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Yang-Lee zeros and the critical behavior of the infinite-range two- and three-state Potts models
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The phase diagram of the two- and three-state Potts model with infinite-range interactions in the external
field is analyzed by studying the partition function zeros in the complex field plane. The tricritical point of the
three-state model is observed as the approach of the zeros to the real axis at the nonzero field value. Different
regimes, involving several first- and second-order transitions of the complicated phase diagram of the three-state
model, are identified from the scaling properties of the zeros closest to the real axis. The critical exponents related
to the tricritical point and the Yang-Lee edge singularity are well reproduced. Calculations are extended to the
negative fields, where the exact implicit expression for the transition line is derived.
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I. INTRODUCTION

Since the famous work of Yang and Lee [1,2], the zeros
of the partition function in a complex activity plane were
extensively studied as a useful tool in the investigation of
various aspects of phase transitions, eventually giving rise to a
new type of criticality related to complex parameters such
as the Yang-Lee edge singularity [3]. Although originally
introduced in the context of the Ising model for explaining
singularities related to the second-order phase transition, zeros
appear to be useful for deriving the related critical exponents
and even distinguishing the nature of a phase transition for a
variety of models (see, e.g., [4] or [5] for a recent review).

In the case of the Ising model, where all the zeros lie along
the circle in the complex plane, the correspondence between
the density of zeros and thermodynamic potentials is simple
and straightforward. For the Potts model [6] with an arbitrary
number of states, the layout of Yang-Lee zeros is much more
complicated [7–11] while even more intensive investigations
were conducted on Fisher zeros [12,13] in this model [14]
and the zeros in the complex-q plane [15–18]. As far as the
Yang-Lee zeros are concerned, it was shown analytically in
one dimension [19] and by numerical calculations on small
systems in higher dimensions [8,10] that, for general q, these
zeros do not lie on the unit circle of the complex activity
plane, and that multiple lines or bifurcations may occur [9].
This is related to a more complicated phase diagram of this
model. When the number of states of the Potts model is larger
than 2, the presence of real, positive external field h does
not necessarily destroy the phase transition, but produces a
line of first-order phase transitions ending with the tricritical
point. The model is not symmetric under exchange h ↔ −h,
and in the presence of a negative field, a different and less
explored [20] transition takes place. All this leads to a more
complicated phase diagram in the temperature-field plane that
involves both continuous and first-order phase transitions and
the tricritical points. In the complex activity plane, this is
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reflected by the fact that zeros do not lie on the unit circle,
while more than one line of zeros that approach the real axis
may appear.

The main purpose of this paper is to present, in the
special case of the three-state Potts model with infinite-range
interactions, an integrated view covering different critical
regimes of the entire phase diagram in terms of the behavior
of the partition function zeros in the complex activity plane.
We also report the results for the Yang-Lee edge singularity
above the tricritical temperature of this model.

The infinite-range Potts model is equivalent to the mean-
field (MF) approximation of the standard Potts model with
short-range (SR) interactions [21,22], which describes the
critical behavior of the SR model correctly only in sufficiently
high dimensions above the upper critical dimension. Neverthe-
less, its phase diagram displays similar diversity to that of the
SR model, while it may be approached analytically using the
saddle-point approximation. In our approach, we apply twice
the Hubbard-Stratonovich transformation to obtain the exact
two-parameter analytic expression for the free energy of the
infinite-range model. The same approach permits us to obtain
implicit analytic expressions for the partition function zeros
and to calculate zeros close to the real axis in the finite system.
The finite-size scaling analysis of a few zeros that lie closest to
the real axis then allows us to identify different critical regimes
and calculate the related critical exponents.

The outline of the paper is following. In Sec. II, we
illustrate the approach for the simple q = 2 case, which is
also used to obtain some estimates about the precision of nu-
merical calculations of the partition function zeros. The same
methodology is then applied to the q = 3 model in Sec. III.
We first derive an exact two-parameter expression for the
free-energy density to be solved by a saddle-point method, and
we discuss its shapes in the two-parameter space, related to
different regimes of the phase diagram. In Secs. III A and III B,
we derive analytical expressions for the scaling properties of
the lowest zeros in different critical regimes for the cases
with h � 0 and h < 0, respectively. In Sec. III B1, we present
the numerical results for the partition function zeros and the
numerical derivation of scaling exponents. Section IV contains
the concluding remarks.
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II. q = 2 (ISING) MODEL

The energy of the q-state MF Potts model with N particles
in the external field H has the form

E = − J0

N

N−1∑
i=1

N∑
j=i+1

δ (si,sj ) − H

N∑
i=1

δ (si,1), (1)

where si denotes the particle at site i, which can occupy one of
the q Potts states, while any two particles interact with the same
two-particle interaction J0/N , regardless of their distance.

