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Strong interaction with other particles or feedback from the medium on a Brownian particle entail memory
effects in the effective dynamics. That motivates the extension of the fluctuation-dissipation theorem to
nonequilibrium Langevin systems with memory. An important application is to the nonequilibrium modification
of the Sutherland-Einstein relation between diffusion and mobility in the case of strong memory. Nonequilibrium
corrections include the time correlation between the dynamical activity and the velocity of the particle, which in
turn leads to information about the correlations between the driving force and the particle’s displacement.

DOI: 10.1103/PhysRevE.87.022125 PACS number(s): 05.40.−a

I. INTRODUCTION

Path integrals are robust against small perturbations in the
dynamics and hence make expansions easier, such as for the
derivation of response relations. That has been systematically
applied before for the extension of the fluctuation-dissipation
theorem to nonequilibrium systems, at least in the Markov
case [1–4]. The purpose of this paper is to further extend
the nonequilibrium linear response theory to dynamics with
memory, which is physically often more appropriate, and
which has been so far considered only in a “weak” non-
Markovian case, where memory decreases exponentially fast
[5,6]. Also, here the very name fluctuation-dissipation relation
needs to be revised and perhaps altered, as the response obtains
correlations both with the excess entropy flux (which is respon-
sible for the standard relation with dissipation) and with the
time-symmetric part of the action, which has been called the
frenetic contribution as it ultimately relates to the dynamical
activity in the process [3]. For more practical purposes, it is the
latter frenetic contribution where the steady nonequilibrium
forcing appears and, hence, fluctuation-response relations can
yield information about that forcing. Applications such as to
the mobility of particles in living cells are in progress [7],
but in this paper we concentrate on the general framework,
numerical exploration, and some technical details.

An important ingredient in this work is the presence of
memory in the equations of motion of a colloidal particle.
The origin of memory is diverse but it is always related to
coupling with other particles and/or with the environment. In
the case of dense colloidal suspensions, the reduced dynamics
of a single particle certainly contains memory by integrating
out the other particles. The theoretical study of the relation
between its diffusion and its mobility is therefore advanced
by the analysis of generalized Langevin equations (GLE).
The latter also appear from other reduction and projection
schemes as generally treated via Zwanzig-Mori techniques
[8,9]. There, temporal scale separation or micro-macro transfer
are the important considerations, but also intrinsic properties
of the medium can contribute memory effects. For the latter,
we have in mind viscoelastic media which react back on active
particles from their previous history. These are of special
interest for mesoscopic processes in tissues or membranes

within living organisms which are known to respond more
easily to external loads.

Here, we do not concentrate on the specific interactions
or mechanism that have created the memory effects, but we
start from driven GLE for which we assume a structure that
is relevant for a large number of cases of suspensions under
the influence of external forces. See [10] for a more recent
microscopic-based derivation of GLE in the context of polymer
physics. The most important element in our modeling scheme
is the principle of local detailed balance. It derives from the
underlying microreversibility, which gives a strong connection
between entropy flux and time-reversal breaking [11]. As
we will see in the next section, application of local detailed
balance leads to the so-called Einstein relation, also called
second fluctuation-dissipation relation, between friction and
noise in the GLE [12], even when modeling nonequilibrium
situations. We do not, however, pay special attention to the
choice of driving, but we are interested here in general features
and structures of the response. For a specific application of
these general methods, we refer to the recent work [7] on
reconstructing the active forces from quantitative information
on the violation of the fluctuation-dissipation theorem. We
believe, however, that many more applications are waiting, in
fact in all these cases where one can measure deviations from
the standard Kubo theory [12,13].

The study of response in nonequilibrium suspensions is
of course not new (see, e.g., [14–17] for applications to
sheared media). In that respect, the present contribution starts
from GLE and investigates what are the general structures
that determine the linear response. In particular, the work
of [18,19] addresses very similar questions and uses Martin-
Siggia-Rose field theory to obtain a fluctuation-response
theory. We concentrate on Sutherland-Einstein relations and
we emphasize the structure in terms of entropic versus frenetic
contributions, making contact with the Markov formulation
in [1].

Close to this work are also the results relating energy
dissipation to the difference of the response and velocity
correlation functions [4,20] also for GLE. Here, we emphasize,
however, the modified Sutherland-Einstein relation connecting
diffusion and mobility.
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In the next section, the setup is considered for generalized
Langevin systems with Gaussian noise. They are driven away
from equilibrium by nonconservative forces. We derive the
linear response relations in Sec. III. These results are ready
to be applied in a relation between diffusion and mobility
for colloidal particles in nonequilibrium viscoelastic media.
Section III E contains the simulation results for exploring
the modified Sutherland-Einstein relation and adds visual
information on the behavior of the various terms in the
modified relation. The main result of the paper is the extension
of the work in [1] to include (even strong) memory effects and
to be explicit also about the relevance of the correlations with
dynamical activity and with the forcing.

