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Shape-dependent finite-size effect of the critical two-dimensional Ising model on a triangular lattice
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Using a bond-propagation algorithm, we study the finite-size behavior of the critical two-dimensional Ising
model on a finite triangular lattice with free boundaries in five shapes: triangular, rhomboid, trapezoid, hexagonal,
and rectangular. The critical free energy, internal energy, and specific heat are calculated. The accuracy of the
free energy reaches 10−26. Based on accurate data on several finite systems with linear size up to N = 2000,
we extract the bulk, surface, and corner parts of the free energy, internal energy, and specific heat accurately.
We confirm the conformal field theory prediction that the corner free energy is universal and find logarithmic
corrections in higher-order terms in the critical free energy for the rhomboid, trapezoid, and hexagonal systems,
which are absent for the triangular and rectangular systems. The logarithmic edge corrections due to edges parallel
or perpendicular to the bond directions in the internal energy are found to be identical, while the logarithmic
edge corrections due to corresponding edges in the specific heat are different. The corner internal energy and
corner specific heat for angles π/3, π/2, and 2π/3 are obtained, as well as higher-order corrections. Comparing
with the corner internal energy and corner specific heat we previously found on a rectangle of the square lattice
[Phys. Rev. E 86, 041149 (2012)], we conclude that the corner internal energy and corner specific heat for the
rectangular shape are not universal.
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I. INTRODUCTION

Finite-size-scaling theory, introduced by Fisher, finds ex-
tensive applications in the analysis of experimental, Monte
Carlo, and transfer-matrix data, as well as in recent theoretical
developments related to conformal invariance [1–4]. It has
become of practical interest due to the recent progresses in fine
processing technologies, which has enabled the fabrication of
nanoscale materials with novel shapes [5–7]. Exact solutions
have played a key role in determining the form of the
finite-size scaling. Ferdinand and Fisher [8] pioneered the
theory of the two-dimensional (2D) Ising model on a finite-size
square lattice, which extended Onsager’s exact solution [9]
and stimulated the ideas of finite-size scaling. Since then,
exact results of the model on finite-size lattices with various
boundaries have been studied intensively [8–18]. Detailed
knowledge has been obtained for the torus case [12], for
the helical boundary condition [13], for the Brascamp-Kunz
boundary condition [14,15], and for an infinitely long cylinder
[16]. The exact solution on the triangular lattice has also been
studied [17,18].

However, for the 2D Ising model the exact solution with free
boundaries, i.e., free edges and sharp corners, is still lacking.
As we know, the Bethe ansatz is a powerful technique for
solving the 2D Ising model, but this technique does not allow
the system to be placed on a rectangle with free boundary
conditions on the top and bottom, since the expression for the
boundary state in terms of the Bethe eigenvectors is unknown;
this is a famous unsolved problem in statistical mechanics.
Although there are Monte Carlo and transfer-matrix studies
on this problem [19,20], the accuracy or the system sizes
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of the results are not sufficient to extract the finite-size
corrections. Meanwhile, for 2D critical systems, a large
amount of knowledge has been obtained by the application
of the powerful techniques of integrability and conformal field
theory (CFT) [3,4,21–23]. Cardy and Peschel predicted that
the next subdominant contribution to the free energy on a
square comes from the corners [3]; it is universal and related
to the central charge c in the continuum limit. Kleban and
Vassileva [21] extended the result to a rectangle. These results
are consistent with the conjectured exact analytical formula
for the Ising model on a square lattice [24].

Several years ago an efficient bond propagation (BP)
algorithm was developed for computing the partition function
of the Ising model with free edges and corners in two
dimensions [25,26]. Making use of this algorithm, we recently
determined numerically the exact partition function of the Ising
model on a square lattice with a rectangular shape and free
boundaries [27]. We not only confirmed the CFT predictions,
but also found logarithmic corrections due to corners in the
internal energy and specific heat.