The reduced energy may be written in terms of numbers of
particles belonging to each of the q states, which for q = 2 are
denoted by N1 and N2,

− E

kBT
= K

N

[(
N1

2

)
+

(
N2

2

)]
+ hN1, (2)

where

K ≡ J0

kBT
, h ≡ H

kBT
= h1 + ıh2, (3)

and, by conservation of the total number of particles, N =
N1 + N2. The partition function

ZN =
N∑

N1=0

(
N

N1

)
e−E/(kBT ), (4)

after applying the Hubbard-Stratonovich transformation

eA2 = 1√
2π

∫ +∞

−∞
e− 1

2 y2+Ay
√

2dy, (5)

with

A =
√

KN

[
N1

N
+ 1

2

(
h

K
− 1

)]
, (6)

turns into an integral

ZN ∼
∫

e−Nf (S)dS, (7)

f (S) = KS

4
(S + 2) − ln[1 + eKS+h]. (8)

It may be solved by a standard saddle-point approximation,
which we recall here briefly. The corresponding extremal
condition may be expressed by

S = tanh
KS + h

2
, (9)

where S = (2N1/N ) − 1 is the order parameter, and the model
has a second-order phase transition for h = 0 and K0 = 2.

The density of partition function zeros, g, which all are
located on the imaginary axis of the complex field plane, is
related [23–25] to the jump in the order parameter S,

S = 2πg, (10)

where S is the solution of Eq. (9). Above the critical
temperature (K < 2), the gap free of zeros opens around the
real axis. At its edge h2,edge, which depends on temperature
as [4]

h2,edge = ±
[

2 arctan

√
2

K
− 1 − K

√
2

K
− 1

]
, (11)

TABLE I. Exact values of anomalous dimensions yh and yg as a
function of K .

K < 2 K = 2 K > 2

yh 2/3 3/4 1
yg 1/3 1/4 1

another second-order phase transition in this model takes
place, known as the Yang-Lee edge singularity.

The exact expressions for the critical exponents are known
[4,22] for both transitions. We shall be interested in scaling
properties of the field h and the density of zeros g for which the
exact values of their anomalous dimensions in different critical
regimes are summarized in Table I. Note that the anomalous
dimensions yh and yg are not defined here in the standard way.
Due to the infinite range of interactions, the space scale has no
meaning, so that the size scaling is carried out by scaling the
number of particles instead. To obtain the standard anomalous
dimensions for this model as obtained when applying the
mean-field approximation to the short-range version of this
model, one should multiply [18] the above exponents by dc, the
upper critical dimension of the corresponding phase transition
(which is equal to 4 for the Ising transition and 6 for the
Yang-Lee edge singularity).

The anomalous dimension of the field is denoted as yh,
which may be obtained from the scaling with size of the
distance (in the parameter space) of the imaginary component
of the field h2 from its edge value, hedge,

h2 − hedge ∼ N−yh . (12)

The exponent yg = yhσ denotes here the anomalous dimen-
sion of the density of zeros, the power-law decay of which is
described near criticality by the exponent σ ,

g − gedge ∼ (h2 − hedge)σ ∼ (N−yh )σ ∼ N−yg . (13)

Let us now sketch briefly the numerical derivation of these
scaling properties by using the partition function zeros closest
to the real axis.

A. Partition function zeros—Numerical results

For finite N , the partition function (4) is the polynomial of
order N in the complex variable z = eh. The usual root-finding
routines soon become inapplicable for finding the roots of ZN

as N increases. Instead, we look for the numerical solutions
of the two equations

ReZN = 0, ImZN = 0 (14)

in a complex (h1,h2) plane. A typical example of the layout of
these zeros, given by the intersections of dark gray lines and
light gray lines, h1 = 0, is presented in Fig. 1.