II. THEORY

A. Setup

Consider the Langevin equation for the position xt and the
velocity vt of a (mass 1) particle in a medium at uniform
temperature:

dxt

dt
= vt ,

dvt

dt
= −

∫
ds γ (t − s)vs + Ft (xt ) +

√
2

β
ηt + ht . (1)

To lighten the notation, we shall consider that, unless otherwise
specified, integral bounds are understood to range from −∞
to ∞. We take the memory kernel γ (t) � 0 to be causal:
γ (t) = 0 for t < 0. The Markov case with friction coefficient
γ > 0 is recovered whenever γ (|t |) = 2γ δ(t) is proportional
to the Dirac delta function, which can be achieved for example
from γ (t) = γ α exp(−αt)�(t) in the α → ∞ limit, with �(t)
the Heaviside step function. The Ft is the forcing, possibly
time dependent and nonconservative. It can include effective
randomness beyond the Gaussian noise ηt as, e.g., in [7]. The
parameter β is the inverse temperature of the environment,
which we have taken in front of the noise ηt . The force ηt is a
stationary Gaussian noise process with zero mean. We wait to
describe its time correlations [see formula (8)]. The last term
ht = ft �(t) is a time-dependent (small) perturbation; we will
linearly expand around ft = 0. For simplicity, we use a one-
dimensional notation, also in what follows, but the extension
to other geometries or dimensions, sometimes essential for
nonequilibrium effects, is straightforward. We will not use a
Fokker-Planck description in what follows (but we use path
integrals); actually, the relation between generalized Langevin
and generalized Fokker-Planck equations in the presence of
position-dependent forces is not entirely clear (see [21,22] for
what we do know).

For path-space integration, we need some further notation.
Easiest is to take doubly infinite paths ω = (xs,vs,−∞ <

s < +∞). The price to pay is that some expressions (inte-
grals) become rather formal. We refer to [23] for a more
detailed reference. Feasible alternatives or complements to
path integration to derive fluctuation-response relations for
non-Markovian processes are known as Furutsu-Novikov
theorems (see, e.g., [20,24–26]).

Because the noise ηt is a stationary Gaussian process,
the path-space measure is completely determined by the

symmetric kernel 	(t) for which∫
ds 	(t − s) 〈ηsηr〉 = δ(t − r). (2)

The weight of a path ω is then proportional to

Ph(ω) ∝ exp −β

4

∫
ds

∫
dr 	(r − s)ηs ηr (3)

with

ηs = v̇s +
∫

du γ (s − u) vu − Fs(xs) − hs.

Compared with the unperturbed dynamics (ht ≡ 0) we have

Ph(ω) = P0(ω) e−Ah(ω) (4)

with action

Ah(ω) = −β

2

∫
ds

∫
dr 	(r − s)hsv̇r

− β

2

∫
ds

∫
dr

∫
du	(r − s) γ (r − u) vu hs

+ β

2

∫
ds

∫
dr 	(r − s) hs Fr (xr ) + O(h2) (5)

to first order in the perturbation ht . For stochastic integration
and path integrals in the non-Markovian case, see also [23] and
the more recent [27] with additional references. Equations (4)
and (5) define our dynamical ensemble for the path-space
distribution with respect to the unperturbed dynamics (1).

Finally, a word about initial and boundary conditions,
also important for the terminology. As should be clear
from the start, the dynamics (1) is not microscopic and its
content depends on chosen levels of description, including
spatiotemporal scales. In the discussion of diffusion, one
assumes no spatial confinement over the relevant time scales.
The behavior is then transient concerning the position degrees
of freedom, but beyond the inertial regime the velocities
relax and become Maxwellian. In that regime, overdamped
approximations can be valid, which can be formally obtained
in what follows by setting v̇ = 0. For the general question of
linear response, we also have in mind the case where the force
Ft = F + Kt contains a time-independent conservative force
F = −∇U from a normalizable and confining potential U .
Under such a confinement and for time-independent forcing
Kt = K , it is then assumed that there is a unique and smooth
stationary density ρ(x,v) to which all initial data converge.
We speak of an equilibrium dynamics when Kt = 0 (only
confining potential). The case of free diffusion Ft = 0 is,
however, not strictly equilibrium as it need not be stationary
even in the velocity degrees of freedom. For example, for
free diffusion the Sutherland-Einstein relation will only be
recovered when the initial data are also randomly chosen
from a Maxwellian. In the formalism following, the important
property of full equilibrium will be stationarity combined with
time-reversal invariance. In fact, to the dynamics (1) must still
be added a relation between the noise correlations and the
memory kernel so as to ensure, for example, that for Ft = 0
the velocities become Maxwellian. The next section takes this
to a more general discussion by formulating the condition of
local detailed balance.
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B. Entropy flux and local detailed balance

The Einstein relation, also called the second fluctuation-
dissipation relation, connects the noise correlations to the
memory kernel in the friction. For an equilibrium dynam-
ics, say taking F = h ≡ 0 in (1), that relation [which will
follow as (10) below] is most simply derived from the
requirement that the stationary velocity distribution should be
Maxwellian at inverse temperature β. For our nonequilibrium
dynamics (nonconservative forcing F ), we have in general no
information about that stationary distribution. Nevertheless,
more fundamentally that Einstein relation arises in the weak
coupling limit for the dynamical degrees of freedom with
a large thermal bath as a consequence of the microscopic
reversibility of the bath degrees of freedom. For our dynamics
we do keep the bath in thermal equilibrium and our driven
particle does not react back on the bath. That is the basic reason
why we will be able to maintain the standard Einstein relation.
As the situation with memory is formally more complicated
and since we do not want to recall the details of a weak coupling
analysis, we can rely on the so-called condition of local
detailed balance (see also [4]). It amounts to assuming that, if
the system were subjected to a confining force, it would reach
equilibrium, and that the exchanges with the thermostat are the
same as when the exerted forces drive it out of equilibrium.
Formally, this means that the physical entropy flux can be
recovered from the time-antisymmetric part of the action. That
principle is indeed rooted in the reversibility of the underlying
microscopic dynamics as shown in [11]. To be more specific
about time reversal we introduce the time-reversal operator θ

according to which

θxt = x−t , θvt = −v−t ,

θht = h−t , θFt = F−t , (6)

where the last line also includes the time reversal of the
protocol (the time dependence in the nonmagnetic external
forces). When the ηt = (ηi

t ) would be multidimensional, we
should also assume that the noise is time-reversal invariant
in the sense that 〈ηi

t η
j

0〉 = 〈ηj
t η

i
0〉. Demanding that the system

obeys local detailed balance then means to require that the
time-antisymmetric part of the action for P0 [first appearing
in (4)] is given by the entropy flux in the original (unperturbed)
model; that is to say,

log
dP0

dP0θ
(ω) = −β

∫
ds v̇s vs + β

∫
ds Fs(xs) vs. (7)

