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Interfacial roughening in nonideal fluids: Dynamic scaling in the weak- and strong-damping regime
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Interfacial roughening denotes the nonequilibrium process by which an initially flat interface reaches its
equilibrium state, characterized by the presence of thermally excited capillary waves. Roughening of fluid
interfaces has been first analyzed by Flekkoy and Rothman [Phys. Rev. Lett. 75, 260 (1995)], where the dynamic
scaling exponents in the weakly damped case in two dimensions were found to agree with the Kardar-Parisi-Zhang
universality class. We extend this work by taking into account also the strong-damping regime and perform
extensive fluctuating hydrodynamics simulations in two dimensions using the Lattice Boltzmann method. We
show that the dynamic scaling behavior is different in the weakly and strongly damped case.
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I. INTRODUCTION

Capillary fluctuations on an interface between two fluid
phases are waves that are excited by thermal noise in the bulk
[1–7]. From a macroscopic viewpoint, capillary fluctuations
make the interface “rough” and increase the effective interface
width. Roughening of interfaces is a fundamental aspect of
nonequilibrium dynamics and has been widely studied in the
literature (see, e.g., Refs. [8–12] for reviews). Most models
for interface growth, such as the Edwards-Wilkinson [13] or
Kardar-Parisi-Zhang [14] equations, describe a purely local
growth mechanism. In the case of an interface between two
fluids, however, one can expect significant dynamical effects
arising from the coupling of the order parameter to the hydro-
dynamic flow field. Indeed, as has been shown in Refs. [15,16],
the effective Langevin description of a roughening fluid inter-
face is in general non-Markovian due to the surrounding flow.
The roughening of fluid interfaces due to thermal fluctuations
is potentially relevant for the stability of patterns that form,
for instance, in reaction-diffusion systems [17,18] or during
phase-transitions under shear [19–22]. Also, coalescence of
droplets or films [23] or the dynamics of wetting transitions
[24] are potentially affected by interfacial roughening.

Thermal roughening of fluid interfaces was first studied in
Refs. [15,16] based on the equations of fluctuating hydro-
dynamics and by simulations of an immiscible lattice gas
(see also Ref. [25] for the same problem in the presence
of surfactants). There, it was concluded that the roughening
dynamics of a weakly damped interface is characterized
by the scaling exponents of the Kardar-Parisi-Zhang [14]
universality class. In the present work, interfacial roughening
of small-amplitude capillary waves is investigated in the
strong-damping regime, and the associated dynamic scaling
exponents and scaling forms are derived. We show that the
growth of the interfacial roughness in the strong-damping
regime is qualitatively and quantitatively different from the
weakly damped case. The theoretical predictions are compared
against fluctuating hydrodynamics simulations of an isother-
mal liquid-vapor interface.
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The paper is organized as follows: In the next section, the
Langevin approach to capillary fluctuations of Refs. [15,16]
is summarized and applied to the roughening dynamics in
the strong-damping regime. Section III contains results of
fluctuating hydrodynamics simulations of a single-component
two-phase fluid performed with the Lattice Boltzmann method.
After demonstrating that both static and dynamic equilibrium
properties of capillary waves are correctly reproduced by the
simulations, the nonequilibrium roughening of a fluid interface
is investigated and compared to the theoretical predictions.

II. THEORY

A. General description of capillary waves

Capillary waves can be described in terms of a local height
function h(r||), where r|| denotes a position in the interfacial
plane (Fig. 1). The projected area of the interface is given by
Ld−1. In the two-dimensional situation we focus upon, r|| = x,
while the perpendicular coordinate is denoted by y. In the
classical capillary wave theory [1–4], a capillary fluctuation
is understood as a rigid shift of the “intrinsic” density profile.
Thus, we can define the height function h as

ρ(r) = ρint[y − h(r||)], (1)

where ρint is the intrinsic and ρ(r) the instantaneous density
profile. Since, in the present case, our treatment of a two-phase
fluid is based on a Ginzburg-Landau model (see Sec. III A),
we can take as the intrinsic profile the mean-field solution

ρint(y) = 1

2
(ρL + ρV ) + 1

2
(ρL − ρV ) tanh

(
y

w

)
, (2)

where ρL and ρV are the liquid and vapor densities, respec-
tively, and w is the (bare) interface width.

In our simulations, we obtain the interfacial height h by
fitting ρint to the instantaneous density profile (see Fig. 1). If
the interfacial height would, instead, be determined by means
of a simple crossing criterion [i.e., ρ(h) = (ρL + ρV )/2], one
would pick up local density fluctuations that are present in
the interface due to its finite width. These should, however,
not be interpreted as capillary waves since they are not
associated with a lateral displacement of the interface profile,
as expressed through Eq. (1). Local density fluctuations affect
the small-scale properties of the interfacial structure and can be
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FIG. 1. (Color online) Capillary fluctuations of a planar interface.
Sketch of the fluctuating density profile as a function of the lateral
coordinate y. The dotted curve represents the quiescent, mean-field
profile, while the dashed curve represents the fit of the mean-field
profile to the instantaneous density profile (solid curve). The inset
shows the simulation setup and coordinate axis.

understood in terms of interfacial density correlation functions
[26–31]. In this work, however, we shall not consider them
further1 and stick to the definition of Eq. (1).