Consistent with the Yang-Lee theorem, these zeros lie on
the imaginary axis. As can be observed in Fig. 1, the precision
of such a calculation deteriorates for the remote zeros, which
start to deviate from the imaginary axis [7] as a consequence
of the accumulation of numerical errors, which increase with
N and with decreasing K . However, we do not have to deal
with this problem here, since only a few zeros closest to the
real axis suffice to detect different regimes and to analyze the

022140-2



YANG-LEE ZEROS AND THE CRITICAL BEHAVIOR OF . . . PHYSICAL REVIEW E 87, 022140 (2013)

-0.001 -0.0005 0 0.0005 0.001
h

1

0

0.0005

0.001

h 2

Numerical error

FIG. 1. (Color online) Solutions of the equations ReZN = 0 [blue
(dark gray) lines] and ImZN = 0 [orange (light gray) lines, including
the h1 = 0 axis] for N = 1 000 000 particles at K = 2. For distant
points errors can be observed as deviations of intersections from the
imaginary axis.

corresponding singularities. Our analysis will thus be focused
on these zeros, and include a comparison to the exact results
allowing the estimation of related errors.

We calculated the position of the two zeros closest to the
real axis for a sequence of different sizes, ranging from 10 2

up to 10 6 particles. The distance of the zero closest to the real
axis is used as an estimate of the position of the Yang-Lee
edge at a given temperature, while its convergence to its value
in the thermodynamic limit is expected, according to scaling
property (12), to give the anomalous dimension yh,

h2(N ) = h2,extr + const

Ny2
+ · · · . (15)

The results of extrapolating data by a simple least-squares fit
are presented in Table II.

The errors of the extrapolated values in Table II (as well
as in all the following tables) have two origins. First is the
pure numerical error, which is relatively small (e.g., for y2 it
ranges from 10−4 to 10−6 with increasing K) due to the high
accuracy (10–12 digits) of the input data. The second type
of errors is due to the finite-size effects, and it comes from
neglecting the higher-order correction terms in (15) and (18).
They are in all cases one or more orders of magnitude larger
than the numerical errors. In the tables, the extrapolated values

TABLE II. Numerical (h2,extr) and analytical(h2,edge) values for
the Yang-Lee edge, followed by the numerical convergence exponent
y2 and its exact value yh from Table I. The error bars are estimated to
be of order of the last cited digit. The numerical part of the errors is at
least one order of magnitude smaller than the overall errors (including
also the finite-size corrections).

K h2,extr h2,edge y2 yh

2.5 10−9 0 1.00002 1
2.0 10−8 0 0.7497 3/4
1.9 0.01514 0.015136 . . . 0.664 2/3
1.5 0.1814 0.18117 . . . 0.65996 2/3
1.1 0.478 0.4756 . . . 0.67 2/3

TABLE III. Numerical (gextr) and analytical [gexact, from Eq. (10)]
values for the edge density of zeros, followed by the numerical
exponent yg,extr and its exact value yg (from Table I). The error bars
are estimated to be of order of the last cited digit. The numerical part
of the errors is at least one order of magnitude smaller than the overall
errors (including also the finite-size corrections).

K gextr gexact yg,extr yg

2.5 0.11306554704 0.11306554697 0.9999 1
2.0 10−6 0 0.2501 1/4
1.9 10−3 0 0.29 1/3
1.5 10−3 0 0.30 1/3
1.1 10−2 0 0.28 1/3

are presented up to the first digit that differs from the exact
value. Results presented in the second column clearly indicate
the opening of the gap for K < K0 = 2. Good agreement also
exists between the convergence exponent y2 and the exactly
known anomalous dimension yh of the field (fourth and fifth
columns).

The second quantity of interest is the edge density of zeros,
gN , defined as

gN = 1

N

dn

dl
. (16)

The density of zeros near the Yang-Lee edge can be numer-
ically calculated from the distance between the two zeros
closest to the real axis, h(0) and h(1),

dl = [(
h

(1)
1 − h

(0)
1

)2 + (
h

(1)
2 − h

(0)
2

)2]1/2
, (17)

using a discrete version of Eq. (16) with dn = 1. It was
extrapolated to the limit N → ∞ by a least-squares fit to the
form given by Eq. (13), i.e.,

gN = gextr + const

Nyg,extr
. (18)

The results of these extrapolations are presented in Table III.
The vanishingly small numerical values of the edge density of
zeros indicate a second-order transition for K � 2. At lower
temperatures, the transition is of first order, and the edge
density of zeros has a finite value. The critical exponent of the
Yang-Lee edge singularity is in excellent agreement with the
exact value for the Ising phase transition, given by the scaling
at K = 2. The scaling exponent for K � 2, corresponding to
the Yang-Lee edge singularity, indicates a different critical
regime, but is obtained with less precision.

