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Structural features of phase-separated athermal colloid-polymer mixtures in the so-called “protein limit,”
where polymer chain dimensions exceed those of the colloid, are investigated using grand canonical Monte
Carlo simulations on a fine lattice. Previous work [N. A. Mahynski et al., Phys. Rev. E 85, 051402 (2012)] has
shown that this model accurately captures the phase behavior of experimental systems, and that colloids with
sufficiently small diameters, σc, relative to that of the monomeric segments, σs , phase separate more readily
than their large-diameter counterparts. In the present study, we directly connect colloid and polymer structure
with their phase behavior by investigating these solutions along their binodal curves; we also explore the role
of colloid surface curvature in destabilizing such solutions. Our findings suggest that simple consideration of an
additional depletion radius, on the order of the σs , leads to a quantitatively accurate prediction of the division
between stable and unstable ranges of d = σs/σc. We compare these results to continuum models with different
bonding potentials between monomer segments in order to elucidate the significance of the lattice model’s bond
fluctuations and inherently coarse colloid surface. In a number of cases, the continuum models deviate both
qualitatively and quantitatively from the lattice results, but the binodals of the continuum models are presently
not known, making a strong conclusion about these differences impossible.
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I. INTRODUCTION

Colloid-polymer systems are common in industrial prod-
ucts such as inks, paints, foams, and surfactants [1]. These
systems are of particular interest because they serve as a con-
venient model to study depletion interactions, which also play a
considerable role in biological settings, contributing to protein
folding, fiber bundling, and the formation of supramolecules
[2–5]. Depletion arises as two or more confining surfaces
approach one another and exclude a region between them
where the depletant, in this case polymer, can no longer
exist. This produces an osmotic pressure difference between
the bulk and the locally depleted region, which results in an
effective attraction that can be strong enough to induce phase
separation into colloidal “liquid” and “vapor” phases [5,6].
Fluid phase behavior in colloid-polymer systems is typically
characterized by the macroscopic ratio, qr = 2Rg/σc, where
Rg is the average radius of gyration of the polymer in its pure
dilute state, and σc is the colloid diameter.

Much prior work has been devoted to describing this
behavior for systems in the so-called “colloid limit,” where
qr < 1 [5–15]; in this limit, many coarse-grained descriptions
of the polymer are reasonably successful despite neglecting
the internal conformational degrees of freedom associated
with the polymer chain. In the “protein” limit, qr > 1, such
approaches begin to fail as the overall free energy of the system
becomes sensitive to details of the polymer. A previous study
of the phase behavior of lattice colloids and linear chains
demonstrated that proposed rescaling arguments involving the
polymer correlation length, ξ , qualitatively failed to collapse
the colloid-rich portion of the binodal in the protein limit [16];
this observation had not been previously captured in simulation
or analytical models, which suggested such a collapse should

*azp@princeton.edu

be possible [17–19]; however, it is consistent with recent
experimental findings [20].

Remarkably, results from Ref. [16] were in near quantitative
agreement with experimental binodals, demonstrating the
influence of another characteristic length scale in the protein
limit, d = σs/σc, where σs is the diameter of a monomer
segment [16,21]. These clearly showed that for athermal
systems with monomer-monomer excluded volumes, critical
densities for d < 0.25 collapse to a uniform master curve under
rescaling arguments; however, for d � 0.25 at identical qr ,
the solutions start demixing at much lower concentrations.
McMillan-Mayer-type approaches have suggested this may
be due to many-body effects [22,23], but to our knowledge
simulations supporting this claim have not yet been performed
in the protein limit. In Ref. [16] we postulated that the
quantitative improvements observed in that study stemmed
from the use of a finely discretized lattice, in which each
site interacts with 26 nearest neighbors (coordination number,
z = 26), rather than the more commonly used z = 6. This has
significant implications for allowable polymer configurations.
“Corner” neighbors on such a lattice give rise to bond
lengths of

√
2 and

√
3, fluctuating without an energy penalty.

Consequently there is a degree of bond compressibility built
into this model that is not present in the lower coordination
case where bond lengths are uniformly 1.

