
PHYSICAL REVIEW E 87, 022145 (2013)

From Langevin to generalized Langevin equations for the nonequilibrium Rouse model
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We investigate the nature of the effective dynamics and statistical forces obtained after integrating out
nonequilibrium degrees of freedom. To be explicit, we consider the Rouse model for the conformational dynamics
of an ideal polymer chain subject to steady driving. We compute the effective dynamics for one of the many
monomers by integrating out the rest of the chain. The result is a generalized Langevin dynamics for which we
give the memory and noise kernels and the effective force, and we discuss the inherited nonequilibrium aspects.
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I. INTRODUCTION

To relate different levels of physical description belongs to
the core business of statistical mechanics. This is accompanied
by the emergence of notions as heat and entropy, which are
important concepts for bridging the gap between microscopic
laws and macroscopic behavior. Moreover, “new” forces can
appear, effectively from integrating out certain degrees of
freedom. These are commonly called entropic or statistical
forces and they have been discussed since relaxation to
equilibrium was first considered. Indeed, for equilibrium
dynamics, statistical forces have their origin in the nature of
macroscopic systems to evolve towards higher entropy rather
than being caused by some specific mechanical force. Though
much systematic progress has been made in the study of these
entropic forces, there has been less venture into the effects of
nonequilibrium driving on statistical forces. Only over the past
decade have systematic efforts been made to calculate these
nonequilibrium statistical effects. This includes Soret-Casimir
forces [1,2] but also general considerations on the law of action
and reaction [3].

The first motivation of the present work is to study
an explicit example of statistical forcing emerging from
integrating out a nonequilibrium environment. Yet the case
we treat comes with an extra motivation as it opens some
questions regarding the nonequilibrium physics of polymers.
In contrast to many ongoing studies of nonequilibrium polymer
rheology, transport through polymers, or mechanical folding
and stretching of polymers, the present paper considers also
steady nonequilibria, i.e., where the driving is constant in time
and the condition of detailed balance is broken.

Our working model is the widely studied Rouse model [4],
an ideal chain, where monomers are connected through Gaus-
sian springs and excluded volume effects and hydrodynamic
interactions are neglected. This model holds a special place, as
it is the simplest model that can be exactly solved to describe
phenomena like anomalous diffusion of polymers in a bath.
Moreover, in the natural context of polymer melts, which
are a collection of polymers in a solution, the diffusion of a
tagged polymer can be described by Rouse dynamics moving
along a one-dimensional tube embedded in a network or mesh
of polymers [5,6]. Our general question then addresses the
investigation of the effective dynamics of a tagged monomer
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when the chain is subjected to nonequilibrium driving. We
have in mind that the extremal monomers are subject to
nonconservative forces, e.g., via a small charged particle or
optically driven bead attached to them, and we wish to follow
a tagged monomer near the middle of the chain.

Because of the harmonic interaction, the nonequilibrium
Rouse model is one of the simplest, still physically interesting,
examples to understand the effective dynamics in a driven
medium. The equilibrium version of integrating out the Rouse
model has been carried out by D. Panja [7]. The dynamics
of the tagged monomer is shown to be non-Markovian with
memory kernel having a power-law decay μ(t) ∝ t−1/2 for
short times and exponential decay asymptotically in time,

μ(t) ∝ 1√
t
e−t/τ . (1)

The kernel μ(t) is shown to be the mean relaxation response
of the polymers to local strain and its behavior gives good
information on the nature of the diffusion, which is anomalous
for intermediate times, �x2 ∝ D

√
t .

In the present paper we start with the phantom Rouse
dynamics in the inertial regime and we introduce a nonequi-
librium driving. The result of integrating out the (other)
polymer degrees of freedom is again a generalized Langevin
equation (GLE) for the tagged monomer. We show that, in
the overdamped limit, the equilibrium results match those
of Panja [7]. We discuss the nonequilibrium corrections to
the force and memory terms for driving of specific nature
to obtain some general information about statistical forces in
nonequilibrium.

The more systematic and general approach to integrating
out degrees of freedom is commonly referred to as the
Mori-Zwanzig approach [8,9] or the approach via adiabatic
elimination [10–13]. Generalized Langevin equations have
also been derived in nonstationary environments [14] and,
similarly in spirit to the present paper, is also the generalization
where a coarse-graining is added onto a coarse-grained
description [15] or where one Brownian particle is described
in a nonequilibrium bath [16]. In the case of nonequilibrium
thermostated dynamics, a generalized Langevin equation has
also been derived [17]. We do not follow these general schemes
here because we work on the more explicit Langevin (not
Fokker-Planck) side of the question, and we take no special
limits for macroscopic systems or for the speed of motion
of nonconserved versus conserved quantities. Moreover, these
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general approaches are less explored for starting with open
driven polymer dynamics as we do here. An interesting study
of the average square displacement of a tagged monomer in a
Rouse polymer chain subjected to random, layered convection
flows, both time independent and time dependent, has been
made in Refs. [18,19].

In the next section we introduce the model and the various
types of nonequilibrium driving. Sections IV, V, and VI
summarize the method and the results with a discussion of
the effective dynamical behavior. Finally, some more essential
elements of the computations are collected in Appendix A.