III. q = 3 MODEL

For the three-state Potts model in the symmetry-breaking
field, the reduced energy may be written as

− E

kBT
= K

N

[(
N1

2

)
+

(
N2

2

)
+

(
N3

2

)]
+ hN1, (19)

N1 + N2 + N3 = N, (20)

where N1,N2,N3 denote numbers of particles in the three
respective states. The external field is conjugated here to the
Potts state 1 and (dis)favors it, depending on the sign of h.
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FIG. 2. (Color online) Phase diagram: Ising transition (h < 0),
open circles; KMS transition (h > 0), thick full line. At low
temperatures, K > K0(3), Ising and KMS lines are merged and a
transition exists only for h = 0, broken line.

Compared to the Ising case, this model has a much richer
phase diagram (Fig. 2), the details of which will be discussed
later in this section. In addition to the number of exact results
for h � 0 and arbitrary value of q [22], we pay special attention
to the less investigated h < 0 part of the diagram. For h = 0
and q > 2, the Potts model has a first-order phase transition at
inverse temperature

K0(q) = 2
q − 1

q − 2
ln(q − 1). (21)

For q = 3, K0(3) = 4 ln 2 = 2.772 588 722 239 781 . . . .
While in the presence of an external magnetic field, there

is no transition for q = 2, models with q > 2 conceal a more
complicated critical behavior [26–29] with two types of field-
driven transitions: for h > 0 and for h < 0. For h > 0, there
is a line of first-order transitions in the (K,h) plane,

h(K) = 1

2

q − 2

q − 1
[K0(q) − K], Ktr < K � K0(q), (22)

which starts at (K0(q),0) and ends at the tricritical point
(Ktr,htr) with

Ktr(q) = 4
q − 1

q
, htr(q) = ln(q − 1) − 2

q − 2

q
, (23)

where the transition is of second order. For q = 3, Ktr(3) =
8/3 = 2.6̇, htr(3) = 0.026 480 513 893 278 64 . . . , and the
transition line is shown by the thick full line in Fig. 2.

For negative values of h, the line of first-order transitions
also starts at (K0(q),0) and approaches asymptotically the
point (K0(q − 1), − ∞) (open circles in Fig. 2). The exact
functional dependence h = h(K) is not known.

For the purpose of numerical calculations, it is useful to
present the partition function in a polynomial form,

ZN =
N∑

n=0

an(K)z n, z = eh, (24)

with the coefficients an given by

an(K) = eK(N−1)/2 N !

(N − n)!
e(K/N)[n2−Nn]

n∑
m=0

e(K/N)[m2−nm]

m!(n − m)!
.

(25)

On the other hand, for the analytical approach, the partition
function, written as

ZN = eK(N−1)/2e−(NK/4)[(4/3)(h/K−1/2)2+1]

×
N∑

N1=0

(
N

N1

) N−N1∑
N2=0

(
N − N1

N2

)
eA2

1eA2
2 , (26)

with

A1 =
√

NK

(
1

2

N1

N
+ N2

N
− 1

2

)
,

A2 =
√

3NK

4

[
N1

N
+ 2

3

(
h

K
− 1

2

)]
,

allows a twofold application of the Hubbard-Stratonovich
transformation (5) which reduces it to a double integral,

ZN ∼
∫ +∞

−∞

∫ +∞

−∞
dx dS e−Nf (x,S), (27)

with the exact free-energy density f (x,S),

−f (x,S) = −K

(
x

2

)2

− K

3
S(S + 1)

+ ln

[
2 cosh

xK

2
+ eKS+h

]
, (28)

where S = (3N1/N − 1)/2 is the order parameter for h � 0,
and x = (N2 − N3)/N is the order parameter for h < 0. The
integral (27) is then solved by a saddle-point approach. The
locations of minima are the solutions of a two-by-two system
of equations for x and S,

x = 2 tanh(xK/2)
1

eKS+h

cosh(xK/2) + 2
, (29)

S =
eKS+h

cosh(xK/2) − 1
eKS+h

cosh(xK/2) + 2
. (30)

The MF approaches to the general q-state Potts model, such
as the solution by Kihara et al. [21], usually neglect the
fluctuations among states orthogonal to the ordered one, which
corresponds to taking x = 0. We examine here the free energy
in the entire (x,S) plane. In Figs. 3–6 we illustrate the shapes of
f for several characteristic values of temperature and the field,
corresponding to different phases. For clarity in the figures, the
maxima of −f are displayed instead of the minima of f .