In the present study, we examine the structure of colloid-
polymer systems over a range of qr and d values along the bin-
odal curves for the z = 26 lattice model of Ref. [16] in an effort
to characterize the structure of these systems at coexistence
and to clarify the significance, if any, of bond compressibility.
We also examine continuum models at the same densities
although their binodals are unknown. Additionally, we seek an
explanation for the dramatic instability previously observed for
sufficiently small colloids. We find a range of diverse structural
features that emerge on different sides of these binodals as qr

is increased, illustrating the nontrivial contribution polymer
internal degrees of freedom have on the overall free energy
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of the system. While there have been theoretical attempts to
treat such systems at coexistence with liquid-state integral
equation theory [24–26], such theories can predict only the
spinodal curve, rather than the binodal. Due to computational
limitations, previous simulations have also not been able to
capture structural details of large many-body systems, nor
have they been explicitly linked to phase behavior as they
are often at the limit of either one or two colloids [27,28], or
have restricted colloid translational degrees of freedom such
as in quenched matrices [29].

The rest of this paper is organized as follows. In Sec. II we
describe our methodology for both the lattice and continuum
models we employ, and describe the metrics used to quantify
relevant structural characteristics of the colloid-polymer mix-
tures. Section III illustrates the results for the fine lattice model
at a variety of qr and d along their respective binodal curves.
Finally, Sec. IV qualitatively addresses the influence of bond
compressibility by contrasting the results from the fine lattice
with those of continuum models.

II. METHODS

We examine the structure of the colloid-polymer systems
for both a fine lattice (z = 26) and in continuum space. All
interactions are athermal, that is, all species interact with one
another through a hard sphere potential in continuum space,
or by site exclusion on the lattice. Lattice colloids exclude all
sites within a radius of σc/2 of their centers, while polymers
are modeled as linear chains of beads each occupying a single
lattice site (σs ≡ 1). This is representative of fully flexible
polymers in a good solvent; while we may envision the beads as
either monomers or Kuhn segments, we adopt the convention
of referring to these segments as monomers in the rest of this
report. In order to examine a range of macroscopic, qr , and
microscopic, d, length scales we employ a similar grid of
parameters as previously investigated for phase behavior [16]
in Table I. It has been shown that d � 0.125 is representative
of the large-diameter (low-curvature) limit, while d = 0.25
exhibits instabilities associated with increased curvature. In
this way we contrast the effect of d in both limits at constant
qr as illustrated along the diagonals of Table I. Chain lengths
have been estimated based on the desired qr according to
their dilute scaling relationship, Rg = 0.508M0.588, which has
been previously verified for this lattice even at very short
chain lengths [16]. Due to discrete chain lengths, it is not
possible to exactly reproduce identical qr values; the target
values were qr = 1,2, and 4, which are used as shorthand
references henceforth.

We performed grand canonical Monte Carlo (MC) simula-
tions at chemical potentials corresponding to four tie lines
we selected; two such tie lines are indicated explicitly in

TABLE I. The macroscopic, qr = 2Rg/σc, and microscopic, d ,
size ratios for the lattice systems studied.

Chain length, M

σc d = σs/σc 10 33 110 350

4 0.25 0.984 1.985 4.029
8 0.125 0.992 2.014 3.978
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FIG. 1. (Color online) Binodal curves for σc = 4, based on data
from Ref. [16]. Large circles indicate the locations of the points
sampled along the binodals in the present work, and two tie lines are
shown as guides to the eye. 95% confidence intervals are reported
when they are larger than symbol size. The abscissa is the monomer
concentration, ηp = Mρp , where ρp is the polymer number density.

Figs. 1 and 2, with equilibrium points listed alphabetically
in order of decreasing colloid density. This alphabetic naming
scheme is adopted for all colloid diameters and chain lengths
in this report. Only two tie lines are explicitly drawn since all
properties we measured varied smoothly between them; in the
interest of brevity we often present only the data corresponding
to these two lines for each set of size ratios. These coexistence
chemical potentials were obtained previously through the use
of histogram reweighting as described elsewhere [16]. Monte
Carlo moves included local displacements of the colloid by one
lattice site, and insertion and deletion of both species, in which
Rosenbluth sampling was employed for the polymer [30].
Systems were initialized from configurations on the desired
side of the binodal, and care was taken to ensure that only that
side was sampled over the course of the simulation. Typical
simulations lasted between 50 × 106 and 1 × 109 steps, with
a previously optimized ratio of moves. In order to ensure
ergodic sampling of system configurations, simulations were
run for long enough to ensure that the component of the
system with the largest volume fraction reached a ratio of
total number of successful insertions and deletions to the
average number of that species in the box of at least 1 × 103.
Therefore, each of the 1 × 103 snapshots of the system that
were collected over the course of the simulation may be taken
as independent configurations. Simulation for additional steps
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FIG. 2. (Color online) Binodal curves for σc = 8, based on data
from Ref. [16]. Symbols, lines, and error bars are the same as Fig. 1.