II. NONEQUILIBRIUM ROUSE DYNAMICS

We consider the positions �Ri,i = 1, . . . ,N, of N point par-
ticles (also called monomers) in a three-dimensional domain
open to thermal exchanges. The particles are harmonically
coupled and some are subject to further forces, some of which
are nonconservative. The potential energy is quadratic,

U ( �R) = κ

2
( �R1 − �R2)2 + κ

2
( �R2 − �R3)2

+ . . . + κ

2
( �RN−1 − �RN )2, (2)

and the force on the ith particle is the sum of systematic forces
�Ki and Langevin forces �Li :

�Ki = −�∇iU + �Fi, �Li = −mγ �̇Ri + �ξi . (3)

There is an independent standard white noise �ξi modeling the
action of the thermal environment at temperature T and friction
γ , with 〈�ξi,α(t)�ξj,β(t ′)〉 = 2mγkBT δi,j δα,βδ(t − t ′), where α

and β refer to the various spatial directions. The first term in
�Ki is the conservative part of the force. The force �Fi need not

be conservative or constraining and will be specified below;
this is what we refer to as the driver. We then have the equation
of motion for the time-dependent coordinates �Ri(t),

m
d2 �Ri

dt2
= �Ki + �Li, (4)

with given initial conditions Ri(0), �̇Ri(0) at time t = 0. In
many cases of standard polymer physics, the inertial term
proportional to the mass in (4) can be fairly ignored. This can
be done in the following equations and results but there is,
however, no harm in keeping it; in fact, our concern is not with
a detailed study of polymer physics. Instead, we use the Rouse
polymer model for the simple purpose of illustrating effects
of statistical forces in a nonequilibrium environment. To have
a workable model, we can exploit the linearity of the Rouse
model and the extra forcing �Fi will also be assumed linear. We
will, however, not proceed with a diagonalization, and we will
not write the solution in terms of modes. After integrating out
all particles but the first one, we obtain explicit information
about the final equation of the form

m
d2 �R1

dt2
= −m

∫ t

0
dt ′μ(N)(t − t ′) �̇R1(t ′) − mγ �̇R1(t)

+ �η(N)(t) + �ξ1(t) + �G(N)(t). (5)

Indeed, not surprisingly and as an explicit example of a
type of Zwanzig’s program [20], we will find the validity of

a GLE of the form (5). Our model will enable rather explicit
memory and friction kernels. We will discuss the memory
kernel μ(t) (more generally a matrix), the noise �η(t), and the
statistical forcing �G (that all depend on N ) in the cases that we
introduce next. Obviously, the case of the effective dynamics
on another coordinate, e.g., the middle one around i = N/2,
can be reduced to that case. The effective force �G can be of
convolution type, as in Eq. (24) below, and also contain the
memory of the past trajectory of the tagged monomer.

A. Uniform constant driving

The simplest case is to assume that the outer end of the
polymer is being driven under a constant external force f .
That is a mathematical idealization of a polymer, say, with
a charged end, forced under an electric field. As there is
no confining force for the polymer, this means the whole
system will move in the direction of the field and we
discuss that diffusive regime. That is, we take free boundary
conditions and �Fi = δN,i f êx for some constant field f in the
x direction. The simplest example corresponds to two linearly
coupled degrees of freedom moving in one dimension, with
dynamics

m
d2R1

dt2
= −κ[R1 − R2] − mγ

d

dt
R1 + ξ1(t),

(6)

m
d2R2

dt2
= −κ[R2 − R1] − mγ

d

dt
R2 + ξ2(t) + f,

for R1,R2 ∈ R. The constant f induces a drift. We give
that dimer case here explicitly also because we have found
that for all finite N (size of original polymer) the basic
qualitative features of generalized memory and friction are
unchanged from N = 2, where things are, of course, much
simpler.

B. Nonuniform driving

Here we imagine the motion of a polymer in a two-
dimensional slab of vertical size L in which the outer end
is subject to a forcing in the horizontal direction that is linear
in the vertical distance. We can imagine this as the result
of a shearing at the outer edge of the polymer, but we do
not imagine a surrounding fluid as we wish to stick to the
Rouse model (ignoring hydrodynamic interactions as, e.g.,
in the Zimm model). In terms of a polymer melt we can
realize that by attaching a bead or nanoparticle to the end
of the polymer chain, which is then driven in one direction
but nonuniformly with respect to an orthogonal direction.
This provides the well-known case of a nonconservative
force.

