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Metric approach for sound propagation in nematic liquid crystals
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In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals
as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the
acoustics of the medium and this geometrical description is given by Fermat’s principle. We calculate the ray
trajectories and propose a diffraction experiment to retrieve information about the elastic constants.
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I. INTRODUCTION

The number of systems in condensed matter physics can
be described by the same mathematical structures as those
describing the gravitational field in general relativity: this is
the core of the analog gravity (or effective geometry) program
[1]. In general relativity, gravitation is accounted for by the
distortions of space-time, which is modeled by a pseudo-
Riemannian manifold [2] with the signature (−, + , + ,+).
The properties of this space-time are encompassed in the
metric tensor g (or simply metric) and other quantities derived
from it, such as the Riemann tensor or the Ricci scalar.
Free-falling particles follow trajectories corresponding to the
geodesics (curves of extremal length) of the manifold. In
particular, light paths correspond to the null geodesics of
space-time,

ds2 = gμνdxμdxν = 0, (1)

where ds2 is the square of the elementary length along the
geodesic and gμν are the covariant components of g (the
Einstein summation convention is assumed, where Greek
indices refer to space-time coordinates and Latin indices are
related to spatial ones).

As light trajectories can also be curved when crossing a
refractive medium, Fermat’s principle can be stated in terms of
an effective geometry [2,3]. For a given refractive index n(�r),
where �r is the position vector of the light wave front, the light
trajectories are interpreted as the geodesics of a non-Euclidean
space with the line element d�2,

d�2 = n2(�r)(dx2 + dy2 + dz2). (2)

Although (2) represents only a three-dimensional non-
Euclidean manifold, the corresponding geodesics are equal
to the null ones in a static four-dimensional pseudo-
Riemannian manifold with the time coordinate [4]. Since
we will deal with static refractive indexes, whenever con-
sidering the time, the time coordinate appears in the line
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element

ds2 = −c2dt2 + d�2, (3)

where c is the speed of light in vacuum and d�2 represents
the spatial line element obtained by the method that will be
exposed in this paper. For the study that will be developed
here, c is the velocity of sound in the material of interest when
it is homogeneous and isotropic.

In this paper, we will apply this gravitational analogy
to describe the sound propagation in liquid crystals [5–7],
materials raising considerable interest as they are both
theoretically challenging [8–10] and of practical interest
(patterned vertical alignment screens, q plates, or cell phones
[11]). They are made of anisotropic molecules (disklike or
rodlike) that present metastates between the crystalline and
liquid phases. One of these metastates is the nematic phase:
the molecules’ axes are oriented, on average, along a specific
direction called the director (represented by the versor n̂),
whereas their centers of mass are randomly located. Once in
the nematic phase, the refractive index, the sound velocity, and
other macroscopic properties become anisotropic. Moreover,
the nematic phase can exhibit birefringence, as the director
plays the role of the optical axis [5,6,12].

The gravitational analogy will be based on Fermat’s prin-
ciple once it can also be used to determine sound trajectories
[13]. The local speed of sound plays the role of the speed
of light in general relativity, and sound propagates along the
null geodesics of the acoustic metric. The interest in using this
analogy (or, more properly, this geometrical approach) is that
it helps us understand from a different point of view several
problems dealing with acoustics (for example, tomographic
image reconstruction via ray tracing [14], flight time in
acoustical waveguides [15], problems using the variational
method [16]) or nematoacoustics [17].

We will consider the sound propagation around a punctual
(called hedgehog) and a linear (called disclination) topological
defect of the nematic phase of a liquid crystal with rodlike
molecules [5–7,18]. Sound trajectories will be exhibited and
the diffraction patterns will be determined in the perspective
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of retrieving the elastic constants of the liquid crystalline
medium.

II. ANALOG MODEL OF ANISOTROPIC LIQUID
CRYSTALS

A. Acoustic aspects

The specific structure of the liquid crystal in the nematic
phase allows two kinds of acoustic waves to exist [5,6,19],
similarly to sound in solid crystals [20,21]: the ordinary
wave, which behaves as if inside an isotropic medium, and
the extraordinary one, which depends on the angle between
the direction of the propagation and the director n̂. For each
kind of wave, one usually defines two characteristic velocities:
the phase velocity, which points in the direction of the wave
vector �k, and the group velocity, which is oriented similarly to
the acoustic Poynting vector �S (in general, not parallel to �k)
and indicates the direction of energy propagation. The phase
velocity vp of the extraordinary wave for a liquid crystal in the
nematic phase with the director n̂ orientated on the z direction
can be measured by the pulse-superposition technique [12],
producing the expression

v2
p(α) = [C11 + (C33 − C11) cos2 α]

ρ
, (4)

where ρ is the density and α is the angle between the wave
vector �k and n̂ [5,6]. This relation expresses that a liquid crystal
can be viewed as a simple solid with linear elastic constants in
the x and y directions both equal to C11 and in the z direction
equal to C33 [5,19]. Additionally, the smallest portion of the
liquid crystal where the director can be defined presents local
cylindrical symmetry, and therefore we will consider (4) to be
locally valid for any configuration of the director n̂ (even in
the presence of defects as in Secs. III A and III B).