022309-2



STRUCTURE OF PHASE-SEPARATED ATHERMAL . . . PHYSICAL REVIEW E 87, 022309 (2013)

did not change any measured properties significantly. In each
case, the box size was sufficiently large so that no measured
property exhibited features at distances greater than half of the
box length.

Two related continuum models were also simulated using
molecular dynamics (MD) simulations for comparison with
the lattice model. We used the HOOMD (Highly Optimized
Object-oriented Many-particle Dynamics) package [31,32],
which takes advantage of graphics processing units (GPUs)
to accelerate the simulation of large systems [33]. All
athermal interactions were approximated through the use of
a Lennard-Jones potential cutoff at the minimum, Ui,j (r) =
4ε[( 1

r−�i,j
)12 − ( 1

r−�i,j
)6] for r < rcut + �i,j , and zero else-

where. We define rcut = 21/6 and �i,j = (σi + σj )/2 − 1, so
that all particles interact with an identical purely repulsive
force independent of particle size. We set the reduced temper-
ature to kBT/ε = 1.0. This value has been shown to reproduce
hard sphere behavior for symmetric spheres [34].

The first continuum model, the “fixed-bond” model, uses
a harmonic bond potential between polymer beads with a
coefficient k = 500: Ufixed bond(r) = 1

2k(r − σs)2. Compared
to the second model it has a large energy penalty associated
with bond length fluctuations away from its equilibrium size.
The second model, which we will refer to as the ‘free-bond’
model, has a shallow bonding potential, allowing the bonds
to fluctuate essentially without an energy penalty between 1
and

√
3, which are the limits imposed in the lattice model:

Ufixed bond(r) = kf (r − 1+√
3

2 )16. With a value of kf = 1 × 108

this can be integrated with timesteps similar to those required
for the Lennard-Jones bead-bead potential. Thus, we can
directly contrast the structural effects, if any, due to freely
fluctuating bonds.

A Nosé-Hoover thermostat with a coupling constant, τ = 1,
was found to equilibrate the system quickly, yielding stable
runs at long times. Each MD simulation was run for 300 ×
106 steps, with a snapshot taken every 1 × 106 steps. The
time step was varied as necessary to give stable results, but in
general varied between 0.001 and 0.004 reduced time units.
MD simulations were performed at average number densities
near the binodal curves obtained from the MC simulations on
the lattice.

Polymer structure was quantified through two metrics: the
gyration tensor, �S, and the second Legendre polynomial, P2.
The gyration tensor for a chain of length, M , is

Si,j = 1

M

M∑
k=1

(
xk

i − xave
i

)(
xk

j − xave
j

)
, (1)

where �xk = 〈xk
1 ,xk

2 ,xk
3 〉 are the Cartesian coordinates of bead

k. Diagonalization of this tensor leads to three eigenvalues,
λi , which give the three principal axes of the polymer. The
square of the radius of gyration is obtained from the sum of
these eigenvalues, 〈R2

g〉 = ∑3
i=1 λi . The orientation of each

axis relative to a colloid surface is quantified via the second
Legendre polynomial, defined as

P2,i = 1

2

(
3cos2θi − 1

)
, (2)

FIG. 3. (Color online) A two-dimensional schematic projection
of a polymer in the vicinity of a colloid.

where θi is the angle formed by the vector between centers of
mass of a polymer and a colloid, and the vector starting at the
polymer center of mass extending along λi . Thus we obtained
three polynomials, P2,i , which describe the orientation of each
semiaxis of the polymer relative to a colloid surface. A value
of + 1 reflects an orientation of 180◦, while a value of −0.5
corresponds to an angle of 90◦; random orientations average to
a value of 0. Figure 3 illustrates a projection of these metrics
into two dimensions, though, of course, our simulations are
three dimensional and have an additional eigenvector pointing
out of the plane of the page. In this work, we focus our attention
on the behavior of the largest semiaxis, P2,1. Furthermore,
we compare our models by examining the effective monomer
depletion layer thickness around the colloids, δ, which may be
calculated from the pairwise correlation function:

4π

3

[(σc

2
+ δ

)3
−

(σc

2

)3
]

= 4π

∫ ∞

σc/2
r2[1 − gc,m(r)] dr.