For explicitness we write out this case again, first, for
a polymer of size N = 2. One monomer is being acted on
by the nonuniform force which depends on its y coordinate.
The equation of motion written in Cartesian coordinates is
then

md2R2x

dt2
= k[R1x − R2x] − mγ

dR2x

dt
+ ξ2x(t) + f R2y,

md2R2y

dt2
= k[R1y − R2y] − mγ

dR2y

dt
+ ξ2y(t),
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md2R1x

dt2
= −k[R1x − R2x] − mγ

dR1x

dt
+ ξ1x(t),

md2R1y

dt2
= −k[R1y − R2y] − mγ

dR1y

dt
+ ξ1y(t), (7)

where f is the nonequilibrium amplitude.
Since the external force now does depend on the position, it

is useful here to have a comparison or equilibrium reference,
where an external potential Uext is added to the potential
energy U to trap the outer monomer. In other words, again,
for simplicity of presentation, for the case of a dimer, F (t) =
−f (R2 − Q), which derives from a confining potential around
position Q, which holds the outer edge of the polymer,

m
d2R2

dt2
= −κ(R2 − R1) − mγ

dR2

dt
+ ξ2(t) − f (R2 − Q),

(8)

m
d2R1

dt2
= −κ(R1 − R2) − mγ

dR1

dt
+ ξ1(t),

which would replace the dynamics of the x components of
Eqs. (7).

III. GENERAL METHOD: INDUCTION AND
RECURRENCE RELATIONS

In this section we show the methods and intermediate steps
involved in reaching our results, which will be summarized in
the next three sections. The general method is always to work
via iteration and to prove results by induction. More precisely,
the tagged particle equation of motion is directly coupled to
a second particle, which then is coupled to the other N − 2
particles. If we now assume that, first, after integrating out
these N − 2 particles, the effective dynamics of the second
particle is of the form (5), then we obtain two equations: one
is the GLE (5) (with N there replaced by N − 1) and the
other is the original equation of motion of the tagged particle
coupled to the second particle. Assuming the structure (5) for
N − 1, specific properties (such as the long time limit) of
the memory kernel, noise and force constitute the induction
hypothesis. These properties depend on the specific physical
constraints. See for example Eq. (A3). The remaining task is
then to integrate out that last (second) particle and to prove that
the induction hypothesis is indeed reproduced at size N . The
crucial step to discover what the correct induction hypothesis
is for the case N = 2. This is also why the essential first step is
to be explicit about the case N = 2. We next give more details.

After integrating out N − 2 particles, we arrive at the
following GLE for the N − 1th monomer, which we label
with subscript 2 (second particle). (Note that we skip vector
notation, as we can always reduce the problem to more scalar
degrees of freedom.)

d2R
(N−1)
2

dt2
(t) = − k

m

(
R

(N−1)
2 − R1

) − γ
dR

(N−1)
2

dt
(t) + ξ2(t)

m

+ η(N−1)(t)

m
−

∫ t

0
dt ′μ(N−1)(t − t ′)

dR
(N−1)
2

dt
(t ′)

+ G(N−1)(t)

m
. (9)

The tagged monomer R1 is attached to R
(N−1)
2 by a harmonic

spring, the force of which is simply given by

�(N)(t) = m
d2R1

dt2
(t) = −k

[
R1 − R

(N−1)
2

] − mγ
dR1

dt
(t)

+ ξ1(t), (10)

where ξ1(t) and ξ2(t) are the independent white noise on
monomers 1 and 2. These equations represent a system of two
monomers, one of which is already a coarse-grained variable,
with memory kernel μ(N−1)(t), external force G(N−1)(t), and
noise η(N−1)(t).

A second major ingredient in our computation is quite
naturally to take the Laplace transform of (9) and (10). After
integrating out R

(N−1)
2 , we arrive at the following GLE for R1:

�̃(N)(s) = −mκ
μ̃(N−1)(s) + γ + s

msμ̃(N−1)(s) + msγ + ms2 + κ

× [sR̃1(s) − R1(0)] − mγ [sR̃1(s) − R1(0)]

+ κ

msμ̃(N−1)(s) + msγ + ms2 + κ
G̃(N−1)(s)

+mκ
μ̃(N−1)(s) + γ + s

msμ̃(N−1)(s) + msγ + ms2 + κ

× [
R

(N−1)
2 (0) − R1(0)

]
+ mκ

msμ̃(N−1)(s) + msγ + ms2 + κ
Ṙ

(N−1)
2 (0)

+ κ
[η̃(N−1)(s) + ξ̃2(s)]

msμ̃(N−1)(s) + msγ + ms2 + κ
+ ξ̃1(s).

(11)

This has to be compared with (5) and, in particular, with each
of the terms on the right-hand side. In that way we obtain
recurrence relations for the memory kernel μ̃(N)(s), the noise
η̃(N)(s), and the induced force G̃(N)(s) on the tagged particle
when comparing size N polymers with size N − 1:

μ̃(N)(s) = κ[μ̃(N−1)(s) + γ + s]

[msμ̃(N−1)(s) + msγ + ms2 + κ]
, (12)

G̃(N)(s) = κG̃(N−1)(s)

[msμ̃(N−1)(s) + msγ + ms2 + κ]
, (13)

η̃(N)(s) = mμ̃(N)(s)
[
R

(N−1)
2 (0) − R1(0)

]
+ mκ

[msμ̃(N−1)(s) + msγ + s2 + κ]
Ṙ

(N−1)
2 (0)

+ κ

[msμ̃(N−1)(s) + msγ + ms2 + κ]

× [η̃(N−1)(s) + ξ̃2(s)]. (14)

To these we must add “initial” conditions for the recurrence,
i.e., to insert the findings for the case N = 2. These will enable
the correct induction hypothesis.

