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Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy
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Nonlinear evolution of three-dimensional strained islands or quantum dots in heteroepitaxial thin films is
studied via a continuum elasticity model and both perturbation analysis of the system and numerical simulations
of the corresponding nonlinear dynamic equation governing the film morphological profile. Three regimes of
island array evolution are identified and examined, including a film instability regime at early stage, a nonlinear
coarsening regime at intermediate times, and the crossover to a saturated asymptotic state, with detailed behavior
depending on film-substrate misfit strains but not qualitatively on finite system sizes. The phenomenon of island
array stabilization, which corresponds to the formation of steady but nonordered arrays of strained quantum dots,
occurs at later time for smaller misfit strain. It is found to be controlled by the strength of film-substrate wetting
interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and
also determined by the effect of elastic interaction between surface islands and the high-order strain energy
of individual islands at late evolution stage. The results are compared to previous experimental and theoretical
studies on quantum dot coarsening and stabilization.
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I. INTRODUCTION

The formation of surface nanostructures such as islands
or quantum dots during heteroepitaxy of strained films has
attracted continuing great interest due to its importance in
both fundamental understanding of material growth and its
wide range of applications particularly for optoelectronic
nanodevices [1–3]. One of the underlying mechanisms of
island formation has been attributed to the occurrence of
morphological instability of the strained film (i.e., the Asaro-
Tiller-Grinfeld instability [4]), for which the competition
between the stabilization effect of film surface energy and
the destabilization effect of system elastic energy due to
film-substrate misfit strain plays a key role. This involves the
process of stress release in the film via surface mass transport
driven by local energy gradient and consequently the formation
of coherent nonplanar surface structures such as nanoscale
islands [5,6]. Compared to other formation mechanisms such
as thermally activated nucleation, a main feature here is the
continuous, nucleationless nature of the film instability and
the subsequent island growth that starts from rough surface
[7–9]. It results in more regular and correlated arrays of
self-assembled quantum dots that are appealing for a variety
of applications.

The onset of this type of quantum dots or strained islands
formation has been well understood, as studied via detailed
instability analysis for both single-component [5,6] and alloy
strained films [10–13] as well as multilayers or superlattices
[14,15]. Such film instability, showing as surface ripples and
cell-like undulations which are the precursor of coherent island
formation, has been observed in experiments of semiconductor
heteroepitaxial films such as SiGe [7,8]. On the other hand,
the subsequent nonlinear evolution of these strained dots,
which are well beyond the initial linear stability stage, is more
complicated and much less understood. A typical phenomenon
is the coarsening of quantum dot islands, showing as the
increase of average island size during film evolution and the
shrinking of small dots. Such scenario has been observed in
experiments of Ge/Si(001) [16–19], SiGe/Si(001) [20], and

InAs/GaAs(001) [21], although with different mechanisms
and behavior of coarsening reported. For the example of
Ge-Si systems that have been extensively studied, nonlinear
island coarsening rate that deviates from classical results of
Ostwald ripening has been found; however, it was associated
with different mechanisms of island morphology evolution
in different experiments, such as the effect of island shape
transition accompanying the coarsening process [16–18] or a
contrasting kinetic picture that incorporates elastic interactions
but not island shape transition [20]. Also, the slowing [16] or
suppression [19] of coarsening process at late stage and the
resulting stabilized quantum dot arrays have been observed
in some experiments of growing [16,22] and post-deposition
[17,19] films, but not in others [20].

The corresponding theoretical or computational study on
nonlinear island evolution is also far from conclusive. Most
efforts are based on continuum approaches including contin-
uum elasticity theory [23–35] and phase field methods [36,37],
in addition to other modeling techniques that incorporate crys-
talline details, such as kinetic Monte Carlo method with elastic
interaction [38–40] and the recently developed phase-field-
crystal (PFC) model and the associated amplitude equation
formalism [41–44]. For continuum elasticity modeling, which
is the current main avenue for studying strained island coars-
ening due to the large length and time scales involved, much
recent focus has been put on the derivation and simulation
of nonlinear evolution equations through approximating the
system elasticity and the dynamics of film morphology via
perturbation methods. Two limits of system configuration were
addressed in early studies of such approach, including the limit
of perfectly rigid substrate [24,30] and the case of infinitely
thick strained film [28]. More recently, similar approximation
has been applied to heteroepitaxial systems consisting of a
strained thin film grown on an elastic substrate as configured
in most experiments. The corresponding reduced nonlinear
evolution equations have been derived and simulated, based
on different approximations. In the long-wave or small-slope
approximation of film surface profile [31,34,35], much larger
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variation length scale along the film surface was assumed
as compared to that of the film normal, while other studies
were based on the expansion of system stress in terms of
small gradient of the film surface height [33]. Some physical
mechanisms in thin film growth have also been incorporated,
such as the wetting effect between the strained film and the
underlying substrate. These approaches are more efficient
for large scale simulations, as compared to directly solving
the full system elasticity problem and the corresponding full
dynamic equation of morphological profile, which instead is
of high computational cost and hence usually involves limited
system size, island number, and evolution time particularly for
three-dimensional (3D) systems.

Despite the success of these theoretical approaches in
describing properties of quantum dot formation and film
morphology, some behavior of film nonlinear evolution,
particularly the process of island coarsening versus stabiliza-
tion, is still not well understood, with inconsistent results
given in different studies [26,29,32–35,45]. For the case
of post-deposition film as examined in most simulations,
coarsening of strained island arrays has been reproduced,
although with different coarsening rate found in different
approaches [29,34,35]. One of the main differences in these
works is the result for asymptotic and steady state of the
film morphology. Stable arrays of quantum dots that persist
after the coarsening stage have been obtained in both studies
of the reduced nonlinear evolution equation [33,45] and the
direct solution of the full elasticity problem [26,32], consistent
with the observation in some Si-Ge experiments [17,19].
However, as in some other experiments [20], such scenario
of the suppression or cessation of island coarsening was
not found in other modeling processes [29,34], and recent
nonlinear analysis of a system evolution equation suggested
that a regular quantum dot array would be unstable as a result
of subcritical bifurcation [34]. Note that in many previous
studies the saturation of island coarsening process has been
attributed to the effect of surface-energy anisotropy [26,32,45],
although the phenomenon of island stabilization has also been
observed in recent simulation without such anisotropy effect
[33]. These discrepancies in modeling results could probably
be related to different types of approximation and various
ways of small variable expansion and truncation involved in
different approaches, and/or the difficulty in simulating large
enough system size and long enough evolution time required
for experimental comparison.