At low temperatures, the three maxima of the same height
are obtained only for h = 0 [Fig. 3(a)]. They correspond to a
triply degenerate ordered phase of the system for h = 0. By
increasing temperature, the maximum at the origin [Fig. 3(b)],
which corresponds to the disordered state, appears and starts
to rise. For K0(3) = 4 ln 2 = 2.772 . . . , all four maxima reach
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FIG. 3. (Color online) The free-energy density −f (x,S) at (a) (K,h) = (3.5,0) and (b) (K,h) = (2.79,0).

the same height (Fig. 4), indicating the coexistence between
disordered and ordered phases at the first-order transition point
(K,h) = (K0(3),0). At still higher temperatures, K < K0(3),
the maxima behave differently for positive and negative values
of h (Fig. 5). For positive values of the field, two maxima
appear [Fig. 5(b)], which represent the transition that we
denote here as the KMS1 transition, while for negative values
of the field, there are three maxima [Fig. 5(a)] representing the
transition denoted here as the Ising2 transition.

At the KMS transition, the distance between the two
maxima diminishes as K goes to its tricritical value, until they
eventually merge at (KKMS

tr ,hKMS
tr ) given by (23) [Fig. 6(b)].

The transition denoted as Ising exists for all K0(3) >

K > K
Ising
tr = K0(2) = 2. At K Ising

tr and h
Ising
tr = −∞, all three

maxima [similar to those from Fig. 6(a)] merge and the
system undergoes a second-order phase transition of an Ising
universality class.

For a summary of the critical behavior of the present model,
let us turn back to the phase diagram in Fig. 2. There are four
distinct phases:

(i) Disordered phase at high temperatures.
(ii) For h > 0, there is an ordered phase in the Potts state 1.

The ground state of this phase is nondegenerate. The transition
between this phase and the disordered phase is of first order
(the thick full line in Fig. 2), except at the end point (tricritical
point), where the transition is of second order, and where it is
possible to go continuously from phase (i) to phase (ii).

(iii) For h = 0, there is a line of first-order transitions
between phase (ii) and phase (iv) (broken line in Fig. 2). Its
ground state is triply degenerate.

(iv) For h < 0, the number of particles in state 1, coupled to
the field, is suppressed favoring the particles in the Potts states
2 or 3. The ground state of this phase is twice degenerate.
The first-order transition line separating the phase (iv) and
the disordered phase is marked by the open circles in Fig. 2.
This line has no end point and goes down to h = −∞. The
continuous transition between phase (iv) and the disordered
phase is not possible, except at infinity.

Let us discuss first the scaling properties at different
transitions.

A. h > 0, KMS transitions

A set of solutions satisfying the extrema conditions (29)
and (30) corresponds to x = 0, while S is the solution of the

1After the approximation of Kihara et al., as explained in Sec. III A.
2See Sec. III B.

equation

S = eKS+h − 1

eKS+h + 2
. (31)

The same equation is found in the approximation used by
Kihara et al. [21,27] to the second-order phase transition in
the MF Potts model, which neglects the fluctuations within
the remaining (q − 1) states. For h and K , related through
Eq. (22) (the thick full line in Fig. 2),

h = ln 2 − K

4
, (32)

the positions of the extrema S± [Fig. 5(b)] are of the form

S± = 1
4 ± �S, (33)

where �S is a solution of the equation

K�S = ln
1 + 4

3�S

1 − 4
3�S

. (34)

As the temperature rises, K < K0(3), the distance between
the two maxima S± decreases and eventually vanishes at the
tricritical point (23),

KKMS
tr = 8

3 , hKMS
tr = ln 2 − 2

3 (35)

(end point of the thick full line in Fig. 2).
In the first-order transition regime and for large values of N ,

the dominant contribution to the partition function (27) comes
from the two minima of equal depth,

ZN ∼ e−Nf (S+) + e−Nf (S−) ∼ e−Nf (S+){1 + e−N[f (S−)−f (S+)]}.
(36)

-0.5
-0.25

 0
 0.25

 0.5
x

-0.5
-0.25

 0
 0.25

 0.5
S

 1.096

 1.097

 1.098

 1.099

FIG. 4. (Color online) The free energy density −f (x,S) at inverse
temperature K = K0(3) = 4 ln 2 and h = 0.
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FIG. 5. (Color online) The free-energy density −f (x,S) at K = 2.70 and two values of the field: (a) hIsing = −0.041 696 219 649 61 . . .

and (b) hKMS = 0.018 147 180 559 945 2 . . . .

Within this approximation, the calculation of zeros in the above
expression reduces to the following set of equations for the
free-energy densities at S±:

Re[f (S−) − f (S+)] = 0,
(37)

N Im[f (S−) − f (S+)] = (2n + 1)π, n = 0,1, . . . .