Finally, there are the initial conditions to the dynamics;
the initial conditions (positions and momenta) of all the other
particles (except the tagged particle) contribute to the noise.
Their statistical distribution is, in principle, a matter of choice
but there are, of course, dynamically more natural choices. We
detail them in Appendix A.
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FIG. 1. (Color online) Memory vs time, κ = 3, ξ = 1. The long
time limit of memory in a semilog plot.

IV. FREE DIFFUSION UNDER UNIFORM DRIVING

This and the two following sections summarize the main
results of the logic explained in the previous section. We
always refer to (5) for the notation that we have obtained
after integrating out all but one of the particles.

A. In general

Referring to the dynamics (2), (4), and (6), we define the
frequency ω as ω2 = κ

m
− γ 2

4 . If ω is real (inertial case),
then the friction kernel μ(N) is oscillating with frequency ω

with decreasing amplitude. When, under high friction, ω is
imaginary (overdamped case), there is a monotone decay in
time.

In the long time limit we find that the friction kernel is
always exponentially decaying as μ(N)(t) � e−t/τN for large
times t , where the decay time τN is of the order N2 for
large N ; see Fig. 1. In the figure are represented polymers
of different sizes. The discrete data points are solutions of
numerical evaluation of analytical results. The lines are fits
exhibiting the general nature of these solutions. κ is the spring
constant and χ = mγ . Figure 1 is a semilog plot, which shows
the exponential decay of the friction kernel in long time. The
slopes of various lines are proportional to the decay exponent
τN . It is seen in Fig. 1 that τN varies as N−2, which is already
known to hold in full equilibrium [7]. We show that this
remains valid in nonequilibrium. We have also obtained that
the time of relaxation is, in general, bounded from below as
τN > 2/γ ; see below in Appendix A. This is indeed clear as
the time of relaxation grows with the size of the polymer and
the tagged particle relaxes fastest when it is connected to just
one another monomer, τN then being 2/γ .

As is well known and also to be expected under nonequilib-
rium conditions, for short times t < τN , the memory kernel has
a power-law decay μ(t) ∝ 1

t1/2 ; see also Refs. [5–7]. Indeed,
for short times there is no dependence of memory on system
size.

Integrating out the other monomers also creates additional
colored noise in the system. The noise η(N)(t) is Gaussian with
a shifted average and breaks the second fluctuation-dissipation
relation transiently. However, asymptotically, the stationary

covariance satisfies the second fluctuation-dissipation relation,

lim
t→∞〈η(t + τ )η(t)〉 = m

β
μ(τ ). (15)

Finally, the external force f on the outer monomer gives rise to
a time-dependent statistical force G(t) on the tagged monomer
and reaches a limiting form exponentially fast. The general
behavior is exactly similar to what we make explicit in the
next subsection; see below in Eq. (19).

B. Two monomer case

To give immediately more explicit formulae, we summarize
the results for the dimer case, which is also used to start the
recurrence. First, there is the memory kernel (N = 2),

μ(t) = κ

m
e−γ t/2

[
cos ωt + γ

2ω
sin ωt

]
, (16)

where

ω2 = κ

m
− γ 2

4
> 0.

For a dimer, a power-law decay for small times is not seen, as
can be imagined from the fact that a dimer in one dimension
has no conformational degrees of freedom. The mean-squared
end-to-end distance 〈R2

ee〉 is simply equal to the square of the
bond length and, thus, shows only simple diffusion.

The colored noise is

η(t) = −κ[R1(0) − R2(0)]

[
cos(ωt) + γ

2ω
sin(ωt)

]
e−γ t/2

+ κṘ2(0)
sin(ωt)

ω
e−γ t/2

+ κ

m

∫ t

0

sin[ω(t − t ′)]
ω

ξ2(t ′)e−γ (t−t ′)/2dt ′. (17)

It is natural to take the distribution

ρst(R2,Ṙ2) = 1

Z
e−βH , (18)

where H = mṘ2
2

2 + κ
2 (R1 − R2)2 − f R2, which depends on

the position R1 of the tagged particle. When averaged over
that initial distribution (18) we get a mean

〈η(t)〉 = f
[
cos(ωt) + γ

2ω
sin(ωt)

]
e−γ t/2,

which is not zero for f �= 0. Indeed, the monomer R2 is found
more on one side than the other due to the force f .

The effective force is found to be

G(t) = f

{
1 − e−γ t/2

[
cos(ωt) + γ

2ω
sin(ωt)

]}
, (19)

exponentially growing to the applied force f . When the force
would be time dependent, f = ft , the effective force gets
memory and becomes

G(t) = k

∫ t

0
fs e−γ (t−s)/2 sin ω(t − s) ds.