In this paper, we focus on the nonlinear evolution of strained
quantum dot islands grown epitaxially on an elastic substrate,
based on a continuum elasticity model and the development
of a systematic approach for approximately solving the film-
substrate elastic state via a perturbation analysis in Fourier
space. Results up to second-order perturbation of surface
morphology are presented, and our approach can be readily
extended to incorporate higher-order elastic solutions. We can
then derive a new nonlinear evolution equation governing the
dynamics of strained film morphology, which allows us to
systematically examine the detailed behavior of film evolution
at large enough spatial and temporal scales. This nonlinear
equation, with the incorporation of the wetting effect, is
applied to the study of island coarsening and stabilization
process in post-deposition films. Our focus is on systems

of small misfit strains, which correspond to large enough
length scale of the resulting surface structure as compared
to the scale of crystalline lattice. (This is based on recent
studies [42] showing that continuum approaches, such as
the continuum elasticity theory developed here, can well
describe the films in weak strain limit, but not for large misfit
stress, which would lead to qualitatively different behavior of
surface islands due to the effects of discrete lattice structure.)
The whole sequence of island evolution can be reproduced
in our numerical simulations, including three characteristic
regimes: the development of morphological instability and
island formation at early times, nonlinear coarsening of islands
at intermediate stage, and the slowing of such coarsening
process which leads to a saturated state of steady quantum
dot arrays. We also investigate the mechanisms underlying
the phenomenon of island stabilization, based on the study
of wetting effect on the constraint of surface mass transport
between island valleys and peaks, and also on a detailed
examination of strain relaxation process via studying the
temporal evolution and spatial distribution of elastic energy
density at the film surface. We identify a factor responsible
for suppressing the island growth and coarsening, which is
attributed to the effect of high-order elastic energy of individual
islands and the elastic interaction between them.

II. MODEL

Assume that a strained film of spatially varying height
h(x,y,t) is deposited epitaxially on a semi-infinite elastic
substrate that occupies the region z < 0. The misfit strain
in the film with respect to the substrate is given by εm =
(af − as)/as , where af and as are the lattice spacings of
the film and the substrate, respectively. For such coherent,
dislocation-free system, the evolution of the film surface
morphological profile h(x,y,t) is governed by

∂h

∂t
= �h

√
g∇2

s

δF
δh

+ v, (1)

where �h is the kinetic coefficient determined by surface
diffusion, ∇2

s is the surface Laplacian, v is the deposition
rate (with v = 0 for the post-deposition case), and g =
1 + |∇h|2. Here, the effect of film-substrate interdiffusion is
neglected. The total free energy functional F consists of two
parts, including the elastic energy Fel = ∫ h

−∞ d3r E where E
represents the strain energy density, and the surface free energy
Fs = ∫

d2r γs(h)
√

g where γs is the thickness-dependent,
isotropic surface tension with the effect of wetting interaction
between the film and substrate incorporated. The dynamic
equation (1) can then be rewritten as [6,31,34]

∂h

∂t
= �h

√
g∇2

s [γ κ + W (h) + Ef ] + v, (2)

where κ is the mean surface curvature, γ is the surface-energy
density, Ef gives the film elastic energy density at the surface
z = h, and the wetting potential W can be approximated via a
phenomenological glued-layer wetting model [34]

W (h) = −w

(
h

hml

)−αw

e−h/hml . (3)

Here, w gives the strength of the film-substrate wetting
interaction, hml is the characteristic wetting-layer thickness
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that is usually of a few monolayers, and the exponent αw (>0)
gives the singularity of the potential W in the limit of h → 0
that emulates the persistence of the wetting layer during film
evolution [34].

The formulation of elasticity for this film-substrate system
has been well established [6]. In isotropic, linear elasticity
theory (i.e., with harmonic approximation), the elastic energy
density is given by E = 1

2σijuij , where i,j = x,y,z, and uij is
the linear elastic strain tensor defined by uij = (∂jui + ∂iuj )/2
(with ui the displacement field). From Hooke’s law for
isotropic elastic system, the stress tensor σij in the strained
film is expressed by

σij = 2μ

[
ν

1 − 2ν
δijukk + uij − 1 + ν

1 − 2ν
εmδij

]
, (4)

where μ is the shear modulus and ν is the Poisson ratio. The
stress tensor in the substrate is also given by Eq. (4) with
εm = 0. Here, for simplicity we have assumed equal elastic
constants in the film and substrate, which corresponds to the
situation in most experimental systems where the difference
of elastic constants between film and substrate materials is not
significant.

Since the elastic relaxation occurs at a time scale of orders of
magnitude faster than that of the atomic diffusion process and
the associated system morphological evolution, it is usually
assumed that the mechanical equilibrium condition ∂jσij = 0
is always satisfied in both film and substrate. Using Eq. (4),
we can obtain Navier’s equations in the whole film-substrate
system

(1 − 2ν)∂2
j ui + ∂i∂juj = 0. (5)

The corresponding boundary condition on the top film surface
is given by

σ
f

ij nj = 0 at z = h(x,y,t), (6)

due to the neglecting of external pressure on the free surface,
while the boundary conditions at the film-substrate interface is
determined by the continuity of stress and displacement fields:

σ
f

ij nj = σ s
ijnj and u

f

i = us
i at z = 0. (7)

Here, nj is the unit vector normal to the film surface or the
film-substrate interface, and the subscripts “f ” and “s” refer
to the film and substrate phases, respectively. Also, inside the
substrate region, which is far away from the film, we have

us
i ,u

s
ij → 0 for z → −∞. (8)

III. PERTURBATION ANALYSIS AND NONLINEAR
EVOLUTION EQUATION

To solve this elasticity problem, we adopt a perturbation
analysis in Fourier space based on the expansion of system
elastic quantities on the small vertical variation of film surface
morphology. More specifically, given the Fourier transform of
the film morphological profile

h = h̄ +
∑

q

ĥ(q,t)ei(qxx+qyy), (9)

where h̄ = h0 + vt is the average film thickness at any time t

(with h0 the initial film thickness), the Fourier components of

the displacement field ûi(q), stress tensor σ̂ij (q) (i,j = x,y,z),
and film elastic energy density Êf are expanded in the order
of surface perturbation ĥ(q), i.e.,

ui = ūi +
∑

q

ûi(q)ei(qxx+qyy), ûi = εû
(1)
i + ε2û

(2)
i + · · · ,

σij = σ̄ij +
∑

q

σ̂ij (q)ei(qxx+qyy), σ̂ij = εσ̂
(1)
ij + ε2σ̂

(2)
ij + · · · ,

Ef = Ēf +
∑

q

Êf (q)ei(qxx+qyy), Êf = Ê (1)f + Ê (2)f + · · · .