B. Langevin theory

For the description of nonequilibrium roughening, a
Langevin approach to the capillary fluctuation dynamics
is convenient. Such a formalism can be derived from the
equations of fluctuating hydrodynamics [7,15,16], and we shall
base our treatment on the Langevin theory of Refs. [15,16],
which is summarized below. The general form of the Langevin
equation for the height fluctuations hk of an infinitely deep film
turns out to be non-Markovian [15,16],

hk(t) =
∫ t

−∞
dsχk(t − s)Fk(s), (3)

where χk is a response function that, in Fourier space, is given
by Refs. [15,16]

χk(ω) = 1

−iωγk(ω) + σk2
, with

(4)

γk(ω) = 2ωρ

k
[
i + (

iω
νk2 − 1

)−1/2] ,

and Fk is a random force that satisfies a fluctuation-dissipation
relation

〈Fk(t)F ∗
k (0)〉 = kBT γk(|t |). (5)

Physically, the random force Fk arises from the accu-
mulative effect of the random stress fluctuations in the
bulk fluid up to a certain depth below the interface (cf.
Ref. [7]). In the above equations, σ denotes the surface
tension and ν the kinematic viscosity of the liquid. In this

1See, for instance, Fig. 5 in Ref. [46] for an example of a capillary
wave spectrum that results when the height profile is obtained from a
crossing criterion.

work, we adopt the Fourier-transform convention a(r,t) =
(2π )−d

∫
dkdω exp(ik · r − iωt)ak(ω), where k denotes the

wave vector in the d − 1-dimensional interfacial plane (d is
the spatial dimension) and ω is a frequency.

In the limit of weak damping (νk2 → 0) one obtains, by
expanding the square root in γk of Eq. (4),

γk,wd(ω) = −2ρiω

k
− 2ρi

√
iων + 2ρνk + O(ν3/2). (6)

Keeping in the expansion of γk,wd only the first and the
third terms, the response function in the weak-damping limit
acquires a harmonic oscillator form and is obtained from
Eq. (4) as

χk,wd(ω) = k

2ρ

1

−ω2 − iωνk2 + σk3

2ρ

. (7)

In the time domain, this results in the Langevin equation

−∂2
t hk + νk2∂thk + σk3

2ρ
hk = rk, (8)

with rk being a Gaussian random noise source with variance
〈rk(t)r∗

k (0)〉 = kBT [kδ′(t) + νk3δ(t)]/ρ. The contribution ∝
δ′(t) to the random force in the time domain arises from the first
term in Eq. (6) and is, therefore, present even in the absence of
viscosity. This is one of the most characteristic features of the
present Langevin theory, which, despite the principal harmonic
oscillator form of the response function, leads to quite distinct
noise-driven dynamics. Equation (8) predicts capillary waves
with an oscillation frequency and a damping rate given by

ωc =
(

σk3

2ρ

)1/2

, �wd = νk2. (9)

The slight reduction of the resonance frequency ωc due to a
finite damping has been neglected here. Note that, if the second
term in Eq. (6) also is kept, the damping rate would scale ∝ k7/4

[16]. Interestingly, this type of scaling has also been derived in
a few previous works based on a different theoretical approach
[6,32]. In our simulations, however, we observe a behavior
in agreement with Eq. (9), which can be rationalized in the
context of the present Langevin theory only if the second term
in Eq. (6) is neglected, as we have done above. We also remark
that the relations in Eq. (9) agree well with experiments [33]
and other theoretical works [34,35]. While this fact provides
some sort of justification of Eq. (7), further studies would be
desirable in order to clarify the relevance of the additional
terms in expression (6). This, however, is out of the scope of
the present work.

In the strong damping limit, one finds for νk2 → ∞

γk,sd(ω) = 4ρνk − 3ρiω

k
+ ρω2

4k3ν
+ O(ν−2). (10)

Keeping only the leading term on the r.h.s. of Eq. (10), the
response function follows as

χk,sd(ω) = 1

−4iωρνk + σk2
, (11)

which results in the Langevin equation

∂thk + σk

4ρν
hk = r̃k. (12)
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Here r̃k is a Gaussian random noise source with variance
〈r̃k(t)r̃∗

k (0)〉 = kBT δ(t)/4ρνk. Equation (12) implies a decay
rate of

�sd = σk

4ρν
. (13)

A Langevin equation for the height fluctuations of the form of
Eq. (12) has also been derived for d > 2 in Refs. [22,36].

Weak and strong damping regimes are separated by a
critical wave number kc. An approximate value of kc can
be obtained by noting that for small but finite damping, the
capillary wave resonance in Eq. (7) appears at a frequency of
(ω2

c − �2
wd/4)1/2, which becomes purely imaginary if k > kc,

where

kc = 2σ

ρν2
. (14)

Thus, the weak-damping regime applies to k < kc and the
strong-damping regime to k > kc. Clearly, the Langevin
equation (12), although with slightly different numerical
prefactors, could also have been directly obtained by taking
the strong-damping limit of Eq. (8).

The dynamic correlation function C(k,t) ≡ 〈hk(t)h−k(0)〉
follows directly from Eq. (3). The static correlation function
can be most easily obtained from a fluctuation-response
relation as

C(k) ≡ 〈|hk|2〉 = kBT χ (k,ω = 0) = kBT

σk2
. (15)

This classical result of capillary wave theory can also be
derived from purely geometric considerations of the energy
cost associated with a small-amplitude interfacial distortion
[4,5]. In fact, the above result is equivalent to a harmonic
approximation to the interface Hamiltonian, thus describing
independent capillary waves. This is a valid approximation
in the limit of small amplitudes and large wavelengths. In the
presence of gravity, a finite correlation length is introduced into
the static structure factor, thereby cutting off the divergence at
low k [3–5]. It is useful to remark that the effective capillary
wave Hamiltonian can also be obtained from a spectral analysis
of a Ginzburg-Landau type of free energy functional [26,28].
Such an approach has the advantage that, in principle, the
density-correlation function in the interface can be derived
from first principles.