This appears to be a general feature of nonequilibrium forcing:
they create effective forces that themselves depend on the
forcing at all earlier times. We still emphasize that the nature
of nonequilibrium in this paper and in the present example
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of constant forcing qualitatively differs from the case of
driving forces discussed in some previous works [21], polymer
translocation by an external force being one example. Such
driving forces are introduced at the macroscopic level or the
level of the GLE and, hence, do not have an effect on the
nature of the friction kernel or of the noise. On the other hand,
the nonequilibrium in our work is introduced microscopically,
such that the GLE itself gets modified as a function of the
driving.

C. Limiting cases

(1) The long time limit. Motion after t  τN , of the tagged
particle appears to be diffusive with a constant drift f .

(2) Large coupling limit. A large coupling signifies that
the restoring force between any two monomers is very
strong and, hence, the monomers undergo high-frequency
oscillations given by ω �√

k
m

→∞. Measurements will typically
time average over a few periods. The time-averaged behavior
of the tagged monomer is, again, of a Brownian particle acted
on by a constant force. The effective force goes to the constant
force f . The time averaged total noise goes to white noise
ξ1(t) and the time-averaged memory kernel μ(t) disappears.

(3) The overdamped limit. The high friction limit refers to
the case when the viscosity of the medium is so high that the
acceleration of the monomers is zero, and the only variables
which are changing are position. To take the overdamped
limit in a meaningful manner, together with taking the friction
coefficient γ to infinity, one has to take the mass m of all
monomers to zero, preserving the product χ = mγ to be finite.
The memory kernel then reduces to

μ(t) = ke−kt/χ . (20)

The memory kernel after taking the continuum limit is

μ(t) = 2

√
πχk

t
e−t/τ , (21)

where τ = N2χ/(π2k), as shown before in [7] under equilib-
rium dynamics.

V. NONUNIFORM DRIVING

We are now in two dimensions with forcing at one end
of the polymer in the horizontal direction with an amplitude
that is proportional to the vertical distance. This dependence
is similar to a shearing force, but we do not insist here on
the presence of a fluid (as we treat the Rouse model and not,
e.g., the Zimm model). Rather, we have in mind that we can
manipulate the outer monomer of a polymer in a melt in a
nonuniform way. To a good approximation, that would be
the case when nanoparticles are attached to the polymer and
undergo nonrigid rotation, where the angular velocity depends
on the radial distance (here, the vertical distance).

An interesting result here is that the friction kernel μ(N)(t)
is identical to the case of constant forcing (previous section).
To be explicit, and without loss of essential information, we
can already state the results for N = 2.

The memory kernel in each direction is given by

μ1x(t) = μ1y(t) = κ

m
e−γ t/2

[
cos(ωt) + γ

2ω
sin(ωt)

]
,

which is indeed the same as for a dimer in free space under
constant forcing. This is due to the fact that the external forcing
does not couple to velocity but only to position. The nature
of μ in the two mutually perpendicular directions and various
limits, hence, remains the same.

The nature of the induced noise, however, gets modified
due to the different nature of the external force. The noise in
general is dependent on the initial positions and velocities of
all the monomers and, hence, picks up additional contributions
from the external force, which is coupled to the y component
of the position of the first monomer. Here is the explicit noise
function:

η1x(t) = −κ[R1x(0) − R2x(0)]

[
cos(ωt) + γ

2ω
sin(ωt)

]
e−γ t/2

+ κṘ2x(0)e−γ t/2 sin(ωt)

ω

+ κ

m

∫ t

0
e−γ (t−t ′)/2 sin[ω(t − t ′)]

ω
ξ2x(t ′)dt ′

+ f

mω
κ

∫ t

0
dt ′e−γ (t−t ′)/2sin(ω(t − t ′))

×
{
R2y(0)

[
cos(ωt ′) + γ

2ω
sin(ωt ′)

]

+ Ṙ2y(0)
sin(ωt ′)

ω

}
+ f

mω

κ

mω

∫ t

0

∫ t ′

0
dt ′dt ′′e−γ (t−t ′′)/2

× sin[ω(t − t ′)] sin[ω(t ′ − t ′′)]ξ2y(t ′′). (22)

Putting f = 0 in (22) gives us back the noise on a polymer
under constant force (17). The external force couples the x

component of noise to the dynamics in the y direction. The
initial positions in the y direction as well as the component
of the white noise ξ2y(t) in the y direction now play a role in
the dynamics in the x direction of the second monomer. The
y component of the noise remains unaffected by the force,
since the external force does not couple to the motion in the y

direction,

η1y(t) = −κ[R1y(0) − R2y(0)]

(
cos ωt + γ

2ω
sin ωt

)
e−γ t/2

+κṘ2y(0)e−γ t/2 sin(ωt)

ω

+ κ

m

∫ t

0
e−γ (t−t ′)/2 sin[ω(t − t ′)]

ω
ξ2y(t ′)dt ′. (23)

We now come to the induced force. The x component of the
effective force is

G1x(t) = f
κ2

m2ω2

∫ t

0
dt ′

∫ t ′

0
dt ′′e−γ (t−t ′′)/2 sin[ω(t − t ′)]

× sin[ω(t ′ − t ′′)]R1y(t ′′). (24)

Again, as a nonequilibrium effect, the effective force has
memory. On the other hand, its y component G1y(t) stays
zero. Indeed, since the applied force itself is acting in the x

direction, there is no reason why the effective dynamics in the y

direction of the tagged monomer should become affected by it.
Let us now go to the results for general N . The memory

kernels μ̃(N)
x (s) and μ̃(N)

y (s) look as they did in the case of
constant force (12), with the same “initial” conditions. The
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recurrence relation for the coloured noise picks up changes
due to shearing, as discussed under (22) and (23); they arise

due to the fact that the nonuniform forcing couples the x and
y components of motion.