(10)

Here, we have introduced a small parameter ε, which
represents the order of surface perturbation function ĥ(q);
also, Ê (ξ )f ∼ O(εξ ) (with ξ = 1,2, . . .) in Eq. (10). For the
zeroth-order base state with planar, uniformly strained film, the
elasticity solutions are given by Ref. [6]: ūf

i = 0 (i = x,y) and
ū

f
z = ū

f
zzz for the displacement fields, the strain tensor ū

f

ij = 0

except for ū
f
zz = εm(1 + ν)/(1 − ν), the stress tensor σ̄

f

ij = 0

except for σ̄
f
xx = σ̄

f
yy = −2μū

f
zz, and the zeroth-order elastic

energy density Ēf = Eε2
m/(1 − ν) (where E is the Young’s

modulus). For the substrate, the corresponding base state is
stress free, with ūs

i = ūs
ij = σ̄ s

ij = 0.
The elastic properties at higher orders can be obtained by

substituting the expansions (9) and (10) into Eqs. (5)–(8). In
Fourier space, Navier’s equations (5) can be rewritten as

(1 − 2ν)
(
∂2
z − q2

)
û

(ξ )
j + iqj

[
iqxû

(ξ )
x + iqyû

(ξ )
y + ∂zû

(ξ )
z

] = 0

for j = x,y, (11)

(1 − 2ν)(∂2
z − q2)û(ξ )

z + ∂z

[
iqxû

(ξ )
x + iqyû

(ξ )
y + ∂zû

(ξ )
z

] = 0

(12)

for ξ th-order expansion (ξ = 1,2, . . .). The corresponding
general solutions have the same format as that obtained in
Ref. [6] for first-order equations, which read as

εξ û
(ξ )f
i =

⎡
⎢⎣

α
(ξ )
x

α
(ξ )
y

α
(ξ )
z

⎤
⎥⎦ cosh(qz) +

⎡
⎢⎣

β
(ξ )
x

β
(ξ )
y

β
(ξ )
z

⎤
⎥⎦ sinh(qz)

−

⎡
⎢⎣

C(ξ )iqx/q

C(ξ )iqy/q

D(ξ )

⎤
⎥⎦ z sinh(qz) −

⎡
⎢⎣

D(ξ )iqx/q

D(ξ )iqy/q

C(ξ )

⎤
⎥⎦

× z cosh(qz) (13)

for the film, and

εξ û
(ξ )s
i =

⎡
⎢⎣

α
(ξ )
x

α
(ξ )
y

α
(ξ )
z

⎤
⎥⎦ eqz −

⎡
⎢⎣

iqx/q

iqy/q

1

⎤
⎥⎦ B(ξ )zeqz (14)

for the substrate after using the boundary conditions (7) and
(8) at the film-substrate interface and inside the substrate. The
coefficients α

(ξ )
i , β(ξ )

i , C(ξ ), D(ξ ), and B(ξ ) in Eqs. (13) and (14)
are determined via the expansion of boundary conditions (6)
and (7) in orders of ε. Note that the first-order solution has been
known with the use of linearized boundary conditions [6,10],
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with the perturbed elastic energy density being given by

Ê (1)f = −2E(1 + ν)

1 − ν
ε2
mqĥ(q). (15)

For the second-order expansion of the boundary conditions, at the top surface of the film z = h, Eq. (6) can be written
as

−
∑

q′
i(qx − q ′

x)εσ̂ (1)f
jx (q′)ĥ(q − q′) −

∑
q′

i(qy − q ′
y)εσ̂ (1)f

jy (q′)ĥ(q − q′) + ε2σ̂
(2)f
jz (q) = 0, (16)

while the continuity of stress at the film-substrate interface z = 0 [i.e., Eq. (7)] yields

σ̂
(2)f
jz (q) = σ̂

(2)s
jz (q), (17)

with j = x,y,z. Substituting Eqs. (13) and (14) to these boundary conditions (16) and (17), the second-order coefficients of the
solution can be obtained as follows:

qα(2)
z = qβ(2)

z = −e−qh̄

[
a

(2)
1 qx + b

(2)
1 qy

2μq
(1 − 2ν + qh̄) − c

(2)
1

2μ
(2 − 2ν + qh̄)

]
,

iqxα
(2)
x + iqyα

(2)
y = iqxβ

(2)
x + iqyβ

(2)
y = e−qh̄

[
a

(2)
1 qx + b

(2)
1 qy

2μq
(qh̄ − 2 + 2ν) + c

(2)
1

2μ
(1 − 2ν + qh̄)

]
, (18)

C(2) = D(2) = B(2) = e−qh̄

[
− a

(2)
1 qx + b

(2)
1 qy

2μq
+ c

(2)
1

2μ

]
,

where

a
(2)
1 qx + b

(2)
1 qy =

∑
q′

ĥ(q′)ĥ(q − q′)
{

2Eεm

q ′(1 − ν)

[
qx(qx − q ′

x)
(
q ′2

x + νq ′2
y

) + qy(qy − q ′
y)

(
q ′2

y + νq ′2
x

)]

+ 2Eεm

q ′
xq

′
y

q ′ [qx(qy − q ′
y) + qy(qx − q ′

x)]

}
(19)

and

c
(2)
1 =

∑
q′

ĥ(q′)ĥ(q − q′)
Eεm

1 − ν
[q ′

x(qx − q ′
x) + q ′

y(qy − q ′
y)].

(20)

Based on the above solution, we can determine the second-
order elastic energy density as

Ê (2)f =
∑

q′

[
1 + ν

2E
ε2σ̂

(1)f
ij (q′)σ̂ (1)f

ij (q − q′)

− ν

2E
ε2σ̂

(1)f
ll (q′)σ̂ (1)f

ll (q − q′)
]

+ Eεm

1 − ν

[
(1 − ν)

a
(2)
1 qx + b

(2)
1 qy

μq
− (1 − 2ν)

c
(2)
1

2μ

]
,

(21)

where the expressions of first-order stress tensor σ̂
(1)f
ij at the

top surface are given in the Appendix [see Eq. (A1)]. The
second-order stress tensor can also be calculated, with results
shown in Eqs. (A2)–(A7).

We then derive the nonlinear evolution equation for film
surface morphology from Eq. (2), using the results of perturbed
elastic energy density given in Eqs. (15) and (21). All the
terms in the dynamic equation (2) are expanded up to second
order of surface perturbation ĥ, except for W (h) for which
the full nonlinear wetting potential form (3) is used. For the

surface-energy term γ κ , noting that the surface curvature κ =
−∇ · [∇h/

√
1 + |∇h|2], we have γ κ ∼ −γ∇2h + O(ĥ3) and

hence only need to keep the linear-order term in the second-
order approximation considered here. To further simplify the
calculation, we choose a length scale l = γ /E0 and a time
scale τ = l4/γ�h, where E0 = 2Eε2

0 (1 + ν)/(1 − ν) is the
characteristic strain energy density, with ε0 a reference misfit
value. The resulting nondimensional dynamic equation for the
perturbed surface profile ĥ(q,t) is given by

∂ĥ

∂t
= (−q4 + ε∗2

q3)ĥ − q2Wq

− ε∗2
∑

q′
ĥ(q′)ĥ(q − q′)�(q,q′), (22)

where Wq is the Fourier transform of the rescaled wetting
potential W (h)/E0, ε∗ = εm/ε0, and

�(q,q′) = q2

[
(1 − ν)

[q′ · (q − q′)]2

q ′|q − q′| − q′ · (q − q′)

+ νq ′|q − q′|
]

+ 2q

q ′
{
qx(qx − q ′

x)
(
q ′2

x + νq ′2
y

)