To the leading order in 1/N , the solutions of the above
equations are of the form

h
(n)
1 = ln 2 − K

4
− 1

N

3 K

8
+ O

(
1

N2

)
,

(38)

h
(n)
2 = 1

�S

3

4

2n + 1

N
π + O

(
1

N2

)
.

Note that, to the leading order in 1/N , the real part of the zeros
does not depend on n. Numerical calculations (Figs. 7 and 8)
suggest that this remains true to all orders in 1/N , i.e., that at
the KMS transition, all the zeros lie on a straight line parallel
to the imaginary axis.

Calculation of the density of zeros at the Yang-Lee edge
is performed in the same way as for the Ising (q = 2) case.
Relation (16) defines the density of zeros, while its value at the
edge is given by the distance between the two zeros closest to
the real axis. By inserting expansions (38) into (17), one gets

gN = 2�S

3π
+ O

(
1

N

)
. (39)

On the entire first-order transition line, �S > 0, making g

finite. By approaching the tricritical point, �S → 0, and
vanishing of g indicates the second-order transition at the
tricritical point.

B. h < 0, Ising transitions

Negative values of the field bring the particles in the Potts
state 1 [as defined in Eq. (19)] to an energetically higher level
than the particles in the states 2 and 3. Consequently, the system
prefers to have most of the particles in states 2 and 3. In the limit
h → −∞, transitions of particles into state 1 are completely
forbidden and the model reduces to the pure two-state (Ising)
model without an external field. Thus, the negative field acts
as a chemical potential: it regulates the number of particles in
states 2 and 3.

In the limit h → −∞, the extrema conditions (29) and (30)
and the free-energy density (28) reduce to

x = exK − 1

exK + 1
, S = −1

2
, (40)

−f (x, − 1/2) = −K

(
x

2

)2

+ ln

[
2 cosh

xK

2

]
+ const. (41)

Equation (40) has an x → 0 solution at K = K
Ising
tr =

K0(2) = 2, so that the position of the Ising tricritical point
is

(
K

Ising
tr ,h

Ising
tr

) = (2, − ∞). (42)

In the range of inverse temperatures K0(2) < K < K0(3)
(open circles in Fig. 2), the free-energy density has a shape
similar to the one shown in Fig. 6(a), and the transition is
of first order. By approaching K → K

Ising
tr = 2, the first-order

character of the transition becomes weaker and, at K = 2,
all three extrema of the free energy merge, and the transition
changes its character into a second-order one.

By studying the behavior of the free-energy density around
the two edges of the Ising line of transitions, it is possible to
calculate the shape of h = h(K) in the two limits. Close to the

FIG. 6. (Color online) The free-energy density −f (x,S) at inverse temperature K = KKMS
tr = 8/3 = 2.6̇ and external field: (a) h =

−0.06 333 826 060 . . . and (b) h = hKMS
tr = 0.026 480 513 89 . . . .
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FIG. 7. (Color online) q = 3 and N = 3000. The positions of the part of the Yang-Lee zeros closest to the real field axis are given as the
intersections of the blue (dark gray) and orange (light gray) lines: (a) K = 2.6 and (b) K = 2.7. The broken black line is the KMS value of the
real field predicted by relation (32).

point (K,h) = (K0(3),0),

h(K) � ln
(
e

K
4 − 1

)
. (43)

Close to the point (K,h) = (K0(2),−∞),

h(K) � ln(K − 2) + K

2
. (44)

In Ref. [27], the authors discuss the cases with h < 0 and
q � 4 proving the existence of the transition in the range

K ∈ (K0(q − 1),K0(q)), h ∈ (−∞,0). (45)

Our results show explicitly how the above statement is
extended to the case q = 3.

1. Numerical results

The numerical calculation of Yang-Lee zeros starts from
Eq. (24),

ZN =
N∑

n=0

an(K)z n = ReZN + ı ImZN = 0. (46)

Numerical solutions of ReZN = 0 [blue (dark gray) lines] and
ImZN = 0 [orange (thin) lines] with their intersections giving
the positions of Yang-Lee zeros are illustrated in Figs. 7 and
8 for two typical values of K . Two lines of zeros, similar to
those in Fig. 7, were also observed in a numerical study [9] of a
three-dimensional q = 25 Potts model with nearest-neighbor
interactions on small lattices.