η̃(N)
x (s) = mμ̃(N)

x (s)
[
R(N−1)

x (0) − Rx(0)
] + mκ[

msμ̃
(N−1)
x (s) + msγ + s2 + κ

] Ṙ(N−1)
x (0) + κ[

msμ̃
(N−1)
x (s) + msγ + ms2 + κ

]

× [
η̃(N−1)

x (s) + ξ̃ (N−1)
x (s)

] + f κ3

{[
s + γ + μ̃(N−1)

y (s)
]
R(N−1)

y (0) + Ṙ(N−1)
y (0) + ξ̃ (N−1)

y (s)/m + η̃(N−1)
y (s)/m

}
[
ms2 + mγ s + κ + msμ̃

(N−1)
x

][
ms2 + mγ s + κ + msμ̃

(N−1)
y

]
[ms2 + mγ s + κ]

.

(25)

The most interesting aspect of the nonuniform case is the appearance of memory in the induced force. We have already seen this
in the case of two monomers (24). This behavior persists in general with

F̃ (N)
x (s) = G̃(N)

x (s)R̃(N)
y (s), (26)

G̃(N)
x (s) = κ2[

ms2 + γ s + k + msμ̃
(N−1)
x (s)

][
ms2 + γ s + k + msμ̃

(N−1)
y (s)

]G̃(N−1)
x (s). (27)

Starting the recurrence with a single monomer where G̃(1)
x (s) =

f , all subsequent forces can be determined using Eqs. (26) and
(27). The initial force on a single monomer in the y direction
is zero, hence, F̃ (N)

y (s) = 0, as also seen in the two-monomer
case.

We studied the asymptotic behavior of the force-memory
kernel G̃(N)

x (s) in the same spirit as in Appendix A. It can
be shown easily, following the same line of arguments, that
G̃(N)

x (s) decays exponentially in time. In the long time limit,
for all N ,

G(N)
x (t) < e−γ t/2.

VI. TRAPPED MONOMER

On introducing an external potential Uext such that the
force in the x direction on the outer edge depends on the
x component of the distance of the monomer from a fixed
origin, the resulting force is not nonconservative but simply
trapping. This is, thus, an equilibrium reference; the force is
conservative in nature. The result is a rescaling of the frequency
�2 = k+f

m
− γ 2

4 . The effective force on the tagged monomer
due to the action of this external potential is

F (t) = − κf

κ + f
R1(t) + κf Q

κ + f

×
[

1 − e−γ t/2

(
cos �t + γ

2�
sin �t

)]
. (28)

We recognize the effective spring replacing two springs
connected in series,

1

κeff
= 1

κ
+ 1

f
.

This is another way to understand the net restoring force on
R1. After all, it looks like a trapping potential around the origin
but of strength κeff .

The colored noise due to unknown initial conditions is

η1(t) = κ2

κ + f
[R2(0) − R1(0)]e−γ t/2

(
cos �t + γ

2�
sin �t

)

+ κf

k + f
R2(0)e−γ t/2

(
cos �t + γ

2�
sin �t

)

+ κṘ2(0)e−γ t/2 sin �t

�

+ κ

m

∫ t

0
eγ (t−t ′)/2ξ2(t ′)

sin[�(t − t ′)]
�

dt ′, (29)

where 〈η1(t)〉R1
ρst

= κf Q

κ+f
e−γ t/2[cos(�t) + γ

2�
sin �t] for distri-

bution

ρst(R2) = 1

Z
e
−β

(κ+f )
2 (R2− (κR1+f Q)

κ+f
)2

e
β

(κR1+f Q)2

2(κ+f ) e−β
(κR2

1+f Q2)

2 .

The memory kernel is given as

μ(t) = k2

m(k + f )
e−γ t/2

(
cos �t + γ

2�
sin �t

)
. (30)

Given the conservative nature of the forces, the second
fluctuation-dissipation theorem is seen to hold:

〈η1(t1)η1(t2)〉ρ = m

β
μ(τ ),

where τ = t1 − t2 and t1 + t2 −→ ∞.