(3)

In what follows, errors are calculated by blocking measure-
ments into 10 independent subsets to generate 95% statistical
confidence intervals. Measurements that could not be blocked
as such, owing to the rarity of such a configuration, are not
shown as their statistical error is too large (� 30% of the mean
value) to be of any statistical significance.

III. LATTICE MODEL

We begin with the results from the fine lattice. Quantities
are commonly plotted with an abscissa of l = (r − σs)/σc =
r/σc − d, which we refer to as the “reduced distance” (cf.
Fig. 3). We do so because the locations of key structural
features for all d collapse nicely when plotted against this
quantity, which conveniently takes into account both the
colloid and monomer length scales. This collapse is illustrated
with dashed lines on figures as appropriate.

As a reference, we first examine the structure at qr = 1.
Figure 4 illustrates the average radius gyration for σc = 8,
M = 33 as a function of the distance between the center
of mass of a colloid and that of a polymer, averaged over
all configurations. The location of the first peak does not
appear to depend on the position along the binodal (density)
and remains constant at roughly the radius of the colloid;
as a colloid penetrates a polymer coil’s core it expands
the polymer by roughly 30% over its bulk dimensions. The
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FIG. 4. (Color online) The average radius of gyration of polymers
normalized by the values in Table I, and P2,1 as a function of reduced
distance, l, between their center of mass and neighboring colloids for
σc = 8, M = 33 (qr = 1). The dashed black line is the result at point
A for σc = 4 and qr = 1; while the magnitudes vary, the location of
the features align nicely with the results for σc = 8.

curves along the polymer-rich branch of the binodal (C, D),
are nearly indistinguishable from one another; however, with
increasing colloid density along the opposite branch (A, B), it
is clear that the polymers become increasingly compressed.
Along the polymer-rich branch, the polymer is semidilute
and is thus characterized by a meshwork, while along the
polymer-lean branch it is far more dilute. As previously
shown, the polymer-rich branch can be collapsed using scaling
arguments based on correlation length, yet such arguments fail
for the polymer-lean branch [16]. Thus, where the binodal
collapses based on polymer scaling, polymer dimensions
remain independent of density. However, along the polymer-
lean branch a clear oscillatory trend with a period of roughly
2Rg emerges, progressively increasing in amplitude as colloid
density increases. This is also evident for the case of σc = 4
(d = 0.25). Results for point A are indicated by the dashed line
in Fig. 4; the location of the maxima and minima are consistent
with the results for σc = 8, though the overall magnitude of
compression is less for the smaller colloids.

Similar trends appear in the inset of Fig. 4 for P2,1; again
these curves collapse for the polymer-rich branch of the
binodal (C, D). Near the colloids, the largest semiaxis rotates
almost perfectly tangential to the surface (P2,1 < −0.4) in
what is known as the “docking transition” [27,35,36], where-
upon the polymer becomes further distended. Remarkably, this
effect occurs in equal magnitude for both halves of the binodal,
independent of density. However, only for the colloid-rich
branch are additional long-range effects observed. In fact,
around a given colloid at least three coherent “shells” are
clearly visible. In each of these shells, the polymer displays
a weak preference to orient normal to the colloid surface
(P2,1 < 0). As a polymer moves between these shells, however,
the trend is reversed, exhibiting a weak preference to orient its
longest semiaxis parallel to the outward normal vector from
the surface (P2,1 > 0). These trends become stronger as colloid
density increases.

However, with increasing qr these effects quickly disappear.
Once qr reaches 4, only local effects in the vicinity of
the colloid surface remain. Figure 5 illustrates this point;
as we push further into the protein limit, the distortion
of the chain dimensions and orientations now occurs only
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FIG. 5. (Color online) Average radius of gyration of polymers,
normalized by the values in Table I, and preferential orientation,
P2,1, for the case of σc = 4, M = 110 (qr = 4). Larger coils show
decreasing long-range effects but with increasing colloid density, the
peak in Rg is shifted to greater distances as colloids are increasingly
expelled from the core.