+ qy(qy − q ′
y)

(
q ′2

y + νq ′2
x

) + (1 − ν)q ′
xq

′
y

× [qx(qy − q ′
y) + qy(qx − q ′

x)]
}
. (23)

In Eq. (22), the first term of the right-hand side is the
combination of the surface-energy contribution and the
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first-order elastic energy density Ê (1)f , consistent with the
previous linear-order results [6,31,34]. The last term is from
the second-order perturbation result of the elastic energy
density, i.e., Eq. (21) for Ê (2)f . It would be straightforward,
although with more complicated processes, to extend the above
approach to incorporate higher-order contributions, based on
the perturbation analysis of system elasticity given in Eqs. (9)–
(14). That is, to obtain the nth-order elastic results, we can first
express the nth-order expansion of the boundary conditions
in terms of ξ th-order (ξ = 1,2, . . . ,n − 1,n) stress tensors
[similar to the expression in Eq. (16)], and use it to calculate the
nth-order solution of the displacement field given in Eq. (13).
The corresponding film elastic properties can then be derived,
particularly the nth-order elastic energy density Ê (n)f at the
film surface which can be expressed as a function of ξ th-order
(ξ = 1,2, . . . ,n − 1) elastic quantities that are already known.
The corresponding higher-order evolution equation for ĥ can
be obtained by adding high-order terms −q2Ê (n)f (n > 2) to
Eq. (22).

This perturbation analysis given above is different from
previous approximation methods which usually assumed
small film surface slopes or gradients and/or different length
scales along the lateral versus vertical direction of the film
[31,33–35]. In our method, no such scale difference between
lateral and vertical film directions is assumed and the small
variable here is the Fourier component ĥ(q) of surface height
variation; thus, for our perturbation results of elastic energy
and nonlinear film evolution equation (22) to be valid, surface
height variations should be kept small, but not necessarily
the surface slopes and gradients, and no condition on the
lateral and vertical variation scales is imposed. The resulting
higher-order elastic energy terms can be used to identify new
mechanisms of strained island evolution, as will be detailed
below.

Note that the above results can be applied to the study
of both growing and nongrowing films. For a growing film
with nonzero deposition rate v, the average film thickness h̄

(=h0 + vt) would grow with time, while the dependence of
elastic energy density on film perturbation ĥ would remain
the same for both growing and nongrowing cases, so that the
invariance of elastic energy density terms under transformation
h → h + const is preserved (as in previous work of Refs. [6]
and [35]). The explicit effect of h̄ and nonzero v on film
evolution is incorporated via the wetting term Wq in Eq. (22).
For simplicity, in the following we only focus on the case of
nongrowing films with deposition rate v = 0 and examine the
corresponding film evolution process.

IV. LINEAR STABILITY ANALYSIS

We first perform a linear stability analysis on Eq. (22)
to determine the conditions of morphological instability of
the system; such conditions are needed for the nonlinear
calculations given in Secs. V and VI. Following the standard
procedure, we assume an exponential growth ĥ = ĥ0 exp(σht)
at early time, and apply it to the linearized evolution equation
of ĥ. The characteristic equation for the perturbation growth
rate σh is then given by

σh = −q4 + q3ε∗2 − q2a, (24)

where a = (w∗/h∗
ml)(x + αw)x−αw−1e−x as obtained from

the linearization of the wetting potential W (h), x = h̄/hml ,
w∗ = w/E0, and h∗

ml = hml/ l. From the above dispersion
relation, we can identify the condition for the occurrence of
film morphological instability, which is given by ε∗4 � 4a or,
equivalently,

exxαw+1

x + αw

� 4w∗

ε∗4h∗
ml

. (25)

The corresponding characteristic wave number of film insta-
bility (for the fastest instability growth mode) can be written
as

qmax = 3

8

[
ε∗2 +

√
ε∗4 − 32

9
a

]
. (26)

Equation (25) is used to identify the parameters in our
numerical simulations shown below, for which the initial film
instability and hence the appearance of nonplanar surface
morphology or islands are examined. Note that for given film
conditions such as misfit strain εm and wetting parameters,
Eq. (25) indicates that due to the film-substrate wetting
effect (with αw > 0), the morphological instability and surface
nanostructures will develop only for thick enough films,
with the critical thickness h̄c determined by Eq. (25), i.e.,
excxαw+1

c /(xc + αw) = 4w∗/ε∗4h∗
ml (where xc = h̄c/hml); the

value of h̄c increases with smaller film-substrate misfit strain.
Also, the characteristic size (or wavelength λ = 2π/qmax) of
surface structures at the initial stage will decrease with the
increasing average film thickness h̄, as can be obtained from
Eq. (26).

V. EFFECTS OF WETTING POTENTIAL

To validate our model system and the nonlinear dynamic
equation (22) derived above, we first examine the effect of
wetting potential on film evolution and compare it to the
well-known results of cusp formation obtained from previous
full elasticity calculations [23,25]. Since Eq. (22) is already
presented in Fourier space, in our numerical simulations
we directly use the spectral method with periodic boundary
conditions along the lateral x and y directions, and also
an exponential propagation algorithm for time integration
[46]. This allows us to use large enough time steps (up
to �t = 1 in most results shown below, except for the
study of groove or cusp formation for which �t = 0.01 is
used). For rescaling parameters that are associated with the
nondimensional equation (22), a reference misfit ε0 = 3%
is chosen, and thus the length scale can be estimated as
l 	 5.5 nm if using the material parameters of Ge/Si system.

As found first by Yang and Srolovitz [23] and later in
various numerical studies of two-dimensional (2D) [25,28]
and 3D [30,33] systems via solving either the full elasticity
problem or the reduced nonlinear evolution equations, deep
grooves or cusps will form in stressed solid systems without
the incorporation of wetting effect. This is well reproduced
in our numerical results of Eq. (22), as shown in Fig. 1 for
3% misfit films with ν = 1

3 and initial film thickness h0 = 0.
Two types of initial conditions are used: (1) a small random
disturbance of a planar film of thickness h0, with results of
a 128 × 128 system presented in Figs. 1(a) and 1(b), and
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(c)

(a) (b)

(d)

FIG. 1. (Color online) Surface morphologies of 3% strained films, as obtained from numerical simulations without the wetting effect. The
simulations start either from small random initial perturbation of a planar film [(a) and (b)] or from a doubly periodic surface profile with wave
vector qx0 = qy0 = 3/4

√
2 and amplitude A0 = 0.01 [(c) and (d)]. Both 3D morphologies, (a) at t = 46.77 for a portion of a 128 × 128 system

and (c) at t = 34.35 for system size λx0 × λy0, and also time evolution of 2D cross-section profiles are shown.