In the present paper we apply the BP algorithm to study the
Ising model on finite triangular lattices with free boundaries
in five different shapes, focusing on how the shape affects the
finite-size scaling. The five shapes are triangular, rhomboid,
trapezoid, hexagonal, and rectangular, as shown in Fig. 1.
Based on accurate data on a sequence of finite systems with
linear size up to N = 2000, we extract the bulk, surface,
and corner parts of the free energy, internal energy, and
specific heat. We verify the conformal field theory prediction
of the corner free energy and find logarithmic corrections in
higher-order terms in the critical free energy for the rhomboid,
trapezoid, and hexagonal systems, which are absent for the
triangular and rectangular systems. The logarithmic edge
corrections due to edges parallel or perpendicular to the bond
direction in the internal energy are found to be identical, while
the logarithmic edge corrections due to the corresponding
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FIG. 1. (a) The triangle-shaped triangular lattice with N = 4.
(b) The rhombus-shaped lattice with N = 4. (c) The trapezoid-shaped
lattice with N = 3. (d) The hexagon-shaped lattice with N = 3.
(e) The rectangle-shaped lattice with N = 5. Three bond directions
and the perpendicular direction are shown (see the text).

edges in the specific heat are different. The corner internal
energy and corner specific heat for angles π/3, π/2, and 2π/3
are obtained, as well as higher-order corrections. Comparing
with the previous found corner internal energy and corner
specific heat on a rectangle of the square lattice [27], we
conclude that the corner internal energy and corner specific
heat for the rectangle shape are not universal.

Our paper is organized as follows: In Sec. II, we briefly
describe the BP algorithm used here. We present in Sec. III
our main results and discussion. We conclude in Sec. IV.

II. METHOD

The partition function of the Ising model on the 2D
triangular lattice is

Z =
∑
{σi }

exp

⎛
⎝β

∑
〈i,j〉

σiσj

⎞
⎠, (1)

where the nearest neighbor couplings are dimensionless and
β is the inverse temperature. This partition function for a
finite triangular lattice with five different shapes and open
boundaries is calculated with the BP algorithm [25] at the exact
critical point βc = 1

4 ln(3) = 0.274 653 072 167 . . .. Figure 1
shows the five shapes: triangle, rhombus, trapezoid, hexagon,
and rectangle. The linear size N of a finite lattice is defined as
the length of edges in the triangular, rhomboid, and hexagonal
cases, of which the lengths of edges are equal. For the trape-
zoidal shape, the lengths of the three short edges are required
to be equal and N is the length of the short edges. For the
rectangle, N is defined as the length of the bottom edge, and the
number of layers is also required to be N . However, the actual
geometrical vertical length is N

√
3/2. According to the finite-

size scaling [1], the system size should be the actual geometri-
cal length, not the number of layers. Therefore the aspect ratio
of the rectangle that we consider here is

√
3/2 rather than 1.

The BP algorithm for the Ising model on the triangular
lattice has been described in detail in Ref. [26]. For the triangle-
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FIG. 2. (a) Inverse of the BP series reduction. See the formulation
for this transformation in the text. (b)–(g) are schematics of the
algorithm for the trapezoid-shaped lattice. From (b) to (c), the inverse
of the BP series reduction is applied to the diagonal bond (thick line) at
the bottom of the trapezoid. From (c) to (d), this operation is applied to
another diagonal bond (thick line). From (d) to (e) bond-propagation
operations are applied. From (e) to (f), the inverse of the BP series
reduction is applied again. From (f) to (g) those diagonal bonds are
eliminated by the usual BP procedure.

shaped and rhombus-shaped lattices, this algorithm can be
applied directly. However, for the trapezoid-shaped, hexagon-
shaped, and rectangle-shaped lattices, the inverse of the BP
series reduction should be introduced, which corresponds to
generating a new spin between two spins such that

eJ12σ1σ2 ≡
∑
σ0

eδF+Jσ0(σ1+σ2), (2)

as illustrated in Fig. 2(a). It is convenient to use variables
j ≡ e−J , j12 ≡ e−J12 , and δf ≡ eδF . Then we get the solution

δf = j12/2 and j =
√

1/j 2
12 −

√
1/j 4

12 − 1.
In each step of the BP algorithm the transformation is

exact. The numerical accuracy is limited only by the machine’s
precision, which is the round-off error 10−32 in the quadruple
precision. The BP algorithm needs about N3 steps to calculate
the free energy of an N × N lattice (it is much faster
than other numerical methods). Therefore the total error is
approximately N3/2 × 10−32. This estimation has been verified
in the following way: We compared the results obtained using
double precision, in which there are 16 effective decimal
digits, and those using quadruple precision. Because the latter
results are much more accurate than the former, we can
estimate the error in double-precision results by taking the
quadruple results as the exact results. We thus found that the
error is about N3/2 × 10−16. In our calculation, the largest
size reached is N = 2000, and the round-off error is less
than 10−26.