Up to numerical prefactors of the order of unity, the above
expressions for the oscillation frequency and damping agree
with the results of most theories of capillary wave dynamics
in the literature [7,34,35,37–39]. In these theories, the liquid-
vapor interface is usually taken as infinitesimally thin. The
expression for ωc in Eq. (9) has also been explicitly derived
for an inviscid fluid coupled to a Ginzburg-Landau free energy
functional [40]. Also, generalizations of capillary wave theory
to nonzero vapor density [32,41] as well as to compressible
fluids [6,39,42] have been proposed in the literature. In the case
of a compressible fluid, one finds that sound waves propagating
parallel to the interface give rise to an additional resonance
peak in the dynamic capillary structure factor at a frequency
ωs � csk. In the present study, this frequency is typically much
larger than the resonance frequency of a capillary wave and
will thus be neglected.

C. Interfacial roughening

The effective interfacial roughness is defined as the mean
square of the height amplitudes:

W 2(t) = 〈|h(r,t)|2〉 = 1

Ld−1

∑
k

〈|hk(t)|2〉

=
∫

dk
(2π )d−1

〈|hk(t)|2〉, (16)

which in equilibrium in given by Refs. [1–4,16],

W 2
eq ≡ W 2(t → ∞) � kBT

σ
×

{
1

12L, in 2D

log(L/l0), in 3D
, (17)

where l0 is the minimal length scale available in the system. In
the 2D case, the sum has been computed using the relation∑∞

n=1 1/n2 = π2/6, whereas in the 3D case, it has been
approximated by an integral. It is important to realize that,
both in two and three dimensions, the interfacial roughness is
diverging with the system size, although this divergence is very
weak in three dimensions. The time evolution of the interface
height under the action of the random force can be computed
directly from the Langevin equation (3), explicitly assuming
that Fk(s) = 0 for s < 0, since we are interested in the growth
from a quiescent state at t = 0. Note also that, due to causality,
χk(t) = 0 for t < 0.

Roughening in the weak-damping limit has already been
discussed in Refs. [15,16], of which the essential results
shall be summarized first. Neglecting the effect of viscosity,
which is sufficient to determine the leading order behavior, the
response function in the time domain follows from Eq. (7) as
Refs. [15,16]

χk,wd(t) = k

2ρωc

sin(ωct)θ (t), (18)

from which the equal-time height correlation function can be
obtained as

〈|hk,wd(t)|2〉
=

∫ t

0
ds

∫ t

0
ds ′χk,wd(t − s)χk,wd(t − s ′)〈Fk(s)F ∗

k (s ′)〉

= 2kBT

σk2
sin2(ωct). (19)

Due to the neglect of viscosity, the correlation function
describes infinitely oscillating capillary waves. It is useful
to note that, at early times (t � 1/wc), 〈|hk(t)|2〉 grows ∝ t2

[Fig. 2(a)]. The time-dependent interfacial roughness, Eq. (16),
follows in the 2D case from Eq. (19) as Ref. [16]

W 2
wd(t) = kBT

πσ

∫ kmax

kmin

dk
sin2(ωct)

k2

= t2/3 2kBT

3π (2ρσ 2)1/3

∫ ωc,maxt

ωc,mint

dx
sin2 x

x5/3
, (20)

where kmin and kmax are the smallest and largest possible wave
numbers in the system and ωc,min,max are the corresponding
capillary wave frequencies. In the last step, the substitution
x = ωct has been made to exhibit the leading time dependence.
In the range where ω−1

c,max � t � ω−1
c,min, the value of the

integral is roughly constant and, consequently, Wwd(t) grows
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FIG. 2. (Color online) Theoretical predictions of the growth of (a) the height amplitude 〈|hk(t)|2〉 [Eqs. (19) and (24)] and (b) the interfacial
roughness W (t) [Eqs. (20) and (25)] in the 2D case. The solid and dashed curves correspond to the weak-damping (“w.d.”) and strong-damping
(“s.d.”) regime, respectively. (a) The thin curves additionally show the growth of a large wave number mode (k′ > k), whose time and length is
scaled with the same factors as the small wave number mode (thick curves) for better comparison. Time is scaled by the resonance frequency ωc

[Eq. (9)] or relaxation rate �sd [Eq. (13)], depending on the regime. (b) Time is scaled by the corresponding roughening times, Eqs. (21) and (27).

like t1/3. At early times, Wwd(t) grows linearly in time
[Fig. 2(b)], reflecting the quadratic growth of the height-
correlation function [Eq. (19)]. Note that the extent of the
early-time regime decreases relative to the late-time regime
when the size L of the interface is increased. In the 3D case,
we have logarithmic growth, W 2

wd(t) ∝ log t [16]. The time
after which the roughness reaches its equilibrium value can be
estimated as a quarter of a period of the capillary wave with
the largest wavelength,

tr,wd �
√

L3ρ/(16πσ ). (21)

In the strong-damping limit, the Fourier transform of Eq. (11)
yields

χk,sd(t) = 1

4ηk
exp

(
−σk

4η
t

)
θ (t). (22)

From the expression for the correlations of the random force
in this limit,

〈Fk(t)F ∗
k (0)〉 = 4ρνkkBT δ(|t |), (23)

the equal-time height-correlation function results as

〈|hk,sd(t)|2〉 = kBT

σk2

[
1 − exp

(
−σk

2η
t

)]
. (24)