(2) a weakly perturbed film with doubly periodic sinusoidal
surface profile h = h0 + A0[cos(qx0x) + cos(qy0y)], as given
in Figs. 1(c) and 1(d) for a λx0 × λy0 system (where λx0 =
2π/qx0 and λy0 = 2π/qy0). For condition (2), the initial
perturbed amplitude is set as A0 = 0.01, and a perturbed wave
vector qx0 = qy0 = 3/4

√
2 is chosen, corresponding to the

wave number of the most linearly unstable mode determined
by Eq. (26). In both cases, the formation of singular cusps or
deep grooves and their rapid growth have been found during
the film evolution, as evidenced by the 3D morphological
profiles given in Figs. 1(a) and 1(c), and also from the results
of time-evolving 2D cross-section profiles shown in Figs. 1(b)
and 1(d), which are consistent with the previous 2D results of
Spencer and Meiron [25] and Xiang and E [28].

To incorporate the wetting effect, in our calculations we use
a pseudospectral method; that is, we first evaluate the wetting
potential W (h) from Eq. (3) in real space and then obtain its
Fourier component Wq as used in the dynamic equation (22).
As expected, the cusp or groove singularity is completely
suppressed by the film-substrate wetting interaction since the
wetting potential tends to preserve a finite-thickness wetting
layer on the substrate and prevent its depletion [see Eq. (3)
for the singularity and infinite energy penalty of W (h) when
h → 0]; arrays of strained islands or quantum dots will then
form and grow. This has been verified by our numerical results
shown in Fig. 2, where we have used the parameters of
εm = 3%, h0 = 0.41, h∗

ml = 0.3, αw = 2, w∗ = 0.08 or 0.2,
and simulation time step �t = 1. However, another type of

022408-6



NONLINEAR DYNAMICS OF ISLAND COARSENING AND . . . PHYSICAL REVIEW E 87, 022408 (2013)

FIG. 2. (Color online) Time evolution of 3% strained films with different wetting strength w∗ = 0.08 and 0.2. (a) Evolution of maximum
surface height, with a 3D island morphology for w∗ = 0.08 at t = 330 shown in the inset; (b) 2D cross-section profiles at y = Ly/2 for
w∗ = 0.08 at t = 330 and w∗ = 0.2 at t = 10 000.

growth instability would occur when the strength of wetting
interaction is not strong enough (e.g., w∗ = 0.08 in Fig. 2),
showing as the rapid increase of island heights beyond initial
time stage and then the blowup of numerical solution at late
times. Such instability with unbound growth of island height
is absent for stronger wetting effect, such as the effect of
w∗ = 0.2 shown in Fig. 2(a), which gives the stabilization
of island evolution. This can be understood from the fact
that the wetting interaction tends to prevent the depletion
of the film-substrate wetting layer and hence suppresses
the mass transport from the valley of an island to its top,
leading to the constraint of island height as a result of mass
conservation. Such effect would increase with the strength
of wetting interaction, as can be seen from the results given
in Fig. 2(b): thicker film layers between surface islands and
shallower valleys are found for larger wetting strength w∗, as a
result of stronger suppression on the valley-to-peak diffusion
process.

VI. RESULTS OF NONLINEAR EVOLUTION

To examine the detailed evolution of strained film mor-
phology more systematically, we have conducted numerical
simulations of the nonlinear dynamic equation (22) for
different small film-substrate misfit strains εm = 2%, 2.5%,
and 3% (in such weak strain limit, the continuum elasticity
approach can be well applied, as shown in most recent studies
[42]). The parameters for the wetting potential are chosen as
h∗

ml = 0.3, αw = 2, and w∗ = 0.2, with all other parameters
the same as those given in Sec. V. In our simulations, we
have used three different system sizes Lx × Ly for each
parameter set, including the lateral dimensions of 128 × 128,
256 × 256, and 512 × 512, to examine any possible artifacts of
finite size effects. A numerical grid spacing �x = �y = 1 is
adopted, and the integration time step is chosen as �t = 1. The
quantitative results given below have been averaged over 20
independent runs for system sizes 128 × 128 and 256 × 256,
and 10 runs for 512 × 512. Also, each simulation starts

with a rescaled initial film thickness of h0 = 0.67 for misfit
strain εm = 2%, h0 = 0.5 for εm = 2.5%, and h0 = 0.41 for
εm = 3%, all of which are within the corresponding instability
parameter region for each misfit as determined by Eq. (25).

Typical simulation results of film evolution and the for-
mation and dynamics of quantum dot arrays are illustrated in
Fig. 3, for 2.5% mismatch between the film and substrate. At
the beginning stage, surface undulations occur due to the film
morphological instability determined in Eq. (25), leading to the
formation of strained surface islands or quantum dots as shown
in Fig. 3(a). Note that at different surface locations, islands will
form and grow gradually at different rates due to the nonlinear
effects of elastic interaction. Island coarsening occurs at the
next stage, showing as the growth of some quantum dots at
the expense of other shrinking ones and hence the decrease of
island density on the film surface. This can be seen more clearly
in the corresponding 2D top-view images of Figs. 3(d)–3(f),
which give the comparison of island distribution between times
t = 1000, 2000, and 104. Such coarsening process becomes
much slower as time increases, and the system would approach
an asymptotic state with steady arrays of strained quantum
dots. As expected, this late-time state of film surface structures
highly depends on the value of film-substrate misfit strain,
with an increase of island density and a decrease of island
spacing for larger misfits. This has been confirmed in our
results of 2% and 3% films given in Fig. 4, as compared to the
2.5% film shown in Figs. 3(c) and 3(f). In our simulations, no
long-range spatial order can be found for quantum dot arrays,
even at the late-time stage, agreeing with the observation of
most experimental and theoretical studies.

To quantify the above results, we have analyzed the
film surface morphology through various time-dependent
parameters, including the structure factor of surface height,
its moments, the maximum height of surface profile, and
the surface roughness, as shown in Figs. 5–8 with results
of different system sizes presented. The structure factor is
defined as S(q,t) = 〈|ĥ(q,t)|2〉q̂ , with a circular average over
orientation q̂ of the wave vector. Typical results of S(q,t) are
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FIG. 3. Morphological profiles of a 2.5% strained film, at simulation times t = 1000 [(a) and (d)], 2000 [(b) and (e)], and 10 000 [(c) and
(f)]. A fraction of 3D morphologies in a 256 × 256 system is given in panels (a)–(c), while the corresponding 2D grayscale top-view images
of the full system size are shown in (d)–(f).

given in Fig. 5 for different misfit strains of 2%, 2.5%, and 3%.
As the misfit increases, the wave number related to the peak

location of the structure factor becomes larger, corresponding
to smaller island spacing and also higher quantum dot density

FIG. 4. Morphological profiles of (a) 2% and (b) 3% strained films at late time stage of t = 10 000. Only a portion of the 256 × 256 system
is shown in the 3D images of (a) and (b). The corresponding 2D top-view images of the full system size are given in (c) and (d).
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FIG. 5. (Color online) Structure factor of the surface height as a function of wave number q, for different misfits (a) εm = 2%, (b) εm = 2.5%,
and (c) εm = 3%, system size 256 × 256, and times t = 2000, 6000, and 10 000.

as already seen in Figs. 4(c), 3(f), and 4(d). Also, for smaller
misfit strain, larger time is needed for the initial formation of
islands [if we compare the t = 2000 curves in Figs. 5(a)–5(c)],
consistent with the result of σh in the linear stability analysis.