The first term in the right-hand side is a temporal boundary
term accounting for the kinetic energy difference between the
initial and final states of the trajectory.

As is explicitly shown in Appendix A, local detailed
balance (7) is verified whenever

〈ηsηt 〉 = 1
2 [γ (t − s) + γ (s − t)] = 1

2 γ (|t − s|) (8)

between the noise covariance and the symmetric part of the
memory kernel. We repeat that (8) is as such independent of
F (nonequilibrium driving) or h (perturbation) as it expresses
the thermal equilibrium of the bath; it formally appears [as (7)]
from requiring that the source of time-reversal breaking equals
the (excess) entropy flux. The very same condition (8) then also

ensures that

Ah(θω) − Ah(ω) = β

∫
ds vs hs (9)

with the right-hand side equal to the path-dependent excess
entropy flux towards the environment at inverse temperature
β, or the dissipated power by the force ht (setting kB = 1).
The identity (9) is also explicitly discussed in Appendix A:
we can derive (8) from requiring that the time-antisymmetric
part of the action Ah is the excess entropy flux caused by the
force ht , thus equal to β

∫
ds vs hs . We will use the notation

Sex(ω) = Ah(θω) − Ah(ω) for (9) in what follows. It is worth
to note that mathematically (8) leads to simply rewriting (2) as∫

ds 	(t − s) γ (|s|) = 2 δ(t). (10)

C. The time-symmetric part, or the activity

The time-symmetric part of the action Ah is T ex(ω) =
Ah(θω) + Ah(ω) and is calculated to be

T ex(ω) = β

∫
dr Hr [Fr (xr ) − v̇r ]

+ β

2

∫
du vu

∫
dr Hr [γ (u − r) − γ (r − u)] ,

(11)

where we have introduced the “smeared-out” perturbation

Hr =
∫

ds hs 	(r − s).

This time-symmetric part T ex is a function on path space and
is also called the dynamical activity; it is related to the frenetic
contribution in linear response playing an important role when
away from equilibrium (see [2,3]). Note that the antisymmetric
part of the memory kernel vanishes in the Markov case. In this
limiting case, Hs = hs/γ and then

T ex
Markov(ω) = β

γ

∫
ds hs [Fs(xs) − v̇s]

to linear order in ht , as before.

III. LINEAR RESPONSE RELATIONS

In what follows, we denote by 〈. . .〉h,〈. . .〉 the average over
the paths generated by (1) with or without the perturbation ht .
The only randomness over which we average is the stationary
noise ηt , but sometimes an additional average over initial
conditions will be mentioned. For a general observable local
in time we write O(xt ,vt ) = Ot .

A. General susceptibility

The linear response of observable O is obtained from

〈Ot 〉h − 〈Ot 〉 = −〈Ot Ah〉 (12)

or in terms of the generalized susceptibility χO defined by

χO(s,t) = δ

δhs

〈Ot 〉h
∣∣∣∣
h=0

.
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From inserting (5) into (12), we find

χO(s,t) = β

2

∫
dr

∫
du	(r − s) γ (r − u) 〈Ot vu〉

+ β

2

∫
dr 	(r − s) (〈v̇rOt 〉 − 〈Fr (xr )Ot 〉) . (13)

There are different ways to write that same formula. We can
add and subtract to get the symmetric part of the memory
kernel:

χO(s,t) = β〈Ot vs〉− β

2

∫
dr

∫
du	(r − s) γ (u− r) 〈Ot vu〉

+ β

2

∫
dr 	(r − s) (〈v̇rOt 〉 − 〈Fr (xr )Ot 〉) . (14)

Another possibility is to consider separately the time-
antisymmetric and the time-symmetric parts. In that case, we
follow the decomposition of the action Ah = (T ex − Sex)/2,
and from (12) the susceptibility reads as

χO(s,t) = 1
2 〈σsOt 〉 − 1

2 〈τsOt 〉 , (15)

where

σs = δ

δhs

Sex

∣∣∣∣
h=0

= βvs

and

τs = δ

δhs

T ex

∣∣∣∣
h=0

= β

∫
dr 	(r − s)(Fr − v̇r )

+ β

2

∫
du

∫
dr vu 	(r − s) [γ (u− r) − γ (r −u)] . (16)

The formulation (15) separates an entropic from a frenetic
contribution as suggested, e.g., in [3]. The formulas (13), (14),
and (15) are the first principal results of the paper; they give
a general understanding of the structure of nonequilibrium
response also in the presence of memory effects. Moreover,
there is the promise in each of the last terms in their right-hand
sides to learn about the nonequilibrium driving exactly by
the study of the response and especially from the frenetic
contribution.