for polymers whose center of mass have engulfed colloids
(l < qr/2 − d = 1.75); this is accompanied by a significant
reduction in the orientational preference trends observed for
smaller chain lengths. As colloids approach the core of a
polymer coil, P2,1 displays a minimum at l ≈ 1, that is,
halfway between the center and perimeter of the coil for
qr = 4. As a colloid approaches a polymer coil’s core, the
relative orientation begins to randomize. This is simply a result
of the fact that small fluctuations in chain orientation much
more drastically impact the angle between the semiaxes of the
polymer and the vector connecting their centers of mass, the
latter of which is now quite small. For the polymer-rich branch
of the binodal, chain size remains essentially independent of
colloid density, while for the colloid-rich branch, increasing
density compresses the coils and shifts the peak in Fig. 5
toward the perimeter of the coil. This may be understood
through an osmotic compression mechanism, as follows. In
general, the compression of a polymer chain at sufficiently
high colloid density derives from a polymer coil’s entropic
expulsion of the colloid species from its core. This creates an
osmotic pressure difference between the center of the coil and
the bulk, which progressively compresses the coil as overall
colloid density (osmotic pressure) increases [37,38]. When qr

is large the net volume occupied by the monomers in a chain
comprises a very small fraction of the total coil volume [39].
As the coils progressively compress along the colloid-rich
branch of the binodal, their internal density increases, making
further invasion by the colloid species less and less favorable.
This drives any invading colloids from the center of the chain
toward the surface of the coil causing the peak in Fig. 5
and the lower bound of the curves in the inset of Fig. 6 to
shift to larger distances from the core. Measurements could
not be made reliably at distances shorter than those illustrated
in the figures and are omitted for clarity. This effect is most
pronounced for large qr where the chain can accommodate the
colloid species closer to its center of mass when sufficiently
dilute (cf. Fig. 4). Regardless of qr or d, the ratios of the
gyration tensor’s eigenvalues in the bulk were roughly 12:3:1,
and remained constant both during compression and across
phase boundaries. This is in excellent agreement with data in
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FIG. 6. (Color online) Colloid-polymer-center-of-mass pair cor-
relation function for σc = 8, qr = 1 and 4 (inset). Error bars are small
and omitted for clarity. Symbols are the same as in Fig. 5; the dashed
black line is the result at point A for σc = 4 and qr = 1.

Ref. [40] reported for random walks, as well as simulations
involving only a single colloid at similar densities [27,35].

Figure 6 shows the colloid-polymer-center-of-mass radial
distribution function for σc = 8 at qr = 1 (main plot) and qr =
4 (inset). At low qr , significant correlation, extending relatively
far into the bulk, is observed along the colloid-rich branch
of the binodal reminiscent of Fig. 4. As qr is increased to 4
(M = 350), such correlations are completely lost for polymers
which do not engulf a colloid (l > qr/2 − d = 1.875). When
engulfment does occur, a clear separation of each half of
the binodal at small separations becomes apparent. For the
colloid-rich branch, the more compressed coils osmotically
repel the colloid from the core of the polymer more strongly;
extrapolating near the center of the coil to gc,p(l = 0) ≈ 0.1,
while along the polymer-rich branch this rises to gc,p(l =
0) ≈ 0.3. This is, of course, approximate as the center of a
coil is actually located at l = −d, which is not shown for
clarity. As qr crosses from the colloid to the protein limit,
chain size is no longer a relevant length scale. Slowly giving
way instead to the correlation length, the loss of significant
correlations for qr � 4 depicted in Fig. 6 is consistent with the
previous observation [16] that critical point densities decay to
a constant, finite limit above this macroscopic size ratio.

The potential of mean force (PMF) offers further insight.
In Fig. 7 we show the results for σc = 8 for the tie line furthest
from the critical point (points A and D). As expected, the
polymer-rich branch of the binodal (filled symbols) is much
more attractive at contact (nearly a factor of 2). However,
the effective depletion potential is less than 1 kBT along
the opposite branch (open symbols). As qr increases, we
observe a counterintuitive decrease in the attractive force at
contact, despite the fact that these systems are less stable and
demix at lower colloid concentrations [16]. At long range,
this trend reverses; along the colloid-rich branch the repulsive
barrier is significantly lowered, and the polymer-rich portion
becomes even more attractive, though the effect becomes
less pronounced for qr > 2. Given that significantly more
structure exists at low qr it is reasonable to expect short-range
interactions to be stronger at qr = 1, whereas the increasing
magnitude of the longer range interaction with increasing qr is
responsible for the overall decrease in critical point densities
as qr increases. Figure 7 suggests the crossover occurs at
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FIG. 7. (Color online) Potential of mean force (PMF) between
colloids for σc = 8 far from the critical point (A and D, main plot)
and as they approach it (B and C, inset) for all qr investigated. As
the critical point is approached the PMF on both sides of the binodal
approaches as value of −1, while further away the halves of the
binodal split. Open and closed symbols correspond to the polymer-
lean and polymer-rich phases, respectively.

r ≈ 1.2σc. The inset of Fig. 7 contrasts the PMF near the
critical point (tie line connecting points B and C); the effects
are qualitatively the same with increasing qr but at contact
the force is weakened by 10%–20%. As the critical point is
approached, the average contact PMF between each phase
converges to −1 kBT .