Details of the time evolution of quantum dot islands can
be characterized by the calculation of various moments of the
structure factor. The nth moment of S(q,t) is defined as

mn(t) =
∫

dq qnS(q,t)∫
dq S(q,t)

, (27)

which yields the information of the characteristic size and
spatial scale of surface structures [47]. We have calculated the
first three moments of S(q,t), with time evolution results for
three different misfits given in Figs. 6(a) (for m1), 6(b) (for
m2), and 6(c) (for m3). Three characteristic regimes of film
evolution can be identified in each simulation: the process of
surface instability development and island formation at early
times, coarsening of these strained islands at intermediate
stage, and an asymptotic stage of island array stabilization
at late times. The first two stages can be distinguished clearly
in the results of moments shown in Fig. 6, as separated by the

turning point (i.e., maximum of mn) of the time evolution curve
for each moment. The increase of mn at the first time stage is
due to the continuous appearance of new islands at various
times as observed in our simulations, and thus the decrease of
average island spacing. The time range of this early stage of
island formation is longer for smaller misfit strain, as a result
of overall smaller instability growth rate [see Eqs. (24)–(26)].
This has been verified in Fig. 6, via comparing the three panels
of misfits 3%, 2.5%, and 2% (from top to bottom) for results
of each moment.

Once most islands have formed (i.e., when the moments
mn reach maximum values), they start to coarsen so that
the average distance between islands increases, leading to
the decrease of mn. A power-law behavior of coarsen-
ing, mn(t) ∼ t−βn , can be obtained, but such behavior is
limited to a transient time range at the beginning of the
coarsening stage. As shown in Fig. 6, this time range is
smaller for larger film-substrate misfit strain εm, with faster
crossover to a saturated state. Also, slower coarsening rate
has been found for larger misfit, corresponding to smaller
coarsening exponents βn, which are identified as follows

FIG. 6. (Color online) Time evolution of the three moments of structure factor: (a) m1, (b) m2, and (c) m3, for misfit strains εm = 2%, 2.5%,
and 3%. The solid lines represent the simulation results of grid size 256 × 256, whereas the dashed and dotted lines represent the results for
grid sizes 128 × 128 and 512 × 512, respectively. Power-law fittings (i.e., the thin lines) at the beginning of coarsening stage for the 256 × 256
system are also shown.
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FIG. 7. (Color online) Time evolution of the maximum value of
structure factor, for misfits εm = 2%, 2.5%, and 3%. Results for differ-
ent system sizes 256 × 256 and 512 × 512 are shown for comparison.

(for system size 256 × 256): for εm = 2%, β1 = 0.1010 ±
0.0008, β2 = 0.181 ± 0.002, and β3 = 0.235 ± 0.003; for
εm = 2.5%, β1 = 0.0702 ± 0.0007, β2 = 0.120 ± 0.002, and
β3 = 0.145 ± 0.004; for εm = 3%, β1 = 0.0449 ± 0.0009,
β2 = 0.076 ± 0.003, and β3 = 0.090 ± 0.006. Note that if the
structure factor is assumed to obey a simple dynamic scaling
behavior due to coarsening, one would usually expect that
mn(t) ∼ t−nβ1 ; i.e., βn = nβ1. However, the above results of
coarsening exponents in the intermediate time range for all
different misfit strains do not support this assumption, and we
cannot identify a simple format of scaling for the structure
factor. This might be attributed to the complex relaxation of
strain energy in the film and the nonlinear elastic interaction
between surface islands [see, e.g., Eq. (23)] which are more
complicated than that revealed by simple scaling.

These two regimes of island formation and coarsening are
also illustrated in our numerical results for the maximum

FIG. 8. (Color online) Time evolution of maximum surface height
for misfits εm = 2%, 2.5%, and 3% and system sizes 256 × 256 and
512 × 512.

FIG. 9. (Color online) Time evolution of surface roughness for
various misfits εm = 2%, 2.5% and 3%. Note that for each misfit,
results of different system sizes 256 × 256 and 512 × 512 almost
overlap with each other.

value of the structure factor Smax (Fig. 7), the maximum
surface height hmax (Fig. 8), and the surface roughness r(t) =
〈(h − h̄)2〉1/2 (Fig. 9). The growth of all three quantities can be
observed during the first stage of instability growth and island
formation, which corresponds to the same initial time range as
the mn results shown in Fig. 6. Both Smax and the roughness
r(t) grow exponentially with time at this stage, consistent with
the behavior of linear instability analyzed in Sec. III. However,
at later times during the coarsening process, these quantities
show rather slow growth and an approach to saturation, even
for hmax. Such phenomenon of saturating surface roughness
has been obtained in a recent study of a nonlinear evolution
equation [33], but not in other studies using different evo-
lution equations (which instead observed power-law growth)
[34,35]. The limited growth of maximum surface height given
in Fig. 8 during island coarsening has not been reported in these
previous works, which usually showed a faster growth of hmax

such as a power-law behavior [34]. Such discrepancy can be
attributed to different approximations used in these studies: A
long-wave approximation was used in Refs. [34,35], assuming
large lateral variation along the film surface as compared to
the vertical direction, while in Ref. [33] an expansion on
small surface height gradient was conducted without such
assumption of length scale difference. Also, only first-order
elastic energy was considered in Ref. [34], while in both
Refs. [33] and [35] up to second-order elastic terms have
been included. As described in Sec. III, our approach here is
different from these previous analyses, with no assumption and
constraint on either the length scale contrast between different
directions or the magnitude of surface slopes or gradients. This
allows us to better identify the important role played by the
high-order elastic energy terms, as will be detailed in Sec. VII.

Our simulation results also indicate a crossover from the
island coarsening regime to an asymptotic state of steady
quantum dot arrays, showing as saturated values of Smax, hmax,
and r(t) (see the 2.5% and 3% results in Figs. 7–9), and more
clearly, the saturation of mn given in Fig. 6. Such crossover
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can be identified through the slowing of the mn decay after the
transient of power-law-type coarsening, and occurs earlier for
larger misfit strain. To exclude any artifacts from finite size
effects, we have tested our simulations for different system
sizes ranging from 128 × 128 to 512 × 512, with qualitatively
similar results obtained. This phenomenon of slowing and
saturation of coarsening process and the resulting stabilization
of island arrays has been found in some experiments of
post-growth Ge/Si systems [17,19] and also in some modeling
and simulation results based on either direct solution of system
elasticity [26,32] or reduced film evolution equations [33,45];
however, no sign of coarsening termination in post-deposition
films has been shown in some other experimental [20] and
theoretical [29,34,35] work. Note that in most theoretical
studies showing the phenomenon of island stabilization, the
effect of surface-energy anisotropy has been incorporated,
which is different from the model used here (see the further
discussion given below). Also, the effect of different misfit
strains on island coarsening and stabilization, which is shown
important from our above results, has not been addressed
in most previous studies. Our results given above suggest
that much longer times are needed to observe the slowing
or cessation of island coarsening for smaller misfits, which
could be useful for addressing the discrepancy of experimental
observation: For example, the stabilization of quantum dot
growth can be found at relatively short growth-temperature
annealing times for Ge/Si(001) system with large misfit (∼4%)
[17,19], while it is more difficult to observe in SiGe/Si(001)
experiments with weak misfit strain (<1%) [20].