The deviation from the Markov case is felt only in this
excess dynamical activity T ex and not in the excess entropy
flux Sex . That explains why only in nonequilibrium situations
the fluctuation-response relations change when going from
Markov to non-Markov; in equilibrium, only the entropy fluxes
enter in fluctuation-response relations. Of course, the transient
diffusive case is a nonequilibrium situation, and we should be
careful when possibly identifying Fr = 0 with the equilibrium
case.

B. Consequence of causality

Causality requires that observations before a certain time
are not influenced by perturbations after that time. As a
consequence, from (15),

〈σuOr〉 = 〈τuOr〉 (17)

for a time ordering u > r . But suppose now that the averages
satisfy time-reversal invariance so that

〈τsOt 〉 = sgnO 〈τ−sO−t 〉 , sgnO 〈σ−sO−t 〉 = − 〈σsOt 〉 ,

where sgnO is the parity of observable O under time reversal.
Then, under that time reversibility and as a result of the
causality relation (17) for u = −s > r = −t ,

〈σsOt 〉 − 〈τsOt 〉 = 〈σsOt 〉 − sgnO 〈τ−sO−t 〉
= 〈σsOt 〉 − sgnO 〈σ−sO−t 〉
= 〈σsOt 〉 + 〈σsOt 〉 = 2β 〈vsOt 〉, (18)

which, upon inserting in (15), yields the standard fluctuation-
dissipation relation

χO(s,t) = β 〈Ot vs〉 �(t − s). (19)

The next section comes back to this with yet another derivation.
Another consequence of causality is that the action (5)

verifies

〈Ot Ah〉 = 0

when hs = 0 for s � t . That immediately implies that for
all s > t ,∫

dr

∫
du	(r − s) γ (r − u) 〈Ot vu〉

=
∫

dr 	(r − s) (〈Fr (xr )Ot 〉 − 〈v̇rOt 〉) . (20)

There is a simpler identity that applies when the original
dynamics is time homogeneous, i.e., when Ft = F does not
explicitly depend on time t . Then, we can think of the
unperturbed averages 〈. . .〉 as a steady regime. In that case,
we take time t very negative in (20), multiply both sides with
〈ηsηw〉 for arbitrary w > t , integrate over all s, and use the
identity (2) to obtain∫ +∞

t

du γ (w − u) 〈Ot vu〉 = 〈F (xw)Ot 〉 − 〈v̇wOt 〉 .

In the Markov case, this identity is, for w > t ,

γ
d

dw
〈Ot xw〉 = 〈F (xw) Ot 〉 − 〈v̇w Ot 〉 , (21)

which is readily recognized as 〈Ot ηw〉 = 0 for white noise
ηw,w > t .

C. Equilibrium dynamics

1. Confined case

The equilibrium limiting case can be achieved whenever
the force field F derives from a potential function. In that
case, time-reversal invariance applies, and one should recover
from (12) the standard fluctuation-dissipation theorem (19). To
check this more explicitly, we first consider the response of an
observable Ot ≡ O(xt ,vt ) which is even under time reversal
(i.e., θOt = O−t ). In this case,

〈Ot v−u〉 = − 〈O−t vu〉 ,

〈Fr (xr ) O−t 〉 = 〈F−r (x−r ) Ot 〉 , (22)

〈v̇r O−t 〉 = 〈v̇−r Ot 〉 .

In Appendix B, we show that the time antisymmetric part of
the response χ yields

χO(s,t) − χO(t,s) = β 〈Ot vs〉 . (23)
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By causality, this automatically implies the fluctuation-
dissipation relation (19).

Likewise, when the observable Ot is odd under time reversal
(i.e., θOt = −O−t ), the right-hand sides in Eq. (22) have
to be multiplied by −1, and thence one has to consider the
time-symmetric part χO(s,t) + χO(t,s) in order to indeed
recover (19).

2. Free diffusion

We next consider the case where Fr = 0 and there is no
confinement on the relevant time scales. In this case, the
velocity of the particle relaxes alright to a Maxwellian steady
state in the long time limit, but its position diffuses. (It could be
anomalous diffusion for slowly decaying kernels.) Therefore,
starting from a fixed position and Maxwellian velocity, the
velocity response χv satisfies

χv(s,t) = χv(0,t − s) = β 〈vsvt 〉 (24)

for s < t , but the position dynamics remains in the transient
regime. It is, however, possible to recover a formula similar
to (19) which involves the mean square displacement �x2(t) =
〈(xs+t − xs)2〉 as we now explain.

We consider the case where the observable O is the position
x. The position response

χx(t) = δ

δh
〈xt 〉h

∣∣∣∣
h=0

=
∫ t

0
ds

δ

δhs

〈xt 〉h
∣∣∣∣
h=0

satisfies

d

dt
χx(t) =

∫ t

0
ds χv(s,t) = β

∫ t

0
ds 〈vsvt 〉 . (25)

On the other hand,

�x2(t) =
∫ s+t

s

du

∫ s+t

s

dr 〈vuvr〉 ,

d

dt
�x2(t) = 2

∫ s+t

s

du 〈vuvs+t 〉 .

As a result, we get the equilibriumlike result

χx(t) = β

2

d

dt
�x2(t), t > 0 (26)

which, for the Markov case, is an identity attributed to Virasoro
in [28]. The fact that this relation remains satisfied also in the
presence of strong memory is directly caused by F = 0 and
that only the entropic contribution matters.