One major area of interest for colloid-polymer systems
is estimating the effect dissolved colloids have on polymer
dimensions. Different simulations and theories have previ-
ously predicted expansion, contraction, or little to no effect on
polymer radii of gyration [38,41–45]. For the systems we stud-
ied, however, we find the chains are universally compressed.
Figure 8 shows the ratio between the bulk radius of gyration
and that predicted by the scaling result in Table I. It is clear
that with increasing qr and σc, the chains are progressively
compressed as colloid density increases. Extrapolation to ρc =
0 suggests that chains are still compressed over their infinitely
dilute dimensions; this is a consequence of the polymer mesh,
which is sufficiently dense to begin screening out excluded
volume effects between the monomers, reducing the Flory
scaling exponent. This effect becomes more pronounced along
binodals with larger colloid diameters (higher critical colloid
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FIG. 8. (Color online) The ratio of the bulk radius of gyration to
the known scaling for polymers on the fine lattice as a function of
reduced colloid density along the binodals. Open and filled symbols
denote measurements for σc = 4 and σc = 8, respectively.
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FIG. 9. (Color online) Monomer depletion radius around colloids
as a function of reduced colloid density along the binodals. Open
and filled symbols denote measurements for σc = 4 and σc = 8,
respectively. Points nearest the critical point (B, C) are not depicted.

densities) and chain lengths, consistent with the previously
discussed polymer coil osmotic compression mechanism.

Such observations are further supported by theory and
simulations of coarse-grained polydisperse ideal polymers in
the protein limit [42,43], which suggest that variability in
polymer size can stabilize these systems against demixing.
While these previous studies have focused on ideal polymers
without explicit monomer-level detail, the introduction of
an internal degree of freedom to account for polymer size
variations due to polydispersity is akin to the size fluctuations
due to internal rearrangements of a monodisperse species
observed in this report. Remarkably we observe similar results.
The trend in Fig. 8 suggests that with increasing colloid
diameter, the chains are more compressed relative to their
small particle counterparts; as shown previously [16], this is
associated with a significant increase in the critical densities.

Finally, we consider the monomer depletion radius, that is,
the radius around any given colloid from which the monomer
is effectively absent [cf. Eq. (3)]. Coarse-grained descriptions
of colloid-polymer solutions often employ an effective length
scale of the polymer depletion radius and ignore effects
on this smaller scale. This mean-field assumption ignores
localized monomer order which could significantly contribute
to polymer stability. Figure 9 illustrates two remarkable trends.
First, with increasing qr the depletion radius observed on
both sides of the binodal increases, indicating an increasing
propensity for monomer evacuation near the surface of the
colloid, commensurate with the decrease in critical point
densities as qr is increased. It is also clear that with increasing
d (smaller σc) the radius increases significantly, consistent
with the solution’s destabilization. The second observation is
that as qr increases an asymmetry develops between the two
corresponding phases for both values of d. At qr = 1, the
depletion radius for each tie line is roughly equal in each
phase for both d; however, δ increases significantly faster
with qr along the colloid-rich branch of the binodal than in
the corresponding polymer-rich phase. For the latter phase,
by the time qr reaches 4 the radius slows its growth and
begins to collapse. This asymmetry is due to the role-reversal
first pointed out by Paricaud et al. [46]; in the protein limit,
rather than the conventional idea of polymers depleting the
colloidal species, instead the colloids may be thought of as

the depletant for the polymers. As a result, as qr increases
rather than colloids partitioning between phases of similar
polymer densities, the polymer instead begins to partition
itself between phases with similar colloid densities. The
expanding monomer depletion radius simply reflects this
increased polymer partitioning.