VII. DISCUSSION

To understand the mechanisms underlying the phenomenon
of island stabilization given above, it would be helpful to
examine the effects of all contributed terms in the evolution
equation (22). As already discussed in Sec. V, the wetting
potential plays a crucial role on the stabilization of surface
morphology via limiting the valley-to-peak mass transport
and thus the growth of island height. Similar mechanism is
expected during island coarsening, and the stabilization effect
of wetting potential should be also important for the island
size saturation. On the other hand, the dynamics of coarsening
involves the redistribution of mass between different islands,
a process that can not be constrained by the wetting effect
as long as the wetting layer is not depleted. Thus, additional
factor(s) must be in play to account for the island stabilization
process.

To further illustrate the stabilization process, we show in
Fig. 10 the time-varying profiles of the chemical potential μ =
γ κ + W + Ef at the film surface and also its corresponding
elastic contribution Ef (i.e., the surface elastic energy density).
For simplicity, only the cross-section results at x = Lx/2 are
presented, for an example of 2.5% misfit film. Smaller spatial
variations of chemical potential μ along the film surface are
obtained at later times [note the very small vertical scale in
Fig. 10(a)], indicating an approach to an asymptotic saturated
state. This is consistent with the results given in Figs. 6–9 for
various morphological properties, and also with the evolution
profiles of elastic energy density Ef given in Fig. 10(b).
Furthermore, in Fig. 11 we examine the detailed mechanisms
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FIG. 10. (Color online) Cross-section profiles of (a) surface
chemical potential μ and (b) elastic energy density Ef , for misfit
εm = 2.5% and different times t = 5000, 7000, 9000, and 10 000.
The boxed region will be further studied in Fig. 11.

of such saturation through identifying the time evolution
of various components of chemical potential, including the
surface-energy contribution γ κ and the first- and second-order
elastic energy densities E (1)f and E (2)f . We focus on a small
region of four islands [see Fig. 11(a)], representing three
scenarios of quantum dot evolution: (1) large islands that are
growing and stabilizing, (2) small islands that are shrinking
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FIG. 11. (Color online) Cross-section profiles of (a) surface
morphology and (b)–(d) various energy densities, for 2.5% misfit and
times t = 1000 (at early stage of instability and island formation),
2000 (island coarsening stage), and 10 000 (stabilization stage).
Different components of the film surface chemical potential are
shown, including the surface-energy contribution (dotted-dashed
orange curves), first-order elastic energy density E (1)f (dashed black),
second-order elastic density E (2)f (green stars), and the total elastic
contribution Ef = E (1)f + E (2)f (solid brown).

022408-11



CHAMPIKA G. GAMAGE AND ZHI-FENG HUANG PHYSICAL REVIEW E 87, 022408 (2013)

[see the middle island in Fig. 11(a)], and (3) islands that are
migrating (see the one at the right corner). As expected from
previous analysis [6], for an undulated surface (i.e., in the
region of surface islands), the strain energy is concentrated at
surface valleys but released at peaks; the resulting surface
elastic energy density gradient would drive the diffusion
process from the valleys to peaks and thus the growth of surface
islands. On the other hand, this morphological destabilization
process is competed by the stabilization effect of surface
energy, showing as energy penalty for high-curvature surface
areas and hence a spatial distribution opposite to that of elastic
density (see the dotted-dashed curves). This classical view
of quantum dot formation has been well reproduced in our
results of all three evolution stages: the early morphological
instability shown in Fig. 11(b) (at t = 1000), a coarsening
regime in Fig. 11(c) (at t = 2000), and an island stabilization
stage in Fig. 11(d) (at t = 10 000).

For islands to be stabilized, one would expect mechanisms
of film evolution involving additional energy penalty for large,
increasing island size, so that the overall stabilization factors
would compensate and suppress the destabilization effect (i.e.,
continuing growth and coarsening of surface islands) caused
by stress relaxation. In previous studies, such factors are
usually provided by additional surface-energy terms, partic-
ularly the surface-energy anisotropy, which has been shown to
enhance the surface-energy stabilization effect, constrain the
island height, and lead to island shape or facet selection and
transition [16,17]; this effect of surface anisotropy has been
deemed essential for the existence of steady island arrays in
some previous theoretical work (with various assumptions of
the wetting effect) [26,32,45]. However, in this work we only
consider isotropic surface energy. In addition to the wetting
effect (which is also related to the surface energy as a result of
the h dependence of γs), what we identify here is a factor that is
due to the contribution of higher-order perturbed elastic energy
on the interaction and evolution of surface islands, as detailed
in Fig. 11: Positive contribution from the second-order elastic
energy density E (2)f is found for large surface islands, showing
as an effective energy-penalty term and hence a reduction of
strain relaxation effect. [Note that this result is still compatible
with the well-known strain relaxation mechanism since the
total elastic density Ef still shows a destabilization effect due
to the dominance of first-order density E (1)f ; see Figs. 11(c)
and 11(d).] Such effect of E (2)f becomes important only at late
stage with large enough islands, and is negligible for small
ones, as seen from the comparison between Figs. 11(b)–11(d).

To understand this seemingly counterintuitive result, which
is beyond the conventional view based on linear instability
analysis, we examine the detailed expression of E (2)f which,
from Eqs. (21)–(23), is rewritten as

E (2)f (r) = ε∗2
[
f (h) +

∫
dr′

∫
dr′′h(r′)

×G(r − r′,r′ − r′′)h(r′′)
]
, (28)

where

f (h) = |∇h|2 + ν(E (1)f /ε∗2)2 + (1 − ν)
3∑

i=1

g2
i (h), (29)

with gi(h) (i = 1,2,3) the Fourier transform of q2
x ĥ/q, q2

y ĥ/q,

and
√

2qxqyĥ/q, respectively, and

G(r − r′,r′ − r′′)

=
∑
q,q′

eiq·(r−r′)+iq′ ·(r′−r′′) 2

qq ′
{
qx(qx − q ′

x)
(
q ′2

x + νq ′2
y

)

+ qy(qy − q ′
y)

(
q ′2

y + νq ′2
x

) + (1 − ν)q ′
xq

′
y

× [qx(qy − q ′
y) + qy(qx − q ′

x)]
}
. (30)

In Eq. (28), the first part f (h) is always positive, analogous to
the “self”-elastic-energy of a given surface profile that serves
as an energy penalty to suppress its coarsening; the second part
represents the correlation between surface heights and thus the
elastic interaction between surface islands. Within each island
region (particularly near the peak), the magnitudes of both
parts increase with the island size as verified in our numerical
calculations.