Note that 〈|hk,sd(t)|2 approaches the expression for the static
spectrum, Eq. (15), in the long-time limit. According to
Eq. (24), the height variance grows ∝ t at small times until,
after roughly a time scale of the order of the capillary time
(∼η/σk), it reaches equilibrium [Fig. 2(a)]. In the 2D case,
the roughness follows from Eq. (24) as

W 2
sd(t) = t

kBT

4πη

∫ akmaxt

akmint

dx
1 − exp(−x)

x2

= t
kBT

4πη
[�(−1,x) − x−1]|x=akmaxt

x=akmint
, (25)

where a ≡ σ/2η and �(n,x) is the incomplete γ function.
As long as (akmax)−1 � t � (akmin)−1, the leading time
dependence is unaffected by the expression in the square
brackets, and the roughness thus grows as Wsd(t) ∝ t1/2 until
equilibrium is reached. At early times, Wsd(t) is expected
to grow linearly, which is related to higher-order frequency

terms that are neglected in Eq. (11) (see Appendix for further
discussion). In the 3D case, we find

W 2
sd(t) = kBT

4πσ
[−Ei(−x) + log x]|x=akmaxt

x=akmint
, (26)

where Ei denotes the exponential integral function. In the range
(akmax)−1 � t � (akmin)−1, W 2

sd(t) ∝ log t , which is preceded
by a linear growth at earlier times. The roughening time in the
strong-damping regime can be approximated as the inverse of
the overdamped relaxation rate of Eq. (13) evaluated for the
largest wave number,

tr,sd � ηL/πσ. (27)

Note that, at late times, the normalization of the above W 2
sd(t)

is slightly different from the exact equilibrium result based on
the sum over the discrete wave modes, Eq. (17).

The origin of the different scaling behavior for the rough-
ness in Eqs. (20) and (25) lies in the different growth speeds
of the individual height amplitudes 〈|hk(t)|2〉 in dependence
of the wave number [Fig. 2(a)]. In the strong-damping case,
the growth rate scales ∝ 1/k at early times; i.e., the mode with
the smallest wave number grows fastest, and the roughness
essentially reflects the growth of this mode. In contrast, in
the weak-damping case, modes of larger k grow faster, and the
early linear growth of W is essentially due to the largest k-mode
available in the system. However, since large-k modes also
reach equilibrium earlier [from Eq. (19), their roughening time
is ∝ k−3/2], there appears a t1/3 regime in the weak-damping
case where the growth of W is due to a “saturation” effect
of subsequently smaller k modes, until, finally, also the mode
with the smallest k has reached equilibrium.

Neglecting the very early growth, it is seen that, in the 2D
case, the roughness W (t) obeys a scaling relation

W (t) = Lαw(t/Lz), with
(28)

α = 1/2,

{
z = 3/2 (weak damping)

z = 1 (strong damping)
.

The scaling index α is an equilibrium property of the roughness
[Eq. (17)] and is independent of the damping regime. The
scaling function w(x) reaches a constant for x → ∞ and
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behaves as

w(x) ∼ xα/z (29)

for small x. As noted in Refs. [16,25], in the weak-damping
limit, the scaling properties of W fall into the Kardar-Parisi-
Zhang universality class of surface growth [14].2 However, as
shown here, the Langevin theory predicts a different dynamical
scaling index z for strong damping.3 In three dimensions, the
roughening proceeds logarithmically both in the weak and
strong damping regime and cannot be characterized by scaling
exponents.

III. SIMULATIONS

A. Model and setup

Our simulations are based on the fluctuating Lattice
Boltzmann (LB) method [43–45], which was extended to
nonideal fluids in Ref. [46] (see also Refs. [47,48] for further
discussions). The underlying deterministic LB model, on
which our fluctuating LB approach is based, was introduced
in Refs. [49,50]. For general information on the LB method
we refer to the numerous reviews available [51–53]. For the
present purposes, it suffices to note that this method solves
the equations of fluctuating hydrodynamics of an isothermal
nonideal fluid [40,54–58]. The fluctuating hydrodynamic
equations describe the evolution of a fluctuating density and
velocity field ρ(r), u(r) and consist of a continuity equation,

∂tρ = −∇ · (ρu) (30)

and a momentum conservation equation,

∂t (ρu) + ∇ · (ρuu) = −∇ · P + ∇ · � + ∇ · R. (31)

Here � is the viscous stress tensor

�αβ = η

(
∂αuβ + ∂βuα − 2

d
δαβ∂γ uγ

)
+ ζ∂γ uγ δαβ, (32)

R the random stress tensor with Gaussian correlations charac-
terized by

〈Rαβ(r,t)Rγδ(r′,t ′)〉

= 2kBT

[
η

(
δαγ δβδ + δαδδβγ − 2

d
δαβδγ δ

)
+ ζ δαβδγ δ

]
× δ(r − r′)δ(t − t ′), (33)

and η and ζ the shear and bulk viscosity. As a peculiarity of the
LB method, η and ζ are in general proportional to the density,
but can otherwise be freely tuned. For generality, we have kept
the spatial dimensionality d here. The physics of a nonideal
fluid enters the model via the pressure tensor [3,40,58]

Pαβ =
(

p0 − κρ∇2ρ − κ

2
|∇ρ|2

)
δαβ + κ(∂αρ)(∂βρ), (34)

2As noted previously [16], this might be by coincidence, though,
since the growth mechanism described by the Kardar-Parisi-Zhang
equation is different from the roughening of a fluid interface.