Following the same procedure as the one presented in
Sec. II, we analyzed the positions of the two zeros closest
to the real axis for a sequence of large system sizes ranging
from N = 10 3 up to 10 6 sites. The position of the edge of the
line of zeros and the edge density of zeros were extrapolated
to the limit N → ∞ by using the simple least-squares fit to
the form

h1,2,N = h1,2,extr + const

Ny1,2
, gN = gextr + const

Nyg
. (47)

The results of these extrapolations in the three differ-
ent regimes, corresponding to (K < K0(3),h > 0),(K �
K0(3),h = 0), and (K < K0(3),h < 0), are presented in
Tables IV–VI. The K < K0(3) regime contains two lines of
transitions and in addition the Yang-Lee edge singularity for
sufficiently high temperatures so that the gap around the real
axis is open.3 At lower temperatures, K � K0(3), there is only
one, h = 0, line of zeros.

Table IV contains data describing the h > 0 or KMS line
of transitions (thick full line in Fig. 2).

At K � KKMS
tr , the imaginary part of the field is equal to

zero, which means that the gap is closed at low temperatures.
At higher temperatures, K < KKMS

tr , the zeros accumulate
around the point (h1,h2 > 0), which means that the gap is

3In the present work, we analyzed it only around the h > 0 tricritical
point.

FIG. 8. (Color online) q = 3 and N = 10 000. The positions of the part of the Yang-Lee zeros closest to the real field axis are given as the
intersections of the blue (dark gray) and orange (light gray) lines: (a) K = K0(3) = 2.772 . . . and (b) K = 3.5.
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TABLE IV. The results of extrapolation for h > 0: real and imaginary parts of the closest zeros, h1,2,
and the edge density of zeros g, followed by the corresponding convergence exponents. The error bars are
estimated to be of order of the last cited digit. The numerical part of the errors is at least one order of magnitude
smaller than the overall errors (including the finite-size corrections).

K h1,extr h1,exact y1,extr y1,guess

K0(3) = 2.772 . . . 10−12 0 1.000003 1
2.7 0.018147180556 0.018147180559 . . . 1.000003 1
KKMS

tr = 2.6̇ 0.026480513887 0.026480513893 . . . 1.000004 1
2.6 0.04314719 0.04314718 . . . 0.99993 1
2.5 0.0681470 0.0681472 . . . 1.0005 1
2.4 0.0931470 0.0931472 . . . 1.0006 1
2.3 0.1181471 0.1181472 . . . 1.0005 1

K h2,extr h2,exact y2,extr y2,guess

K0(3) = 2.772 . . . 10−8 0 1.001 1
2.7 10−7 0 1.01 1
KKMS

tr = 2.6̇ 10−8 0 0.749 3/4
2.6 0.00533 0.668 2/3
2.5 0.02126 0.663 2/3
2.4 0.04347 0.658 2/3
2.3 0.07091 0.655 2/3

K gextr gexact yg,extr yg,guess

K0(3) = 2.772 . . . 0.05305168 0.05305164 . . . 0.997 1
2.7 0.03048 0.03047 . . . 0.94 1
KKMS

tr = 2.6̇ 10−6 0 0.2503 1/4
2.6 10−3 0 0.28 1/3
2.5 10−3 0 0.29 1/3
2.4 10−3 0 0.335 1/3
2.3 10−3 0 0.29 1/3

open with the Yang-Lee edge singularity at its edge. The real
part of the edge still satisfies Eq. (32).

The density of zeros at K > KKMS
tr has a finite value, and

the transition is of first order. This finite value can be compared
to the analytical expression (39) with high accuracy. At higher
temperatures, K � KKMS

tr , the edge density of zeros vanishes
and the transition is of second order.

The set of convergence exponents y2,extr and yg,extr has
the same values as the corresponding exponents of the

q = 2 model (Table I), showing that it belongs to the same
universality class. Since within the approximation by Kihara
et al. the handling of fluctuations in the model with q > 2
is essentially reduced to the calculation of fluctuations in the
two-state model, this result is not surprising.

One may clearly distinguish the tricritical exponents for
K = Ktr from the Yang-Lee edge exponents obtained for
higher temperatures (K < Ktr). The convergence exponent
y1,extr is very close to 1, which is anticipated by Eq. (38)

TABLE V. The results of extrapolation for K � K0(3), h = 0: the real and imaginary parts of the closest
zeros, h1,2, and the edge density of zeros, g, followed by the corresponding convergence exponents. The error
bars are estimated to be of order of the last cited digit. The numerical part of the errors is at least one order of
magnitude smaller than the overall errors (including the finite-size corrections).