The procedure to obtain Ng(β) relies first on the determina-
tion of vp(α) and phase refractive index Np(α). To determine
the latter, one replaces (4) in N2

p = v2

v2
p(α) , where v is the velocity

of sound in the isotropic phase of the liquid crystal, obtaining

N2
p = v2ρ

C11 sin2 α + C33 cos2 α
,

or

N2
p sin2 α

vρ

C11

+ N2
p cos2 α

vρ

C33

= v. (5)

Following [7], we define the refractive index vector �Np ≡ vk̂
vp

and denote by the index ⊥ (//) components of vectors that are
orthogonal (parallel) to the director n̂. Thus, the components
of �Np are Np⊥ = Np sin α and Np//

= Np cos α. For acoustic
waves in anisotropic crystals (which is the case of a liquid
crystal in its nematic phase [20,22]), it is known that

�vg · k̂ = vp =⇒ �vg · �Np = v. (6)

Identifying (6) with (5), we found the components of �vg:

vg⊥ = Np⊥
vρ

C11

, vg//
= Np//

vρ

C33

. (7)

Introducing β as the angle between �vg and n̂, the alternate
expressions for the group velocity components are vg⊥ =
v/Ng sin β and vg//

= v/Ng cos β. Thus, the use of (7) in (6)
results in

v = �vg · �Np = v

Ng

(Np⊥ sin β + Np//
cos β)

= v2

N2
g

(
vρ

C11
sin2 β + vρ

C33
cos2 β

)
.

Finally, we obtain

N2
g (β) = v2ρ

C11
sin2 β + v2ρ

C33
cos2 β. (8)

In the next section, we will discuss the connection between
the acoustic group index and the effective metric experienced
by sound in the nematics.

B. Geometric aspects

We intend to study the paths followed by the extraordinary
ray. This can be achieved by applying Fermat’s principle [23],
for which the path followed by sound between points A and B

is the one that minimizes the integral

F =
∫ B

A

Ng(β)dl, (9)

where l is the arc length of the path. As pointed out by Joets
and Ribotta [24] for light inside an anisotropic crystal, the use
of Fermat’s principle to determine sound paths is equivalent to
calculating the null geodesics of a manifold with line element
d�2 = ∑

i,j gij dxidxj , where this null geodesic is the curve
that minimizes the integral∫ B

A

d�. (10)

The mathematical resemblance of the two previous ideas in the
application of (9) and (10) suggests one make the identification

N2
g (β)dl2 =

∑
i,j

gij dxidxj = d�2, (11)

where dl2 is recognized as the Euclidean line element. Still,
according to Joets and Ribotta, the resulting space is a
Finslerian one. However, due to the symmetry of the liquid
crystal molecules and the spatial configuration of the director n̂

in the applications where this metric approach will be applied,
the Riemannian geometry is enough to describe the sound
propagation [25,26].

Thus, substituting (11) in (3), we found the general
expression of the line element experienced by the sound wave
in cylindrical coordinates,

ds2 = −c2dt2 + N2
g (β)(dr2 + r2dθ2 + dz2), (12)

and the covariant components of the acoustic metric related to
the line element (12) are

g =

⎛
⎜⎜⎜⎝

−c2 0 0 0

0 N2
g (β) 0 0

0 0 r2N2
g (β) 0

0 0 0 N2
g (β)

⎞
⎟⎟⎟⎠ . (13)

022506-2



METRIC APPROACH FOR SOUND PROPAGATION IN . . . PHYSICAL REVIEW E 87, 022506 (2013)

From the standpoint of sound, an anisotropic medium can
thus be mimicked by an effective gravitational field. As for
light, the WKB (or short wavelength) approximation enables
us to identify sound paths to the null geodesics of the effective
metric g. In pseudo-Riemannian geometry [2,4,27], the curve
that minimizes the line element ds2 is obtained from the
geodesic equation

d2xμ

dτ 2
+ 	μ

νσ

dxμ

dτ

dxσ

dτ
= 0, (14)

with τ being a parameter along the geodesic and 	μ
νσ being the

components of the Riemannian connection,

	μ
νσ = 1

2
gμξ

(
∂gξσ

∂xν
+ ∂gνξ

∂xσ
− ∂gνσ

∂xξ

)
. (15)

In the next section, we will apply these equations to study
sound propagation near defects occurring in the nematic phase
of liquid crystals.