If these second-order elastic contributions are absent or not
strong enough, the elastic energy relaxation would increas-
ingly dominate over the surface-energy stabilization effect,
driving the continuing island growth even in the presence
of the wetting potential. This can be illustrated clearly from
our numerical results given in Fig. 12, where the same film
evolution equation (22) is simulated, but with only first-order
elastic energy E (1)f incorporated. All other parameters remain
unchanged, including the same wetting potential approxima-
tion Eq. (3). The maximum surface height is found to increase
monotonically with time [see Fig. 12(a)], without any slowing
or stabilization process observed, a result that is consistent
with previous work [34]. Time evolution of the corresponding
2D cross-section surface profiles is given in Fig. 12(b), from
which two main features of surface dynamics can be identified:
(1) Large mass transport from film layers to islands is observed,
leading to much thinner film layers between surface islands as
compared to the result shown in Fig. 11(a), which incorporates
the second-order elastic energy effects. Although the wetting
potential still has the effect of preserving the wetting layer
in-between surface islands and then limiting the diffusion
process from the depleted wetting layer to the peaks, here such
effect becomes relatively weaker as time evolves due to the
increasing dominance of the destabilization effect of first-order
elastic energy and the absence of the “self”-energy penalty
term f (h) for large islands. (2) Mass transport between islands
continues to occur, which corresponds to island migration or
coarsening process and is actually a secondary effect compared
to (1); this process can not be prevented by the wetting
effect, and can be controlled only by the higher-order elastic
energy terms describing island interaction and correlation [see
Eq. (28)]. Thus, at late times the island heights increase rapidly,
resulting in the formation of surface islands with large aspect
ratio between height and width as shown in Fig. 12. The
perturbation method used here is no longer valid for such
high islands, and the simulations will ultimately blow up. This
is qualitatively different from the results given above with the
incorporation of second-order elastic energy, where islands
with well constrained aspect ratio are obtained, which also
shows the applicability of the perturbation method developed
here.
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FIG. 12. (Color online) Results of strained film evolution with only first-order elastic energy E (1)f incorporated. All other parameters are
the same as those in Figs. 10 and 11. (a) Maximum surface height as a function of time t , with results from calculations up to second-order
elastic energy (with Ef = E (1)f + E (2)f ) also shown for comparison; a sample 3D image of island morphology at t = 1600 is presented in the
inset. (b) 2D cross-section profiles of film surface morphology at different times.

All these results indicate that the nonlinearities given by
the higher-order strain energy of individual islands and the
elastic interaction between islands can affect the pathway of
film strain relaxation at late evolution times, slow down the
decrease of total elastic energy via their increasing positive
energy contribution for large islands, and thus effectively
reduce the effect of stress relaxation as the surface instability
driving force. Such reduction leads to a relatively stronger
role played by the surface energy and the wetting potential
at later times [see the comparison between Figs. 11(c) and
11(d), and between Figs. 11(a) and 12(b)], limiting the
mass transport between film layers and islands and hence
suppressing the island growth and coarsening. Note that
these results and mechanisms identified here are based on
our calculations up to second-order perturbation of surface
morphology. Incorporating third- or higher-order perturbation
terms, which are not studied here, may add either positive or
negative contributions to the elastic energy density. However,
such additional contributions would be much smaller due to
their high-order nature, and thus even if their net contribution
to the elastic energy becomes negative, it could only reduce,
but not completely offset, the effect of positive E (2)f ; this
would lead to longer time stage of island coarsening and the
postponing of the asymptotic saturated state, but the major
results of island stabilization given above will still persist.

VIII. CONCLUSIONS

We have investigated the nonlinear dynamic processes gov-
erning the formation, coarsening, and stabilization of strained
quantum dot islands on the surface of heteroepitaxial films,
through the application of a nonlinear evolution equation for
film morphology. Our study is based on a continuum elasticity
model that incorporates the film-substrate wetting effect and,
importantly, on the construction of a perturbation method in
Fourier space for determining the system elastic properties.
Different from previous analyses based on long-wave or

small-slope approximations, our approach does not impose
assumptions about the variation length scales or surface slopes
of the film, and allows us to well examine the important
effect of high-order elastic energy, particularly on the island
stabilization process. In addition to a linear stability analysis
which yields the conditions of film morphological instability,
we have performed large scale numerical calculations of the
dynamic equation derived to study the detailed behavior of
post-growth film evolution. We focus on effects of small
misfit strains which correspond to relatively large length
scale of surface nanostructures, and analyze the evolution of
strained surface islands using a variety of characteristics of film
morphology, including the structure factor of surface height,
its first three moments, the maximum height of surface profile,
and the surface roughness.

Consistent with previous experimental and theoretical
work, our results have shown three characteristic stages of
island evolution for post-deposition films, including (1) the
early stage of morphological instability and island formation,
as characterized by the exponential growth of maximum
structure factor Smax and the surface roughness as well as the
increase of maximum surface height and moments mn; (2) a
nonlinear island coarsening stage, with a transient power-law
behavior of mn decay that appears at the beginning of this
stage; and (3) a crossover to an asymptotic state of stabilized
island arrays (although without long-range spatial order), after
the slowing and suppression of coarsening process. Also, the
dependence of these detailed properties on the film-substrate
misfit strain has been obtained, such as the values of coarsening
exponents and the time ranges for the crossover between
different evolution stages. These have been shown important
for the understanding of different, or seemingly inconsistent,
experimental results, particularly for the late-time stage of
island coarsening or stabilization. On the other hand, such
dependence does not qualitatively affect our results of the
three evolution regimes; the same conclusion can be drawn
for the effect of different finite system sizes used in our
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simulations. To understand the mechanisms underlying the
nonlinear evolution of strained films, we have examined the
effects of film-substrate wetting potential, in particular its
role on the suppression of the valley-to-peak mass diffusion
process that would lead to wetting layer depletion, and its
constraining effect on island growth. Furthermore, through a
detailed study of the time evolution of elastic energy density
distribution at the film surface, we find that higher-order
terms of film elastic energy, which incorporate the interaction
between strained surface islands and the higher-order “self”-
elastic-energy of individual islands, can effectively alter the
relaxation pathway of film strain energy at late stage. They play
an important role on the saturation of coarsening process and

stabilization of quantum dot arrays, in particular the crossover
to a saturated state with balanced multi-island interactions
and limited island-layer and between-island mass transport.
Thus, our results indicate that both effects of film-substrate
wetting interaction and high-order elastic energy are pivotal
for the achieving of steady quantum dot arrays and also for the
understanding of the self-assembly process of strained film
heteroepitaxy.
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APPENDIX

Based on the perturbation analysis of system elasticity described in Sec. III, we have obtained the first- and second-order
results of elastic stress tensors at the film surface. To first order of ε we have
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