VII. CONCLUSIONS AND OUTLOOK

Integrating out degrees of freedom introduces non-
Markovian noise, effective forces, and memory in a tagged
particle dynamics. This is true in equilibrium as in nonequi-
librium, and, when starting from coupled diffusion processes,
the result is a generalized Langevin equation. Certain more
detailed aspects are also unchanged, like the anomalous
nature of the memory kernel for short times which goes
into pure diffusion for long times or the N2 dependence of
the relaxation times. Other important aspects fundamentally
change when the integration is over nonequilibrium degrees
of freedom. Naturally, the remaining and visible degrees of
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freedom inherit nonequilibrium features and detailed balance
gets broken. As a result, the so-called second fluctuation-
dissipation theorem or Einstein relation gets violated. For
the moment, however, there is no systematic understanding
of exactly how that Einstein relation is modified. To put it
differently, when considering a diffusion model for a particle
(e.g., colloids) in a nonequilibrium environment, such as the
viscoelastic medium of the cell, we have little idea of how
to relate the noise with the friction term, as they have the
same physical origin [22]. The outlook is then to find the
analog of what has been called the frenetic contribution to the
first fluctuation-dissipation theorem [23]. Indeed, we expect
a nonentropic and more kinetic contribution in the breaking
of the second fluctuation-dissipation theorem, much like that
discussed for the modification of the Sutherland-Einstein
relation [24]. For the moment, however, we must deal with
examples and prototypical examples, such as the Rouse model
of the present paper, where exact computations are possible.
In that case, say, in the case of nonuniform driving, the second
fluctuation-dissipation relation is broken, but for the uniform
driving that is only a transient effect as found in (15). A more
general theory will, of course, need to conform to the findings
of the present paper.

A second set of more general research questions really
inverts the calculations of the present paper. The aim is
then to be able to reconstruct the nonequilibrium forcing
on the hidden degrees of freedom from the effective motion
of the probe or tagged or visible degrees of freedom. The
standard example from equilibrium statistical mechanics is
the free energy of a thermodynamic system which can be
measured from the work on some probe that is coupled to
the system. For nonequilibrium statistical mechanical systems
there are plenty of nonequilibrium entropies and fluctuation
functionals [25], but so far, no solid and general operational
meaning has been attached to them. We would again like to
determine these nonequilibrium fluctuation functionals from
the effective forces on probes. In the present paper it would
mean reconstructing important nonequilibrium features of the
full polymer dynamics from the motion and effective dynamics
of the tagged monomer. Clearly, before that program can
start, the direct question as in the paper must be sufficiently
understood. We conclude that the Rouse dynamics provides
an interesting and important playground for questions that
in the future must be addressed in the construction of a
nonequilibrium statistical mechanics.
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APPENDIX: DETAILS AND COMPUTATIONS

Let us specify the case of constant forcing. The initial
conditions for the recurrence are μ̃(1)(s) = 0, G̃(1)(s) = f/s,
and η̃(1)(s) = 0. The stationary distribution of R

(N−1)
2 (0) where

R1(0) is given by

ρst = 1

Z
e−βHst ,

where

Hst = κ

2

[
R

(N−1)
2 (0) − R1(0)

]2 − G
(N−1)
st R

(N−1)
2 (0),

where we take it that external force has always been on. Of
course, it is also important here to separate transient from
stationary behavior. For example, for the force on q2, we
have at stationarity G

(N−1)
st = limt→∞ G(N−1)(t) and, as an

illustration, we will show, using recurrence, that in the case of
constant forcing it always equals the originally applied force,
G

(N−1)
st = f .
We start from the relation

lim
t−→∞ G(N−1)(t) = lim

s−→0
sG̃(N−1)(s).

The recurrence relation for the force (13) starts from a dimer,

G̃(2)(s) = κG̃(1)(s)

[msμ̃(1)(s) + msγ + ms2 + κ]

= κf

s(msγ + ms2 + κ)
.

By a simple calculation it is seen that

lim
s−→0

sG̃(2)(s) = f.

Now, for a polymer of size N − 2 (induction hypothesis),

lim
s−→0

sG̃(N−2)(s) = f.

We can use the recurrence relation and the property
lims−→0 sμ̃(N)(s) = 0 shown in Eq. (A4), to see that also

lim
s−→0

sG̃(N−1)(s) = f,

as wanted. The stationary distribution thus is given by

ρst = 1

Z
e−β{ κ

2 [R(N−1)
2 (0)−R1(0)2]−f R

(N−1)
2 (0)}. (A1)

The mean noise is

〈
η̃

(N)
1 (s)

〉
st = m

f

κ
μ̃

(N)
1 (s).

1. Asymptotic behavior of memory

We show here that the memory kernel μ̃(N)(s) decays
exponentially in the long time limit, again by recurrence. We
take the constant force case as the simplest example.

From (16) we see that, for a dimer,

lim
t→∞ eλtμ(2)(t) = 0 for λ < γ/2,

which translates to

lim
s→0

sμ̃(2)(s − λ) = 0 (A2)

in the Laplace space.
Let us assume that for a polymer of size N − 1

lim
s→0

sμ̃(N−1)(s − λ) = 0 (induction hypothesis) (A3)
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and let us choose λ = γ /4. That would show that, for a polymer of size N ,

lim
s→0

sμ̃(N)(s − γ /4) = lim
s→0

s
κ[μ̃(N−1)(s − γ /4) + γ + s − γ /4]

[m(s − γ /4)μ̃(N−1)(s − γ /4) + m(s − γ /4)γ + m(s − γ /4)2 + κ]
= lim

s→0
3sγ /4 = 0, (A4)

where we have used recurrence relation (12) and hypothesis
(A3) and the fact that lims→0 μ̃(N)(s) is a constant, as is easy
to show. The above result translates to

lim
t→∞ eγ t/4μ(N)(t) = 0.