III. APPLICATIONS

A. Sound paths near a defect in nematics

When a liquid crystal transits from the liquid (or isotropic)
phase to the nematic one, defects (points or lines) can arise
spontaneously, causing a reorientation of the director. We
will focus on two different topological defects of the nematic
phase: the punctual defect called a hedgehog, with director
n̂ = r̂ written in spherical coordinates, and the linear defect
called a disclination, with director n̂ = ρ̂ written in cylin-
drical coordinates (Fig. 1). To determine the acoustic metric
associated with a hedgehog defect, the strategy is to express
cos β and sin β in terms of the laboratory frame coordinates by
the Euclidean line element dl2 = dr2 + r2(dθ2 + sin2 θdφ2),
substitute them in (8), and obtain the gij ’s with (11).

In the Frenet-Serret frame [28], the position vector along
the sound path �R = rr̂ and the tangent vector �T (l) are
related by

�T (l) = d �R
dl

= d(rr̂)

dl
= dr

dl
r̂ + r

dr̂

dl
. (16)

As �T (l) has the same direction as �vg , then

�T · n̂ = cos β = dr

dl
≡ ṙ . (17)

FIG. 1. Hedgehog and (k = 1,c = 0) disclination defects. The
arrows represent the director n̂.

From the modified Euclidean line element

1 = ṙ2 + r2(θ̇2 + sin2 θφ̇2),

one identifies

sin β =
√

r2(θ̇2 + sin2 θφ̇2). (18)

The replacement of (17) and (18) in (8) results in the line
element

d�2 = ρv2

C33
dr2 + ρv2

C11
r2(dθ2 + sin2 θdφ2),

which gives the effective metric for sound in the vicinity of a
hedgehog defect. The rescaling of the radial coordinate of this

equation by r̃ ≡
√

ρ

C33
vr produces

d�2 = dr̃2 + b2r̃2(dθ2 + sin2 θdφ2), (19)

where b2 ≡ C33
C11

. Therefore sound paths are the geodesics
of (19), that is, the spatial part of the line element of a global
monopole [29], and they are depicted in Fig. 2 for b = 0.9.

We now study the case of disclinations. These defects are
expressed in terms of parameters k and c [7], which are related
to the director in cylindrical coordinates by

�n = ( cos(kφ + c), sin(kφ + c),0). (20)

Repeating the same procedure as for hedgehog defects, we
obtain a generalized effective metric, similar to the one found
in [26]:

d�2 =
(

ρ2

C33
cos2 α + ρ2

C11
sin2 α

)
dr2

+
(

ρ2

C33
sin2 α + ρ2

C11
cos2 α

)
r2dφ2

−
[

2

(
ρ2

C11
− ρ2

C33

)
sin α cos α

]
rdrdφ, (21)

where α = kφ + c. In the case of (k = 1,c = 0) disclination,
the geodesics are represented in Fig. 2.

Equations (19) and (21) are examples of effective metrics
experienced by the sound close to topological defects in
nematic liquid crystals. In the next section, they will serve

FIG. 2. Sound trajectories on the equatorial plane of a hedgehog
in a liquid crystal with b = 0.9. This result is similar to sound
trajectories on the z = Cst plane close to a (k = 1,c = 0) disclination
lying in the z direction with b = 0.9.
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as the basis for calculations beyond the WKB approximation
to determine scattering sections.

B. Acoustical diffraction by defects in nematics

The connection between geometric and wave optics is well
known: in the WKB approximation, light rays identify with
curves that are tangent at each point to the Poynting vector [22].
Similarly, since the direction of the energy velocity for sound
waves defines the direction of the sound rays [21], we use
the partial wave method [30] to examine the scattering of
sound waves by the previous hedgehog defect and indicate its
diffraction pattern (for disclinations, a similar analysis can be
found in [31]). Sound plane waves obey d’Alembert’s wave
equation for scalar fields:

∇μ∇μ� ≡ 1√−g
∂μ(

√−ggμν∂ν�) = 0. (22)

Here, ∂μ ≡ ∂
∂xμ and gμν are the components of the metric

g (determinant g) given by Eq. (19). We have also used
the convention of the repeated indexes for summations.
Solutions are the usual harmonic plane waves of the form � =
�(t,r,θ,φ) = e−iωtψ(r,θ,φ), where ω is the wave pulsation.