K h1,extr h1,exact y1,extr y1,guess

3.5 10−7 0 1.001 1
3.0 10−7 0 1.007 1
K0(3) = 4 ln 2 = 2.772 . . . 10−5 0 1.05 1

K h2,extr h2,exact y2,extr y2,guess

3.5 10−7 0 1.0007 1
3.0 10−6 0 1.004 1
K0(3) = 4 ln 2 = 2.772 . . . 10−5 0 1.04 1

K gextr gexact yg,extr yg,guess

3.5 0.13836168 0.997 1
3.0 0.11401535 0.992 1
K0(3) = 4 ln 2 = 2.772 . . . 0.08169236 1.53 3/2
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TABLE VI. The results of extrapolation for h < 0: the real
and imaginary parts of the closest zeros, h1,2, followed by the
corresponding convergence exponents. The error bars are estimated
to be of order of the last cited digit. The numerical part of the errors
is at least one order of magnitude smaller than the overall errors
(including the finite-size corrections).

K h1,extr h1,exact y1,extr

2.7 −0.04162 −0.04169 . . . 1.205
2.6 −0.1093 −0.1099 . . . 0.685
2.5 −0.192 −0.193 . . . 0.479

K h2,extr h2,exact y2,extr

2.7 10−4 0 1.068
2.6 10−4 0 0.79
2.5 10−3 0 0.69

for the first-order transitions. At K � KKMS
tr , the transition is

of second order, and we have no analytical expression for y1,
but it seems that the value 1 remains for all temperatures.

At low temperatures, K � K0(3) (see Table V), zeros of the
partition function are the result of the competition between the
three [at K > K0(3); see Fig. 3] or the four [at K = K0(3); see
Fig. 4] extrema of f . The transition is of a strong first-order
type and loci of zeros form a straight line h1 = 0 [Figs. 8(a) and
8(b)]. The convergence exponents are equal to 1, except for the
exponent of the edge density of zeros at K0(3). A qualitatively
different transition, discussed in Sec. III B, appears for h < 0
(Table VI, open circles in Fig. 2). The numerical precision of
the results in Table VI is much poorer than that in Table IV.
The main reason for that could be attributed to the fact that
the corresponding zeros are fewer and more spaced so that
even the closest two zeros are much more distant from the real
axis than they are for another line. For this reason, we do not
proceed here with the calculation of the density of zeros used
for other cases.

The numerical extrapolations h1,2,extr and h1,2,exact pre-
sented in Table VI yield the exact values [given by (29) and
(30)] with numerical precision up to three digits or more. The
convergence exponents y1,2,extr differ, however, significantly
from the scaling exponent of the first-order phase transition,
which should persist up to h = −∞, as argued in Sec. III B.

IV. CONCLUSION

The phase diagram of the two- and three-state Potts
model with infinite-range interactions in the external field
was analyzed by studying the partition function zeros in the

complex field plane. In the three-state case, we derived the
exact two-parameter expression for the free-energy density
after a twofold application of the Hubbard-Stratonovich
transformation. By applying the saddle-point approximation
in the two-parameter space, we reproduced well the known
analytical results in different regimes of the phase diagram
with zero and positive external field. Calculations could also be
extended to the negative fields, where another, Ising-like, phase
transition occurs. We derived an implicit analytical expression
and performed exact numerical calculation for the critical line
of this Ising-like transition, showing that it is of first order, and
becomes of second order only in the limit h → −∞, unlike
the case of the three-dimensional Potts model with short-range
interactions, where the tricritical value of the field is finite [20].

The same procedure was efficient for the study of the
partition function zeros in the complex field plane. We have
shown that in this model, with a rather complex phase
diagram and with consequently more complicated loci of zeros
including multiple lines, it is still possible to identify different
regimes of critical behavior from the size scaling properties
of the few zeros closest to the real axis. We successfully
identified the regime of the first-order phase transitions and
well reproduced the critical exponents belonging to the two
second-order phase transitions, the tricritical point, and the
Yang-Lee edge singularity. In the case of the tricritical point,
an unusual feature is that the line of zeros reaches the real axis
at the point with nonzero field (i.e., loci of zeros lie on the
nonunit circle in the complex activity plane). The Yang-Lee
edge singularity could be observed for temperatures above
the tricritical point temperature (K < Ktr), and was found to
belong to the same universality class as that of the MF Ising
model.

Due to the fact that the external field h breaks the symmetry
between Potts states of the q = 3 model in essentially the
same way as for all q > 3 models, one can expect that the
general shape of the phase diagram presented in Fig. 2 as well
as a major part of the obtained results could be extended to
models with q > 3. It would also be interesting to perform a
complementary study of a more general case of the Yang-Lee
zeros for the Potts model with infinite range interactions with
the power-law decay, where some previous work has been
performed [30] for the Ising model by the finite-range scaling
approach [31].
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