3Interestingly, in the strong-damping case, the dynamic exponents
given in Eq. (28) can also be derived from the renormalization group
study of Ref. [22], although the results obtained there are formally
valid only for d > 2.

where p0 is a given equation of state (bulk pressure) and κ

a square-gradient parameter. In fact, the above form of the
pressure tensor P can be derived from a Ginzburg-Landau
free energy functional

F[ρ] =
∫

dr
[
κ

2
|∇ρ|2 + f0(ρ)

]
, (35)

since

∇ · P = ρ∇ δF
δρ

. (36)

Here f0 is a Landau free energy density, fulfilling

p0 = ρ∂ρf0 − f0. (37)

We take f0 to be of a simple double-well form with minima
at the equilibrium densities ρV , ρL [4,59,60],

f0(ρ) = β(ρ − ρV )2(ρ − ρL)2. (38)

Note that for a symmetric Ginzburg-Landau free energy
functional [as in Eq. (35)] the bending rigidity, and with it
the Tolman correction, which describes the dependence of
the surface tension on curvature [61], vanishes [62]. In the
absence of flow and thermal noise, the equilibrium solution of
Eqs. (30), (31), and (38) fulfils ∇ · P = 0 and describes, in the
simplest case, a liquid and a vapor phase separated by a diffuse
interface. The profile is given by Eq. (2), with a width of

w = 2

ρL − ρV

√
2κ

β
. (39)

Thermal noise, which is imparted by the random stress tensor R
throughout the fluid, leads to the excitation of capillary waves
on the interface [7,15,16,40]. Only a small number of previous
simulation studies of fluctuating interfaces in continuum hy-
drodynamic models exist, of which the ones most relevant for
the present context are based on lattice gas automata [15,16,25]
(see also Ref. [63]). Recently, also a fluctuating LB scheme for
the Kardar-Parisi-Zhang equation has been introduced [64].

All our simulations are performed in two dimensions. We
place a liquid stripe of size LX × H in a rectangular box of size
LX × LY , where LY is typically ∼2H � 128 lattice units (l.u.)
and LX varies between 128 and 512 l.u. The box is periodic
in x-direction and covered by substrates at the boundaries in
y-direction (see Fig. 1). The ratio of the equilibrium roughness
to the film thickness is less than O(10−2). We expect our
results to approximate the limit of infinitely deep films and
have checked in a few cases, by increasing H and LY , that
our results are insensitive to the film height. Static properties
of capillary fluctuations turn out to be quite insensitive to
the specific simulation parameters in the present model. In
contrast, regarding dynamics, satisfactory agreement between
theory and simulation results was found to require quite
large liquid-vapor density ratios (around ρL/ρV = 100) and
intrinsic interface widths not larger than 5 l.u.

B. Equilibrium properties

Before we turn to interfacial roughening, a number of basic
equilibrium properties of capillary waves are discussed. This
not only serves as a validation of the simulation method, but is
also important since, owing to the fluctuation-dissipation re-
lation, equilibrium dynamics and nonequilibrium roughening
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FIG. 3. Equal-time spectrum of interfacial height fluctuations on
a planar one-dimensional interface obtained from LB simulations
(filled circles), compared to the theoretical capillary structure factor
[solid line, Eq. (15)]. k denotes the wave number in the plane of
the interface. Simulation parameters: L = 1024, ρL = 1.0, ρV = 0.5,
β = 0.11, κ = 0.08, kBT = 10−7, τ = 1.0, surface tension σ �
2.7 × 10−3, interface width approximately 5 l.u.

are governed by the same kinetic coefficients. In Fig. 3, the
static (equal-time) capillary wave correlation function 〈hkh−k〉
obtained from our simulations is shown (see also Ref. [47]).
The real-space height profile h(r) is extracted by fitting the
mean-field profile, Eq. (2), at each point r to the instantaneous
density profile obtained from the simulation. The spectrum is
computed, after neglecting the initial roughening period, by
averaging over 2000 snapshots in a simulation running for 106

time steps, which is around one order of magnitude larger than
the largest possible relaxation time of a capillary fluctuation in
the system, as inferred from Eq. (21) or (27) (both of which give
similar estimates). Perfect agreement between the simulation
results and the theoretical capillary structure factor, Eq. (15), is
found for practically all wave numbers. Note that, on a lattice,
k2 in Eq. (15) has to be replaced by (the negative of ) the Fourier
transform of the proper one-dimensional discrete Laplacian,
2 − 2 cos k. The discrete nature of the Laplacian is the reason

for the upturn of the structure factor at large wave numbers
in Fig. 3. The difference between the continuum and lattice
Laplacian is significant only for large wave numbers (k � 1).

Figure 4(a) shows simulation results on the capillary
wave correlation function C(k,t) ≡ 〈hk(t)h−k〉 in the weak-
damping regime (see caption to Fig. 4 for simulation parame-
ters), where an oscillatory decay,

C(k,t) = 〈|hk|2〉 exp(−�wd|t |) cos(ωct), (40)

with a frequency and damping rate given by Eq. (9), is
predicted by the theory. Since the damping rate increases
quadratically with k, waves with larger wave numbers are
seen to oscillate for not more than a single period until they
become practically indistinguishable from the background
noise. Figure 4(b) shows the oscillation frequency and damp-
ing rate extracted by fitting expression (40) to the simulation
data. The dashed lines represent

√
2ωc and 2�wd, where the

prefactors have been included here in order to conform with the
expressions of standard capillary wave theories. It is seen that,
after the correction for numerical prefactors, both quantities
compare well to the theoretical predictions up to a wave
number of k � 0.7. Deviations at higher wave numbers are
partly attributed to the fact that the damping is so strong that it is
hard to unambiguously extract both the frequency and damping
rate from the data. Additionally, the hydrodynamic regime,
where the transport coefficients are constants, generally breaks
down in LB at large wave numbers [65,66].

