
2t2

∫ ∞

0
du

∫ ∞

0
dv

√
u

√
t2u2 + v2 − tu

v2(t2u2 + v2)

× [1 − cos (
√

u) cos (v)]

= �f (T )

4π2B2λ3
xf (t), (E7)

with

f (t) = 2t2
∫ ∞

0
du

∫ ∞

0
dv

√
u

√
t2u2 + v2 − tu

v2(t2u2 + v2)

×[1 − cos (
√

u) cos (v)]. (E8)

Writing 1−cos (
√

u) cos (v) as [1−cos (
√

u)]+cos (
√

u)[1−
cos (v)], it is easy to obtain the full analytic expression and
limits of f (t) as given in Eq. (104) and plotted in Fig. 7.
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