D. Modified Sutherland-Einstein relation

We now show how to connect the mobility of the particle
(which is related to the velocity response to a constant force),
and the diffusion properties, related to the time behavior of the
mean squared displacement. Remember that the perturbing
field is a step function ht = h�(t), with constant field h. The
time-dependent mobility is then defined as

M(t) = 1

t

∂

∂h
〈(xt − x0)〉h

∣∣∣∣
h=0

(27)

or

M(t) = 1

t

∫ t

0
ds

∫ t

0
dr χv(s,r). (28)

The time-dependent diffusion coefficient is defined as

D̃(t) = 1

2t
�x2(t) = 1

2t

∫ t

0
dr

∫ t

0
ds 〈vsvr〉 . (29)

From the general linear response (15) we know that

〈vsvt 〉 = 2

β
χv(s,t) + 1

β
〈τsvt 〉 , (30)

which can be replaced in (28) and (29) to give a relation
between M , D̃, and τ :

M(t) = βD̃(t) − 1

2t

∫ t

0
dr

∫ t

0
ds 〈τsvr〉 .

We see how the violation of the Sutherland-Einstein relation
M = βD̃ is related to the time-averaged correlation between
displacement and dynamical activity

M(t) = βD̃(t) − 1

2t

∫ t

0
ds 〈τs(xt − x0)〉

= βD̃(t) − 1

2

〈
(xt − x0)

1

t

∫ t

0
ds τs

〉
. (31)

This formula has a general validity, independent of initial
conditions. The time-averaged dynamical activity due to the
perturbation has become here an important observable for
describing the deviation from the standard Sutherland-Einstein
relation. Since τs is time symmetric, the last correction term
will vanish when time-reversal symmetry gets established; that
happens in the case of free diffusion upon averaging over
the initial equilibrium distribution for velocities (as in the
previous section). In general, however, we can further detail the
expression by using the explicit form of τs from (16), yielding
three terms in the correction:

M(t) = βD̃(t) + C̃1(t) + C̃2(t) + C̃3(t). (32)

As we are, however, most interested in the nonequilibrium
situation with possible drift, it is useful to discard this effect
by considering a slightly different definition of the diffusion
coefficient, relabeled here as D:

D(t) = 1

2t
〈(xt − x0); (xt − x0)〉. (33)

The notation 〈A,B〉 refers to the connected (also called
truncated) correlation function 〈AB〉 − 〈A〉〈B〉. The analog
of the modified Sutherland-Einstein relation (32) is explicitly
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given by

M(t) = βD(t) + β

2t

∫ t

0
ds

∫
dr 	(r − s) 〈(xt − x0); v̇r〉︸ ︷︷ ︸

C1(t)

+ β

4t

∫ t

0
ds

[∫
dr

∫
du	(r − s){γ (r − u) − γ (u− r)} 〈(xt − x0); vu〉

]
︸ ︷︷ ︸

C2(t)

− β

2t

∫ t

0

∫
dr 	(r − s) 〈Fr (xr ); (xt − x0)〉 ds︸ ︷︷ ︸

C3(t)

.

(34)

This is the third key relation of this paper [after the
general (13)–(15) and the equilibriumlike (26)]. We have
postponed a detailed derivation of this result to Appendix C.
Notice that the functions C̃i of Eq. (32) are simply given by
the functions Ci with a standard correlation function instead
of a connected one. More concretely, if Ci = 〈A,B〉, then
C̃i = 〈AB〉. We shall further explore this relation numerically
in the next section. The terms C1 and C3 are also present
(although without convolution with 	) in the Markov case and
account for nonequilibrium effects due, respectively, to the
inertia and to the nonequilibrium forcing. The term C1 vanishes
outside the inertial regime. The term C3 is most important
for the inverse problem of reconstructing the nonequilibrium
driving from violation of the Sutherland-Einstein relation. The
term C2 has no analog in the Markovian case, and is hence only
due to memory effects under nonequilibrium dynamics.

E. Examples

We present here simulation results for the dynamics (1) for
some three choices of the driving F . The method to generate
colored noise is outlined in Appendix D. For the evaluation of
the terms in (34), we note that 	 appears as a convolution and
the Fourier transform of 	 is computed from its definition (2).
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D(t)
M(t)
C1(t)
C2(t)

D(t) + C1(t) + C2(t)

FIG. 1. (Color online) The time dependence of the mobility
M , the diffusion D, and the corrections C1 and C2 of (34) after
multiplying all with ln t . Here, we have long memory γ (t) = 1

1+t
and

free diffusion F = 0 at β = 1.

The purpose is to visualize the various terms in the modified
Sutherland-Einstein relation (34), similarly to the work in [1]
but with the extra ingredient of memory. Of course, there
is no strong need to verify or to confirm the mathematical
formula (34) as the linear expansion is sufficiently controlled,
but it is somewhat interesting to see the contributions of the
various terms in (34) and to see what influences them.