In the case of overdamped dynamics, capillary waves decay
purely exponentially:

C(k,t) = 〈|hk|2〉 exp(−�sd|t |), (41)

which is clearly seen in the logarithmic plot in Fig. 5(a). Fig-
ure 5(b) shows the relaxation rate, obtained by fitting Eq. (41)
to the data. After correcting for a numerical prefactor of 2, the
theoretical prediction is well reproduced up to a wave number
of k � 0.5. Similarly to the previous case, a possible reason for
the noticeable deviations at larger wave numbers might be that
the viscosity becomes wave number dependent for larger k. It
should also be noted that the above results are obtained in the
limit of small vapor density (ρV = 0.01ρL). For larger vapor

0.10 1.000.500.20

10 4

0.001

0.01

k

wd

ωc

(a) (b)

0 10 20 30 40

0.5

0.0

0.5

1.0

t Σ k3 Ρ 1 2

C
k,
t
C
k,
0

FIG. 4. (Color online) Capillary waves on a planar interface in the weak-damping regime. (a) The correlation function C(k,t) obtained
from simulations (normalized to its equilibrium value) is shown for different wave numbers k = 2πn/L, where n = 1 (•), 3 (�), 5 (�), 7 (�),
9 (�). The time axis is scaled by the theoretical resonance frequency wc, Eq. (9). (b) The data for the capillary wave resonance frequency
ωc(k) (�) and damping rate �(k) (•) are shown. The dashed lines represent the theoretical predictions of Eq. (9),

√
2ωc and 2�wd, corrected

by numerical prefactors. Simulation parameters: L = 128, ρL = 1.0, ρV = 0.01, β = 0.0024, κ = 0.006, ν = 0.00667, kBT = 10−8, surface
tension σ = 8.7 × 10−4, interface width �5 l.u.
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FIG. 5. (Color online) Capillary waves on a planar interface in the strong-damping regime. (a) The correlation function C(k,t) obtained
from simulations (normalized to its equilibrium value) is shown for different wave numbers k = 2πn/L, where n = 1 (•), 3 (�), 5 (�), 7 (�), 9
(�). The time axis is scaled by the theoretical relaxation rate, Eq. (13). (b) The data for the damping rate in the overdamped regime are shown.
The dashed line represents the theoretical prediction of Eq. (13), 2�sd, corrected by a numerical prefactor. Simulation parameters: L = 128,
ρL = 1.0, ρV = 0.01, β = 0.00024, κ = 0.0006, ν = 0.167, kBT = 10−9, surface tension σ = 8.7 × 10−5, interface width �5 l.u.

densities, the agreement between simulation and theoretical
predictions is found to become worse, even when comparing
to theoretical expressions that take into account a finite vapor
density [32,41]. We also observe that the discrepancies grow
when the interfacial width is further increased. The origin of
this behavior is presently unknown. Thus, in the future, a closer
theoretical investigation of capillary wave dynamics in diffuse
interface models would be interesting, taking also into account
effects of a finite vapor density, which seems to have not been
done in a sufficiently general way up to now [40,67].

Of course, since the above results pertain to the
linear-response regime (where the fluctuation amplitudes
are small by definition), they could have equivalently been
obtained from a study of individual capillary waves in
a simulation without thermal noise (Onsager regression
hypothesis). Previous LB studies of capillary wave dynamics
made use of this equivalence and obtained capillary wave
dispersion relations similar to the present work [49,68,69].
In contrast to the equilibrium relaxation dynamics, however,
the interfacial roughening phenomenon studied in the next
section is a genuinely fluctuation induced effect.

C. Interfacial roughening

Figures 6 and 7 show simulation results for the time
evolution of the interfacial roughness in the weak- and

strong-damping regimes. It has been made sure, by choosing
simulation parameters appropriately (see Table I), that all wave
modes existing on the interface exclusively fall in either one
of the considered regimes. In all cases, the interfacial width is
5 l.u. and the density ratio of ρL/ρV = 100 is used in order to
approximate the case of zero vapor density (upon which the
theoretical derivation is based) as closely as possible. To ensure
sufficient statistical accuracy, the roughness is computed
by averaging over 10–30 independent simulations. Since it
was seen in Fig. 3 that the static capillary correlations are
correctly reproduced, it is clear that the equilibrium interfacial
roughness [Eq. (17)], which is essentially determined by the
integrated structure factor, also agrees with the theoretical pre-
dictions. Therefore, Weq is not discussed separately here, but
instead, we turn directly to the time evolution of the roughness.