The spherical symmetry of the problem allows us to write
ψ(r,θ,φ) = ψ(r,θ ) = ∑∞

l=0 alRl(r)Pl(cos θ ), where Pl(cos θ )
are the Legendre polynomials of order l and al are worthless
constants for the partial wave method. Applying ψ(r,θ ) in
�(t,r,θ,φ) and expanding (22), we obtain the radial equation

R
′′
l (r) + 2

R
′
l(r)

r
+

[
ω2 − l(l + 1)

b2r2

]
Rl(r) = 0, (23)

where R
′
l(r) ≡ ∂rRl(r). Solutions to this equation are Bessel

functions of the first kind, Rl(r) = Jn(l)(r), where

n(l) = 1

b

[(
l + 1

2

)2

− 1 − b2

4

] 1
2

.

When b = 1, we recover the flat space, and the last equation
becomes l + 1

2 . The phase shift δl(b) of the scattered wave is

δl(b) = π

2

(
l + 1

2
− n(l)

)

= π

2

{
l + 1

2
− 1

b

[(
l + 1

2

)2

− 1 − b2

4

] 1
2
}
. (24)

The angular distribution of the scattered sound is given by
the differential scattering cross section σ (θ ) [30],

σ (θ ) ≡ |f (θ )|2 =
∣∣∣∣∣ 1

2iω

∞∑
l

(2l + 1)(e2iδl − 1)Pl(cos θ )

∣∣∣∣∣
2

,

(25)

where f (θ ) is the scattering amplitude. The spherical symme-
try of the scattering generates an annular diffraction pattern, a
ring of sound. The angular location of the maximum of sound
is given by Eq. (25), as is shown in Fig. 3.

An analytical expression for the location of the light
diffraction ring scattered by a global monopole defect in the
real space-time is found in [32], and a similar one is developed

......

FIG. 3. (Color online) Differential scattering cross section,
Eq. (25), for a hedgehog defect with (b = 0.9,ω = 1) truncated at
l = 600.

here. The idea is to expand the scattering amplitude about
b2 ≈ 1,

f (θ ) = f (0)(θ ) + f (1)(θ ) + · · · , (26)

and to analyze the angular behavior of the first two terms. For
the phase shift (24), we set ζ ≡ l + 1

2 and a2 ≡ 1−b2

4 , obtaining

δl(b) = π

2

⎛
⎝ζ − ζ

b

√
1 − a2

ζ 2

⎞
⎠ .

We expand this last equation about a2 ≈ 0 (which is equivalent
to expanding about b2 ≈ 1), resulting in

δl(b) ≈ π

2

[(
1 − 1

b

)
ζ + a2

2bζ
+ O(a4)

]
. (27)

Substituting (27) in the scattering amplitude, we obtain the
first two terms of the expansion, f (0)(θ ) and f (1)(θ ). They can
be written in terms of the generating functions h(θ,α) of the
Legendre polynomials,

h(θ,α) =
∞∑
l=0

eπiαζ (l)Pl(cos θ ) = 1√
2(cos πα − cos θ )

,

where α = 1 − 1
b
. The zero-order term, f (0)(θ ), can be written

considering the derivative of h(θ,α),

f (0)(θ ) = 1

2
√

2ω

sin πα

(cos πα − cos θ )3/2
, (28)

and the first-order term, f (1)(θ ), can be written considering
h(θ,α),

f (1)(θ ) = πα2

2bω

1√
2(cos πα − cos θ )

. (29)

022506-4



METRIC APPROACH FOR SOUND PROPAGATION IN . . . PHYSICAL REVIEW E 87, 022506 (2013)

Equations (28) and (29) diverge when θ = θ0 = πα, which
is the analytical expression for the angular location of the
diffraction ring. For example, when b = 0.9, θ0 = π (1 −
1/0.9) ≈ 0.35 rad, as indicated by Fig. 3. For (k = 1,c =
0) disclinations, the same result is obtained [31], and
they are in agreement with the calculations derived by
Grandjean [33].

IV. CONCLUSION AND PERSPECTIVES

We have developed an effective geometry approach to
investigate properties of sound propagation inside anisotropic
media such as nematic liquid crystals. In this framework,
the influence of each defect is represented by an effective
metric: metrics for hedgehogs are similar to those of global
monopoles, whereas (k,c) disclinations have more complex
forms. Sound trajectories and diffraction patterns are thus mod-
ified by the nontrivial metric. In particular, sound scattering
by hedgehog defects is identical to light scattering by a global
monopole.