We start with the free diffusion (F = 0). The system is
diffusive if, for large times, D(t) reaches a limit (the diffusion
constant) D. On the other hand, when the memory gets long
time tails, with γ (t) decaying algebraically, the diffusion can
become anomalous [29]. We take two different examples,
γ (t) = 1/(1 + t) and γ (t) = 1/

√
1 + t . As results show, both

the diffusion and the mobility follow a corresponding temporal
behavior with for the first example D(t) 	 1/ ln t and for
the second example D(t) 	 1/

√
t (subdiffusive motion). The

plots in Figs. 1 and 2 show the subdiffusive behavior due
to the memory effect. More generally, for free diffusion
D ∝ [

∫ t

0 γ (s) ds]−1 for large t . Note that we treated free
diffusion with some fixed initial condition (without initial
velocity averaging) so that the standard Sutherland-Einstein
relation gets established only in the long time limit. Note that
the inertial regime is rather short lived, C1 rapidly being very
small, but the memory effect as present in C2 postpones the

-0.4

-0.2

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500 3000

Time

D(t)
M(t)
C1(t)
C2(t)

D(t) + C1(t) + C2(t)

FIG. 2. (Color online) Same case of free diffusion as in Fig. 1 but
with a time rescaling of

√
t for memory kernel γ (t) = 1√

1+t
. Still,

F = 0, β = 1.
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Mxx(t) = Myy(t), A = 20

FIG. 3. (Color online) Diffusion and mobility in the case of a
two-dimensional rotational forcing (35) for memory γ (t) = 1

1+t
and

amplitudes A = 10 and 20.

equality between βD(t) and M(t) to longer times. The sign of
C2 carries no special information.

For the other examples, we switched on some rotational
force F . Again, we checked in all cases that for exponentially
decaying memory kernels γ (t) the results of [1] are repro-
duced. We concentrate on power law decay and we consider
finite times. In Fig. 3, we consider a vector force on the plane
to induce vortices, similar to the rotational force in [1]. We
take 
F = A
g, with A the amplitude, where

gx(x,y) = a(r −
√

2)
(
y − 1

2

)
,

gy(x,y) = a(r −
√

2)
(

1
2 − x

)
,

a = (1 − 2δ2,x mod 3)(1 − 2δ1,y mod 2) (35)

for distance r =
√

(x − 1
2 )2 + (y − 1

2 )2. The somewhat in-
volved definitions assure that the particle does not undergo a
net drift; the forces are purely rotational and not translational
now. To make sure, mobility and diffusion are now matrices
but the off-diagonal elements are approximately zero. We
also find that the diffusion in the x direction is bigger than
in the y direction. Moreover, for bigger A, the diffusion
increases, while the mobility remains almost constant (and
even somewhat decreases).

Finally, we consider the result of driving in one dimension.
The nonequilibrium force is obtained from a periodic potential,
which is like confining the particle to a toroidal trap, and adding
a constant field. In the formulas, the nonequilibrium force is
F (x) = A + sin x, where A is a constant. Figures 4 and 5 show
the result again for the two long-memory kernels. As we have
found in the previous section, the relation between diffusion
and mobility gets modified. Our simulations confirm in all
cases that the diffusion depends on the external forcing more
strongly than does the mobility.

In the power law decaying memory for A = 1.5, the
increase of the diffusion is seen. C1 is still almost zero, C2

vanishes in the long time, and the diffusion and mobility are not
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C1(t)
C2(t)
C3(t)

D(t) + C1(t) + C2(t) + C3(t)

FIG. 4. (Color online) Same setup as in Fig. 1 but for a forcing
F (x) = 1.5 + sin x (external field over periodic potential) at inverse
temperature β = 1. The rescaling of the mobility, the diffusion, and
the corrections in (34) is by multiplying all with ln t for memory
kernel γ (t) = 1

1+t
.

proportional any more; there is now also the essential term C3,
which is negative because of the positive correlation between
force and displacement. However, for stronger memory and
with A = 1.5 there is little difference with the case f = 0. To
make the contribution of C3 more prominent, we have taken
a larger driving force, such as F (x) = 8 + 8 sin x as in Fig. 6;
we see that C1 is still zero, C2 is getting smaller faster than
before, and C3 is more important now.
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D(t) + C1(t) + C2(t) + C3(t)

FIG. 5. (Color online) Same setup as in Fig. 2 but for a forcing
F (x) = 1.5 + sin x (external field over periodic potential) at inverse
temperature β = 1. The rescaling of the mobility, the diffusion, and
the corrections in (34) is by multiplying all with

√
t for memory

kernel γ (t) = 1√
1+t

.
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FIG. 6. (Color online) The rescaling of the mobility, diffusion,
and the corrections by multiplying with

√
t for γ (t) = 1√

1+t
, and

F (x) = 8 + 8 sin x, β = 1.

IV. RELEVANCE AND CONCLUSION

The fluctuation-dissipation theorem has an extension to
nonequilibrium generalized Langevin systems which pre-
serves the splitting of the response in an entropic and a frenetic
contribution. That general statement is of course relevant in
today’s search for useful linear response formula away from
equilibrium. The presence of memory is especially relevant for
dense colloidal suspensions. We have here considered a driving

which can be time inhomogeneous or even random, but we
have also assumed the presence of Gaussian (correlated) noise
to start an expansion from path integrals for an underdamped
dynamics. The Gaussian correlations are in fact connected with
the memory kernel in the friction via the condition of local
detailed balance. An important application is to the extension
of the Sutherland-Einstein relation between diffusion and
mobility. Because of the nonequilibrium condition, the dif-
fusion constant is no longer alone in determining the transport
properties of colloidal particles. That was in particular seen
in detailed simulations for various nonequilibrium diffusions,
possibly anomalous, in particular for exploring the role of
the nonequilibrium forcing and the influence of memory. An
interesting conclusion is that the nonequilibrium corrections
to the Sutherland-Einstein relation are related to the time
correlations between the so-called dynamical activity and the
velocity of the particle, which in turn leads to information
about the correlations between the driving force and the
particle’s displacement [7]. Such an analysis provides a
more general framework for discussions on the violation of
the fluctuation-dissipation theorem and is an alternative for
the use of effective temperatures. We believe that both the
direct question (predicting the response) as the inverse question
(deriving information on the nonequilibirum forcing) can be
attacked within the given formalism.