At this point the significant destabilization previously
observed on this lattice at sufficiently large d [16] still remains
unexplained. We suggest the smaller colloid’s instability can
be rationalized by the emergence of a second, monomer-level
depletion radius which destabilizes the solution at the onset
of many-body interactions. Of course, given the freely jointed
nature of our model polymer chain we may use the concept of
“monomer” diameter and Kuhn length interchangeably here.
Consider a simple monomeric depletion radius around the
colloids to be on the order of the monomer diameter. Simple
geometry reveals that the ratio of the monomer to colloid
diameters at which three-body overlap of these layers begins
to occur is d ≈ 0.1547, or equivalently σc ≈ 6.5. This limit
falls nicely between the two diameters we have investigated,
which separate the unstable regime (σc < 6.5) from the one
where scaling nicely collapses the critical points [16]. This
estimate of the monomer depletion radius is more of a “local”
approximation than that reported in Fig. 9, which is signifi-
cantly larger, simply because the latter is the result of integrated
pair correlation functions and incorporates long range density
fluctuations in surrounding “shells.” It has been previously
suggested that many-body effects may be responsible for
increased immiscibility of smaller colloids due to overlapping
many-bodied polymer depletion layers [22,23]; however, in
this work we posit that many-body depletion on a monomeric
level is a more satisfactory explanation, given that in the
protein limit, polymeric depletion effects are felt at distances
on the order of the polymer mesh’s correlation length, which
is much smaller than the polymer’s overall dimensions. This
is supported by the observation that the locations of structural
features collapse only when the abscissa is linearly shifted by
the monomer diameter (reduced distance, l), suggesting that
there is an underlying effect at this length scale.

IV. CONTINUUM MODELS

Lattice colloids have an inherently coarse surface especially
prevalent at low σc, which could introduce a steric interaction
between surfaces that is not present in smooth, continuum
models. Additionally, the impact of the lattice model’s freely
fluctuating bonds in determining structure in these solutions
is unclear. In this section, we report the structure of two
continuum space colloid-polymer models at the coexistence
densities of the lattice model. Differences between the fixed-
bond and free-bond models are expected to be significant in the
crossover region between the colloid and protein limits where
the characteristic length scale over which depletion acts shifts
from the order of the chains’ overall dimensions to the cor-
relation length of the solution’s polymer mesh. Although we
exclusively report on σc = 4 in this section, the general trends
are equally representative of the system with σc = 8 as well.

The most salient difference between the models is in the
behavior of the chains’ radii of gyration (cf. Fig. 10). In all
cases, the free-bond model has an inherently larger absolute

022309-6



STRUCTURE OF PHASE-SEPARATED ATHERMAL . . . PHYSICAL REVIEW E 87, 022309 (2013)

 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0  0.5  1  1.5  2
l

<R
g2 >1/

2
free-bond

fixed-bond

A
B

D
C

 7

 8

 9

 10

 0  1  2  3  4  5  6
l

free-bond

fixed-bond<R
g2 >1/

2

FIG. 10. (Color online) Average radius of gyration for polymers in continuum models at densities corresponding to lattice binodals for
σc = 4, M = 10 (left, qr = 1), 110 (right, qr = 4). As M increases, both continuum models begin to show a weak density dependence, though
the trend is clearly different from that observed on the lattice (cf. Fig. 5).

radius of gyration. At low qr both models show relatively
little density dependence; however, as qr increases a separation
between locations along the binodals becomes apparent. Both
continuum models behave qualitatively the same, but exhibit
significantly different trends with density than on the lattice (cf.
Figs. 4 and 5). Along the colloid-rich branch of the binodals
(A, B) the radii of gyration collapse more closely than along
the polymer-rich branch (C, D), but not perfectly. Furthermore,
the radii of gyration no longer monotonically vary with colloid
density along the binodal curve as the lattice results did. As
colloid density decreases in the colloid-rich phase (A to B),
the chain is weakly expanded at all separations, while in
the opposite polymer-rich phase, such a decrease (C to D)
leads to chain compression. This effect is more noticeable
with the free-bond model, but is not entirely absent from the
fixed-bond model either. Care must be taken when drawing
conclusions from these observations. The binodals for the
continuum models are unknown, therefore a direct comparison
of these results to those obtained on the fine lattice is not
possible. We simply remark that both continuum models show
similar qualitative behavior that is distinctly different from the
lattice results.