Hence, in the long time limit, for all N ,

μ(N)(t) < e−γ t/2,

which also proves the claim made in Sec. IV A that the time
of relaxation is bounded from below by 2/γ .

2. Second fluctuation-dissipation relation in Laplace space

The second fluctuation-dissipation relation says that
the stationary noise autocorrelation function is pro-
portional to the memory kernel μ(t) through inverse
temperature β,

〈η(t)η(t + τ )〉 = m

β
μ(τ ) + O

(
1

t
,τ

)
, (A5)

such that in the long time limit all terms of the order 1/t or
greater drop out.

We continue by deriving that relation in Laplace space.
Let s be the variable in the Laplace space, domain |Re{s}| <

γ/2, such that the Laplace transform is well defined; see
Appendix A 1:

〈η̃(s)η̃(s ′)〉 =
∫ ∞

0

∫ ∞

0
e−st e−s ′t ′ 〈η(t)η(t ′)〉dtdt ′

Let t ′ = t + τ

=
∫ ∞

0
e−st dt

∫ ∞

−t

e−s ′t e−s ′τ 〈η(t)η(t + τ )〉dτ

=
∫ ∞

0
e−(s+s ′)t dt

∫ ∞

−t

e−s ′τ 〈η(t)η(t + τ )〉dτ

Let (s + s ′)t = T

= 1

s + s ′

∫ ∞

0
e−T dT

∫ ∞

− T

s+s′
e−s ′τ

×
〈
η

(
T

s + s ′

)
η

(
T

s + s ′ + τ

)〉
dτ. (A6)

Rewriting (A5) and plugging in the result in (A6):〈
η

(
T

s + s ′

)
η

(
T

s + s ′ + τ

)〉
= m

β
μ(τ ) + O(s + s ′)

〈η̃(s)η̃(s ′)〉 = 1

s + s ′

∫ ∞

0
e−T dT

∫ ∞

− T

s+s′
e−s ′τ

×
[
m

β
μ(τ ) + O(s + s ′)

]
dτ.

Hence,

lim
s+s ′→0

(s + s ′)〈η̃(s)η̃(s ′)〉 = m

β

∫ ∞

−∞
e−s ′τμ(τ )dτ

= m

β
[μ̃(s) + μ̃(−s)] (A7)

is the form of the second fluctuation-dissipation relation in
Laplace space.

3. Proof by induction

We prove our claim that the second fluctuation-dissipation
relation holds in the case of constant force for a polymer of
general size N . We give the explicit calculation for the case of
a dimer.

Given memory kernel (12) and noise (14), which is
distributed as ρst(R2,Ṙ2) as given in (A1), one can calculate
the correlation function 〈η̃(2)(s)η̃(2)(s ′)〉st. Using the relation

lim
s+s ′→0

(s + s ′)〈ξ̃i(s)ξ̃j (s ′)〉 = 2mγ

β
δij , (A8)

it is shown by a simple calculation that

lim
s+s ′→0

(s + s ′)〈η̃(2)(s)η̃(2)(s ′)〉 = m

β
{μ̃2(s) + μ̃2(−s)}, (A9)

which proves the result.
To prove it for a general polymer, we use the induction

hypothesis that for a polymer of size N − 1 the second
fluctuation-dissipation relation holds:

lim
s+s ′→0

(s + s ′)〈η̃(N−1)(s)η̃(N−1)(s ′)〉st

= m

β
{μ̃(N−1)(s) + μ̃(N−1)(−s)}.

From the recurrence relations (14) and from (A8), one easily
shows that

lim
s+s ′→0

(s + s ′)〈η̃(N)(s)η̃(N)(s ′)〉st = κ2[μ̃(N−1)(s) + μ̃(N−1)(−s)]

mβ
[
sμ̃(N−1)(s) + sγ + s2 + κ

m

][ − sμ̃(N−1)(−s) − sγ + s2 + κ
m

]

+ 2γ κ2

mβ
[
sμ̃(N−1)(s) + sγ + s2 + κ

m

][ − sμ̃(N−1)(−s) − sγ + s2 + κ
m

] .
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Using the recurrence relations for memory (12),

μ̃(N)(s) + μ̃(N)(−s) = κ2[μ̃(N−1)(s) + μ̃(N−1)(−s)]

m2
[
sμ̃(N−1)(s) + sγ + s2 + κ

m

][ − sμ̃(N−1)(−s) − sγ + s2 + κ
m

]

+ 2κ2γ

m2
[
sμ̃(N)(s) + sγ + s2 + κ

m

][ − sμ̃(N)(−s) − sγ + s2 + κ
m

] ,

which proves the claim. Therefore, the second fluctuation-
dissipation relation holds for a polymer of arbitrary size under
the action of a constant force.

In the case of nonuniform forcing, we are in two dimensions
and the computations become more involved, but the basic
recurrence relations remain in place.
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