ACKNOWLEDGMENTS

C.M. is grateful to Matthias Krüger for interesting dis-
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APPENDIX A: CALCULATION OF THE ENTROPY FLUXES

We start with deriving (7). From writing out the action log dP0
dP0θ

(ω) in the same way as for (5), we find that

log
dP0

dP0θ
(ω) = −β

2

∫
ds

∫
dr 	(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr 	(r − s)

∫
du γ (s − u) vu

×
∫

dw γ (r − w) vw + β

4

∫
ds

∫
dr 	(r − s)

∫
du γ (u − s) vu

∫
dw γ (w − r) vw

+ β

2

∫
ds

∫
dr 	(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u − r)] vu, (A1)

which can be rewritten as

=− β

2

∫
ds

∫
dr 	(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr 	(r − s)

∫
du γ (s − u) vu

∫
dw γ (r − w) vw

− β

4

∫
ds

∫
dr 	(r − s)

∫
du γ (u− s) vu

∫
dw γ (r − w) vw + β

4

∫
ds

∫
dr 	(r − s)

∫
du γ (u− s) vu

∫
dw γ (r −w) vw

+ β

4

∫
ds

∫
dr 	(r − s)

∫
du γ (u− s) vu

∫
dw γ (w − r) vw + β

2

∫
ds

∫
dr 	(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u− r)] vu

(A2)
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from which we arrive at

log
dP0

dP0θ
(ω) = −β

2

∫
ds

∫
dr 	(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr 	(r − s)

∫
du

∫
dw [γ (s − u)

+ γ (u − s)]γ (r − w) vw vu + β

4

∫
ds

∫
dr 	(r − s)

∫
du

∫
dw [γ (r − w) + γ (w − r)]γ (u − s) vw vu

+ β

2

∫
ds

∫
dr 	(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u − r)] vu. (A3)

Since 〈ηsηt 〉 = 1
2 [γ (t − s) + γ (s − t)], as implied by local detailed balance (8), and by using the definition of the symmetric

kernel 	(t), the second and the third terms of the right-hand side cancel each other and one finally recovers (7).
Likewise, when we add a time-dependent perturbation ht we have

log
dPh

dPhθ
(ω) = −β

2

∫
ds

∫
dr 	(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr 	(r − s)

∫
du

∫
dw [γ (s − u)

× γ (r − w) − γ (u − s)γ (w − r)]vu vw + β

2

∫
ds

∫
dr 	(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u − r)] vu

+ β

2

∫
ds

∫
dr 	(r − s) hs

∫
dw[γ (w − r) + γ (r − w)] vw. (A4)

The excess entropy flux is then

Sex(ω) = Ah(θω) − Ah(ω) = log
dPh

dPhθ
(ω) − log

dP0

dP0θ
(ω) = β

2

∫
ds

∫
dr 	(r − s) hs

∫
dw[γ (w − r) + γ (r − w)] vw,

which indeed ensures (9) upon using (10).

APPENDIX B: RECOVERY OF THE EQUILIBRIUM FLUCTUATION-DISSIPATION THEOREM

We show how to get from (12) to (23) when (22) holds. We start by writing

χO(s,t) −χO(t,s) = β

2

∫
dr

∫
du	(r − s)γ (r − u) 〈Otvu〉 + β

2

∫
dr 	(r − s) (〈v̇rOt 〉 − 〈FrOt 〉)

− β

2

∫
dr

∫
du	(r − t)γ (r − u) 〈Osvu〉 − β

2

∫
dr 	(r − t) (〈v̇rOs〉 − 〈FrOs〉) . (B1)

In the last two integrals, we can perform the change of variable r ′ = t + s − r and u′ = t + s − u. By relabeling r ′ = r and
u′ = u, one gets

χO(s,t) − χO(t,s) = β

2

∫
dr

∫
du	(r − s)γ (r − u) 〈Otvu〉 − β

2

∫
dr

∫
du	(r − s)γ (u − r) 〈Osvt+s−u〉

+ β

2

∫
dr 	(r − s) [〈v̇rOt 〉 − 〈FrOt 〉 − 〈v̇t+s−rOs〉 + 〈Ft+s−rOs〉] . (B2)

Finally, by using the time-translation invariance of correlation functions plus the time-reversal conditions (22), one will observe
that the square bracket terms in the last integral vanish and the first two integrals simplify thanks to (8) and yield to Eq. (23).

APPENDIX C: MODIFIED SUTHERLAND-EINSTEIN RELATION IN CONNECTED FORM

By inserting the dynamical activity in (31), we obtain

M(t) = β

2t
〈(xt − x0)2〉 + β

2t

∫ t

0
ds

∫
dr 	(r − s) 〈(xt − x0) v̇r〉 + β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u)

− γ (u − r)} 〈(xt − x0) vu〉 − β

2t

∫ t

0

∫
dr 	(r − s) 〈Fr (xr ) (xt − x0)〉 ds.
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We now rewrite this relation as follows:

M(t) = β

2t
〈(xt − x0)2〉 − β

2t
〈xt − x0〉 〈xt − x0〉 + β

2t
〈xt − x0〉 〈xt − x0〉 + β

2t

∫ t

0
ds

∫
dr 	(r − s) 〈(xt − x0) v̇r〉

− β

2t

∫ t

0
ds

∫
dr 	(r − s) 〈xt − x0〉 〈v̇r〉 + β

2t

∫ t

0
ds

∫
dr 	(r − s) 〈xt − x0〉 〈v̇r〉

+ β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u) − γ (u − r)} 〈(xt − x0) vu〉 − β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u)