In Fig. 6(a), the time-dependent interfacial roughness
W (t) in the weak-damping case is plotted, with each curve
corresponding to a simulation performed for different values of
surface tension, viscosity, and fluctuation temperature, keeping
the system size fixed. Data collapse is achieved by rescaling
time by the roughening time tr,wd, Eq. (21), and the roughness
by its expected equilibrium value Weq, Eq. (17). We see that
the overall trend of the data is correctly captured by the theory
(dashed curve), with a linear growth at early times and a t1/3

growth at late times, until at around a time tr,wd the roughness
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FIG. 6. (Color online) Time evolution of the interfacial roughness W in the weak-damping regime. (a) Data obtained for different values
of surface tension, viscosity, and fluctuation temperature (see Table I) and a fixed system size of L = 512 are plotted. The thick dotted curve
represents the theoretical prediction, Eq. (20). Time is scaled by the roughening time tr [Eq. (21)] and the roughness is scaled by its equilibrium
value Weq. (b) Simulation parameters are fixed at ρL = 1.0, ρV = 0.01, σ = 8.7 × 10−4, ν = 6.7 × 10−3, kBT = 10−8, and the system size is
varied as L = 32 (•), 64 (�), 96 (�), 128 (�), 200 (�). The values of the scaling exponents are α = 1/2 and z = 3/2.
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FIG. 7. (Color online) Time evolution of the interfacial roughness W in the strong-damping regime. (a) Data obtained for different values
of surface tension, viscosity, and fluctuation temperature (see Table I) and a fixed system size of L = 128 are plotted. The thick dotted line
represents the theoretical prediction, Eq. (25). Time is scaled by the roughening time tr [Eq. (27)] and the roughness is scaled by its equilibrium
value Weq. (b) Simulation parameters are fixed at ρL = 1.0, ρV = 0.01, σ = 3.6 × 10−5, ν = 0.17, kBT = 10−9, and the system size is varied
as L = 32 (•), 64 (�), 96 (�), 128 (�), 200 (�), 300 (◦), 400 (�). The values of the scaling exponents are α = 1/2 and z = 1.

attains its equilibrium value. In the crossover region between
the two growth regimes, however, the roughness is found to
grow significantly slower than predicted by the theory. In fact,
the data seem to be more consistent with a t1/4 behavior at
intermediate times. This effect is more pronounced for small
system sizes and also found to slightly depend on the chosen
simulation parameters.

In Fig. 6(b) the roughness is shown for different system
sizes between L = 32 and 200 l.u., keeping all other system
parameters the same. By scaling time with Lz (z = 3/2)
and W (t) with Lα (α = 1/2), it is seen that all data points
approximately collapse onto a single master curve with a
logarithmic slope of α/z = 1/3, as expected from the scaling
form Eq. (28). However, we remark that a satisfactory scaling
collapse could also be achieved with an index of z = 2 (or any
other value between 3/2 and 2), corresponding to a growth
behavior W ∼ t1/4 in Fig. 6(a). While the reason for these
discrepancies between simulation and theory is unclear at
present, we note that these deviations cannot be explained
by the influence of a finite viscosity, since in that case one
would expect to approach a t1/2 power law with increasing
viscosity and, thus, find an even larger exponent than 1/3 (cf.
Fig. 8). Also, the effect seems not to be related to the density
ratio between liquid and vapor, as we have obtained essentially
the same results for different values of ρL/ρV ranging between
0.5 and 0.001.

TABLE I. Simulation parameters (surface tension σ , kinematic
shear viscosity ν, and fluctuation temperature kBT ) used in Figs. 6(a)
and 7(a). In both cases, ρL = 1.0 and ρV = 0.01. All parameters are
given in l.u.

Weak damping [Fig. 6(a)] Strong damping [Fig. 7(a)]

σ ν kBT σ ν kBT

• 8.7 × 10−3 0.017 10−8 8.7 × 10−5 0.17 10−9

� 8.7 × 10−4 3.3 × 10−3 10−9 3.6 × 10−6 0.033 10−10

� 4.3 × 10−3 6.7 × 10−3 10−8 7.2 × 10−4 0.33 10−10

� 8.7 × 10−4 6.7 × 10−3 10−8 3.6 × 10−5 0.17 10−9

� 1.4 × 10−5 5.0 × 10−3 10−10 3.6 × 10−6 0.17 10−10

Figure 7 shows the time evolution of the interfacial
roughness in the strong-damping regime. In Fig. 7(a), the
data are obtained from simulations of varying fluid parameters
but identical system size, while in Fig. 7(b) only the system
size is varied. Good agreement with the theoretical predictions
[Eq. (25)] over approximately three orders of magnitude is
found. In particular, the data agree well with the derived scaling
function [dashed curve in Fig. 7(a)] and the approximate
power-law growth of the roughness ∝ t1/2 is recovered. At
early times, some deviations from a pure power-law behavior
are visible, which can be attributed to the neglect of terms
beyond linear order in the frequency dependence of the
response function [see Eq. (11)]. This point is further discussed
in the Appendix. In contrast to the weak-damping case, no
rescaling of time in the plot of the theoretical W (t) is found
to be necessary. The scaling collapse of the data in Fig. 7(b)

10 5 10 4 0.001 0.01 0.1 1
0.001

0.005
0.010

0.050
0.100

0.500
1.000

t tr

W
t

t1 3

t1 2

t1

FIG. 8. (Color online) Time evolution of the roughness in the
crossover region between weak and strong damping. The dashed
and dotted curves represent the expressions for W in the weak- and
strong-damping limit, Eqs. (20) and (25), respectively. Simulation
data are shown as thin curves for visibility, corresponding to
viscosities of ν = 0.0033,0.0167,0.04,0.067,0.133 l.u. The other
simulation parameters are fixed at ρL = 1.0, ρV = 0.01, σ = 1.4 ×
10−5, kBT = 10−10, L = 128. Time is rescaled by the roughening
time corresponding to the strong-damping limit, Eq. (27).
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FIG. 9. Early-time dynamics in the overdamped regime. (a) Equal-time height-correlation function, taking into account the leading-order
frequency dependence [Eq. (A4)], for two different wave numbers k and k′ > k. Time is scaled by the damping rate [Eq. (13)] corresponding
to the wave number k. (b) Time evolution of the roughness based on expression (A4), for two different system sizes, L and L′ = 100L. Time
is scaled by the crossover time τ ∗ = 1/k2

maxν between early- and late-time behavior.

is achieved with a dynamical index z = 1, confirming that the
roughening dynamics in the overdamped case belongs to a
different universality class than in the weak-damping case.