It is interesting to note the relation between the metric
approach shown here and Katanaev and Volovich’s theory [34].
While Katanaev and Volovich use an affine transformation
to deform and curve the elastic medium, generating the
anisotropic properties, we start from the anisotropic velocity
to derive the effective metric.

We could reinterpret the obtained results from the view
of cosmology. Once sound waves can be understood as
propagating perturbations in the effective metric generated
by the director field n̂(�r), they are analogous to gravitational
waves propagating in a true gravitational metric generated by
a cosmic defect. Thus, the annular diffraction pattern due to
defects in a liquid crystal can also be expected for gravitational
waves coming on cosmic strings or global monopoles. In other
words, the diffraction pattern is a gravitational signature of
the presence of cosmic defects, and its properties may help
us retrieve information about them. Furthermore, considering
the weak effects of gravitational waves on possible detectors,
we have presented an algebraic result for the angle of the
maximum intensity of the scattered gravitational waves. Since
the scattered wave on this angle has an amplitude greater than
that of the incident wave, our results indicate the angular

position where detectors of gravitational waves must be
place to improve their power of detection. Another possible
extension in this way is the possibility to test cosmological
mechanisms predicted in the paper of Damour and Vilenkin
[35]: from our analogy, production of sound waves should
occur by cusps of disclinations in liquid crystals.

In the language of cohomology [36], the Volterra process
for a cosmic string is obtained by removing a cylindrical
solid angle, whereas the Volterra process of the corresponding
antistring is obtained by the addition of a cylindrical solid
angle. For example, in nematics, such a pair will consist of a
(k = 1,c = 0) disclination, with b2 < 1 in its effective metric,
which is the analog for a cosmic string, and a (k = 1,c = π/2)
disclination, with b2 > 1 in its effective metric, which is
the analog for the cosmic antistring. As is known, for the
annihilation of disclinations in nematics, a velocity field is
expected near the pairs, keeping the director fixed [37–39].
As in the analog models based on a moving fluid where the
gradient of the velocity field maps the gravitational field [40],
we could devise the presence of a gravitational field in the
vicinity of two annihilating cosmic strings.

Still, in cosmology, topological defects such as cosmic
strings and global monopoles appear as a result of symmetry
breaking during phase transitions occurring while the early
universe cooled down. In the Kibble mechanism [41], the
formation of these defects gives rise to the emission of
gravitational waves. In liquid crystals, defects appear as a
result of SO(3) symmetry breaking of the isotropic-nematic
transition phase during cooling. Formation of defects also
obeys a Kibble mechanism [8,42]. Therefore, by means of
our analogy, we should be able (in principle) to characterize
the properties of gravitational waves (such as polarization,
for example) from the study of sound waves propagating in
nematic liquid crystals.

Future developments of this work concern the influence
of temperature on elastic constants, on director fluctuations
(corresponding to fluctuations of the metric itself [43]),
and consequently, on the sound trajectories and diffractions.
Another interesting path should be the possibility of simulating
the exterior metric of the spherical, uncharged, nonrotating
mass, known as the Schwarzschild metric [2,4], for sound rays
(as was proposed for light in [9]).
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[26] C. Sátiro and F. Moraes, Eur. Phys. J. E 20, 173 (2006).
[27] B. F. Schutz, A First Course in General Relativity (Cambridge

University Press, Cambridge, 2004).
[28] R. Kamien, Rev. Mod. Phys. 74, 953 (2002).
[29] M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341

(1989).

[30] C. Cohen-Tannnoudji, B. Diu, and F. Lale, Quantum Mechanics
(Wiley-Interscience, New York, 1982), Vol. 2.

[31] E. Pereira and F. Moraes, Liq. Cryst. 38, 295 (2011).
[32] P. O. Mazur and J. Papavassiliou, Phys. Rev. D 44, 1317 (1991).
[33] F. Grandjean, Bull. Soc. Fr. Miner. 42, 42 (1919).
[34] M. O. Katanaev and I. V. Volovich, Ann. Phys. (NY) 216, 1

(1992).
[35] T. Damour and A. Vilenkin, Phys. Rev. Lett. 85, 3761 (2000).
[36] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topol-

ogy (Princeton University Press, Princeton, NJ, 1952).
[37] D. Svensek and S. Zumer, Phys. Rev. E 66, 021712 (2002).
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