− γ (u − r)} 〈xt − x0〉 〈vu〉 + β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u) − γ (u − r)} 〈xt − x0〉 〈vu〉

− β

2t

∫ t

0

∫
dr 	(r − s) 〈Fr (xr ) (xt − x0)〉 ds + β

2t

∫ t

0

∫
dr 	(r − s) 〈Fr (xr )〉 〈xt − x0〉 ds

− β

2t

∫ t

0

∫
dr 	(r − s) 〈Fr (xr )〉 〈xt − x0〉 ds. (C1)

Following the definition of the connected correlation function, we arrive at

M(t) = βD(t) +C1(t) +C2(t) +C3(t) + β

2t
〈xt − x0〉〈xt − x0〉 + β

2t

∫ t

0
ds

∫
dr 	(r − s) 〈xt − x0〉 〈v̇r〉

+ β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u) − γ (u − r)} 〈xt − x0〉 〈vu〉 − β

2t

∫ t

0

∫
dr 	(r − s) 〈Fr (xr )〉 〈xt − x0〉 ds.

(C2)

From the Langevin equation, we have

〈v̇r〉 = −
∫

du γ (r − u) 〈vu〉 + 〈Fr (xr )〉.

After substituting this in (C2), all the terms cancel out each other and only the first line will remain. The cancellation for the
forcing term is clear; and the other terms follow as

−β

2

∫ t

0
ds

∫
dr

∫
du	(r − s) γ (r − u) 〈vu〉

= −β

4

∫ t

0
ds

∫
dr

∫
du	(r − s) γ (r − u) 〈vu〉 − β

4

∫ t

0
ds

∫
dr

∫
du	(r − s) γ (r − u) 〈vu〉

−β

4

∫ t

0
ds

∫
dr

∫
du	(r − s) γ (u − r) 〈vu〉 + β

4

∫ t

0
ds

∫
dr

∫
du	(r − s) γ (u − r) 〈vu〉

= − β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u) + γ (u − r)} 〈vu〉 − β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u) − γ (u − r)} 〈vu〉

= −β

2
〈xt − x0〉 − β

4t

∫ t

0
ds

∫
dr

∫
du	(r − s){γ (r − u) − γ (u − r)} 〈vu〉. (C3)

APPENDIX D: SIMULATION OF COLORED
GAUSSIAN NOISE

We sketch the algorithm to numerically generate a station-
ary Gaussian colored noise ξt for a given time-correlation
function γ . The strategy is to transform to Fourier space as,
e.g., in [30,31], then to simulate it there as, e.g., in [32], and
then to transform the solution back to real space. We next
explain that scheme in more detail.

Suppose the noise satisfies

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = γ (|t − t ′|). (D1)

In discrete Fourier space, the noise can be constructed as

ξ̃ (ωμ) = √
Nγ̃ (ωμ) αμ, μ = 0, . . . ,N − 1 (D2)

with N even, and ξ̃ (ωμ) and γ̃ (ωμ) being the Fourier
transforms of ξ (t) and γ (t), respectively; the ωμ is defined
as

ωμ = 2π
μ − N

2

N�
, ωN−μ = −ωμ, (D3)

where � is the sampling interval of time. Finally, αμ is a
Gaussian complex random number in Fourier space with zero

022125-10



FLUCTUATION-RESPONSE RELATIONS FOR . . . PHYSICAL REVIEW E 87, 022125 (2013)

mean and correlation [33]

〈αμαν〉 = δμ,N−ν, α∗
μ = αN−μ. (D4)

To generate a Gaussian complex random number with cor-
relation given in (D4), we write αμ = aμ + ibμ in terms
of its real and imaginary parts: αμ = aμ + ibμ if μ > N/2
and otherwise αμ = aN−μ − ibN−μ. Here, a and b are two
Gaussian real random numbers which are uncorrelated and

have zero mean and covariance

〈aμaν〉 = 1
2 (δμ,ν + δμ,N−ν), 〈bμbν〉 = 1

2 (δμ,ν − δμ,N−ν).

(D5)

It is then straightforward to do the inverse Fourier transform

ξ (tk) = 1

N

N−1∑
μ=0

ξ̃ (ωμ)eiωμtk

and to see that the correlations reproduce (D1).
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[11] C. Maes and K. Netočný, J. Stat. Phys. 110, 269 (2003).
[12] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[13] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics:

Nonequilibrium Statistical Mechanics, 2nd ed., Vol. 2 (Springer,
Berlin, 1992).

[14] J. M. Brader, M. Siebenbuerger, M. Ballauff, K. Reinheimer,
M. Wilhelm, S. J. Frey, F. Weysser, and M. Fuchs, Phys. Rev. E
82, 061401 (2010).

[15] M. Kruger and M. Fuchs, Phys. Rev. E 81, 011408 (2010).
[16] M. Krüger and M. Fuchs, Prog. Theor. Phys. Suppl. 184, 172

(2010).
[17] L. Berthier and J. L. Barrat, J. Chem. Phys. 116, 6228 (2002).

[18] C. Aron, G. Biroli, and L. F. Cugliandolo, J. Stat. Mech. (2010)
P11018.

[19] C. Aron, Ph.D. thesis, Université Pierre et Marie Curie, 2010.
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