More subtle differences are present in the second Legendre
polynomial associated with the largest polymer semiaxis. For
qr = 1, the continuum models show no noticeable differences
and results from the lattice in Fig. 4 are representative for the
continuum models as well. At qr = 4, the continuum models
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FIG. 11. (Color online) Second Legendre polynomial for a
polymer’s largest semiaxis in the case of σc = 4, M = 110 (qr = 4).
The magnitude of the features decays from top to bottom (fixed-
to free-bond) while the range over which the colloids perturb the
polymer increases in this order. Symbols are the same as in Fig. 10.

again show an approximate collapse along the colloid-rich
branch (A, B) rather than the polymer-rich portion (C, D) of
the binodal, unlike the lattice results. The range and magnitude
of the orientational preference increase with colloid density.
The fixed-bond model P2,1 shows a minimum at l ≈ 1, similar
to the lattice model, though the magnitude is roughly half that
observed in the latter. The free-bond model shows a bit more
variability with a minimum ranging from l ≈ 1–1.5, again with
a much smaller magnitude than the lattice results. Finally, in
both continuum models, the magnitude of the P2,1 curve over
the entire range of l is a monotonic function of colloid density,
unlike the lattice model (cf. Fig. 5).

When Figs. 10 and 11 are compared to Figs. 4 and 5, it
is clear that the lattice model is characterized by stronger
short-range effects, while the continuum models tend to
exhibit a weaker long-range influence on polymer structure.
This observation is summarized in Fig. 12, which shows the
weakening capacity of the polymer coils to repel colloids from
their core as bonds “soften,” with the correlation function
approaching unity at shorter range moving from the free-bond
to the lattice model. While it is beyond the scope of this paper
to report extensively on the details of continuum results, it
is important that these qualitative differences be mentioned
to illustrate the nontrivial differences between lattice and
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FIG. 12. (Color online) Colloid-polymer-center-of-mass pair cor-
relation function for σc = 4, M = 110 (qr = 4). Polymer wrapping
increases from left to right. All curves approach unity beyond the
range shown. Symbols are the same as in Fig. 10.
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continuum models. Part of the differences may be due to our
ignorance of the continuum binodal curves.

V. CONCLUSIONS

In this report, we investigated the structure of phase sepa-
rated systems of athermal colloids and linear polymers in the
protein limit. We reported the influence of two length scales:
the macroscopic ratio, qr = 2Rg/σc, and the microscopic ratio,
d = σs/σc. For the lattice model, for which the binodals
are known, we find that polymer size and orientation are
strongly influenced by the location along the binodal. For
all macroscopic size ratios we find that the bulk polymer is
compressed weakly over its infinitely dilute size primarily due
to excluded volumes between monomers in the polymer-rich
phase, and strongly in the opposite phase primarily due to
interaction with the colloids. Along the colloid-rich branch
of the binodal for qr = 1, polymers form up to three weakly
structured “shells” of preferential size and orientation around
the colloids, which weaken further into the bulk. In these shells,
the polymer is distended and preferentially oriented normal
to the surface of the colloid; these features are progressively
weakened as qr increases (for all d). Less stable phases with
smaller colloidal species (σc = 4) compress the polymers over
their infinitely dilute state relatively less than their more
stable, large particle counterparts in both phases consistent
with results for polydisperse ideal polymers, which suggest
variability in polymer size is associated with more stable
solutions [42,43].

We observed that structural features of these phase sepa-
rated mixtures changed qualitatively little with colloid curva-
ture (d); instead, the most significant differences appeared in
the degree of chain dimension compression and the size of
the monomer depletion radius. We further suggest the source

of the instability with small colloidal species observed in
Ref. [16] may be due to many-body effects on a monomer level.
Structural features tend to collapse to consistent locations
in terms of reduced distances, l = (r − σs)/σc = r/σc − d,
which incorporates a linear shift by the monomer size,
suggesting there are relevant interactions at this length scale.
By this hypothesis, the emergence of three-body effects due to
overlapping monomer depletion layers should appear at σc ≈
6.5; this provides a quantitatively accurate division between
the unstable, small colloids (σc = 4) and the more stable, large
colloids (σc = 8), where it has been previously shown that
critical points may be collapsed to a universal curve [16].

Finally, we attempted to reconcile the differences between
our z = 26 lattice model and continuum models with different
bonding potentials, to examine the importance of the fine
lattice’s freely fluctuating bonds and relatively coarse colloidal
surfaces. Results from the continuum models are qualitatively
very similar and show only small quantitative differences from
each other; these models reproduce some, but not most, of the
features observed on the lattice. Without knowledge of the
exact location of the binodals for the continuum models, it
is not possible to draw a strong conclusion about the relative
impact of these factors; it remains an open question for future
work.
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