Finally, we investigate in Fig. 8 the roughness in the
crossover region from weak to strong damping. The simulation
data (thin solid lines) in Fig. 8 have been obtained by
successively increasing the viscosity from small to large
values, keeping all other system parameters fixed. Due to
the non-Markovian nature of the interface dynamics in the
crossover regime, it is difficult to obtain an analytic expression
for W (t) in this case. We observe that the simulation data
smoothly interpolate between the overdamped (thick dotted
line) and underdamped (thick dashed line) limits. Similarly
to Fig. 6(a), deviations between simulations and theory are
noticeable at intermediate times in the limit of weak damping
[they appear to be more pronounced here due to the smaller
system size than in Fig. 6(a)].

IV. SUMMARY

We have investigated in this work the dynamics of capillary
waves and the nonequilibrium roughening of a liquid-vapor
interface based on an effective Langevin description and
by means of fluctuating hydrodynamics simulations using
the Lattice Boltzmann method. Although roughening is a
well-known mechanism of film growth, its counterpart in
thermally excited fluid interfaces seems to have been only
rarely studied [15,16,22,25]. As a central result, we showed
that the nonequilibrium growth of the roughness proceeds by
different dynamical scaling laws, depending on whether the
system is either weakly or strongly damped [see Eq. (28)]. In
the weak-damping case, we find basic agreement between our
Lattice Boltzmann simulations and previous works [15,16,25],
which observed scaling exponents characteristic for the
Kardar-Parisi-Zhang universality class (α = 1/2, z = 3/2).
We remark, however, that an dynamic exponent of z = 2
can also not be fully excluded based on the present data.
In the strong damping case, the roughening is governed by
a dynamic scaling exponent z = 1, which is characteristic for
an overdamped harmonic oscillator driven by white noise.
The scaling exponent α, related to the size dependence of
the equilibrium roughness, is found to be equal to 1/2, in
agreement with the theory.
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APPENDIX: EARLY-TIME BEHAVIOR

Relation (11) and thus Eq. (25) for the roughness in the
case of strong damping becomes exact in the limit of infinite
viscosity. For large but finite viscosity, Eq. (25) describes
the growth only at sufficiently late times, since, by keeping
only the leading term in the expansion of Eq. (10), the high-
frequency aspects of the dynamics have been neglected. In the
case of weak damping, we expect the early-time properties
to be correctly described by Eq. (20), since the leading term
in the expansion of Eq. (6) is already the dominant one for
large frequencies. Some insights into the early-time growth
of a strongly damped interface can be gained by retaining
the leading frequency-dependent term in γsd. This results in a
harmonic-oscillator form of the response function

χk,sd(ω) = k

3ρ

1

−ω2 − 4
3νk2iω + σk3/3ρ

, (A1)

which becomes in real space

χk,sd(t) = k

3ρD
exp

(
−2

3
νk2t

)
2 sinh

(
1

2
Dt

)
, (A2)

with D ≡
√

16ν2k4/9 − 4σk3/3ρ. The correlations of the
random force acquire now, in addition to expression (23), a
contribution proportional to the derivative of a δ function,

〈Fk(t)F ∗
k (0)〉 = kBT

[
4ρνkδ(t) + 3ρ

k
δ′(t)

]
. (A3)

When computing the height correlation function, this term
is treated as in the weak-damping case [16]. In this way,
we find

〈|hk(t)|2〉 = kBT

2σk2

[
1 − exp

(
−4

3
k2νt

)

×
(

cosh Dt − 4νk2

3D
sinh Dt

)]
. (A4)
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The correlation function (A4) is plotted in Fig. 9(a) for
two different wave numbers. The early-time growth of the
height-correlation function can be more directly assessed by
neglecting the “mass term” σk3/3ρ in the response function
(A1), yielding

〈|hk(t)|2〉 � kBT

32k3ν2ρ

[
8k2νt + 3 exp

(
−8

3
k2νt

)
− 3

]
.

(A5)

Thus, for small times, the height correlation function grows
∝ kt2, until for t � (νk2)−1, crossover to linear growth,
characteristic of the overdamped case in the infinite-viscosity
limit (Brownian dynamics), occurs. As an artifact of neglecting
the surface tension, the system roughens for an infinite time.

Note that since the frequency expansion of γsd has been
truncated after the linear order term [Eq. (10)], a different
growth behavior might result at still earlier times.

Figure 9(b) shows the time-dependent roughness obtained
by integrating Eq. (A4) over all wave numbers of a finite
system. The early-time growth of 〈|hk(t)|2〉 is directly reflected
in the linear growth of W (t), while the t1/2 growth character-
istic for an overdamped system sets in after a crossover time
τ ∗. We find that τ ∗ � (k2

maxν)−1 is determined only by the
viscosity and the largest wave number of the system (here
kmax = π/l0), but is independent of the system size. Thus,
for ν → ∞ or L → ∞, the growth of the roughness will be
completely dominated by the late-time behavior, where the
scaling expressed by Eq. (28) holds.
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