The free energy density, internal energy per spin, and
specific heat density are calculated at the critical point
according to

f = ln Z

S
, u = ∂f

∂β
, c = β2 ∂2f

∂β2
, (3)

respectively, where S is the number of spins on the lattice;
this is S = N (N + 1)/2, N2, N (3N − 1)/2, 3N2 − 3N + 1,
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and N2 − (N − 1)/2 for the triangular, rhomboid, trapezoid,
hexagonal, and rectangular systems, respectively. One can
alternatively define the free energy density according to
the actual geometrical area, which differs from the present
definition by a trivial constant.

With the BP algorithm, we obtain the free energy density
f directly. The internal energy and specific heat are calculated
by using a differentiation method:

u ≈ −f (βc + �β) − f (βc − �β)

2�β
,

(4)

c ≈ β2
c

f (βc + �β) + f (βc − �β) − 2f (βc)

(�β)2
.

In our calculation, �β = 10−7 is used. The analysis of error in
the calculations of u and c has been discussed in Ref. [27].
The final estimations of the accuracy of the free energy,
internal energy, and specific heat are 10−26, 10−11, and 10−9,
respectively.

The calculations were carried out for 105, 104, 103, 85,
and 127 systems, with linear size N varying from 30 to
2000, for the triangular, rhomboid, trapezoid, hexagonal, and
rectangular triangular lattices, respectively.

III. RESULTS

A. Critical free energy density

By fitting the finite-size data, we find that the exact
expansion of the critical free energy can be written in the
following form, with k from 3 to 12 for the triangle and
rectangle and from 3 to 9 for the other shapes:

f = f∞ + fsurf
p(N )

S
+ fcorn ln N + f2

S

+
∞∑

k=3

fk + lk ln N

Sk/2
, (5)

where p(N ) is the perimeter, which is equal to 3N, 4N,

5N − 1, 6N , and (2 + √
3)N for the triangle, rhombus, trape-

zoid, hexagon, and rectangle, respectively. In our fitting,
the expansion is truncated to k = 12 and k = 11 for the
triangle and rectangle,respectively. It is truncated to k = 9
for the rhombus, trapezoid, and hexagon. This expansion is
different from that for the triangular lattice with periodic
boundary conditions [18], in which there are no surface or
corner terms or logarithmic corrections, and only even k is
presented.

The fitting method is the standard Levenberg-Marquardt
method for nonlinear fits [28]. The standard deviation (SD)

is defined by σ =
√∑

i(fi − f
(fit)
i )2/(nd − nf ) with fi the

numerical data, f
(fit)
i the value given by the fitting formula,

nd the number of data points used, and nf the num-
ber of fitting parameters. For all cases, σ reaches 10−25.
The accuracy is seen from the fitted bulk free energy density
f∞: the worst fit among the five cases is for the rhombus,
which yields f∞ = 0.879 585 386 161 571 517 093 896 2(7),
and the best one is for the triangle, yielding f∞ =
0.879 585 386 161 571 517 093 896 05(3). These results co-
incide with the exact value f∞ = 0.879 585 386 161 571
517 093 896 028 3 . . . [17] to more than 24 decimal
places.

According to finite-size scaling, the surface correction term
fsurfp(N )/S stems from free edges. As shown in Fig. 1(e),
there are three bond directions for the triangular lattice. For
the triangle, rhombus, trapezoid, and hexagon, every edge
is parallel to a particular bond direction. The edge free
energy per unit length on these edges should be equal. For
the rectangle, there are two edges along one bond direction
and two other edges perpendicular to that bond direction
in a zigzag way. Therefore the edge free energy per unit
length along the two different directions can be different in
principle. To be clear, we denote the surface free energy per
unit length (the straight length, not the total length of the
zigzag line) along and perpendicular to the bond direction as
f

‖
surf and f ⊥

surf , respectively. The surface free energy is thus
fsurfp(N ) = f

‖
surfp(N ) for the triangle, rhombus, trapezoid,

and hexagon, respectively. For the rectangle, it is fsurfP (N ) =
f̄surf(2 + √

3)N , with f̄surf = (2f
‖
surf + √

3f ⊥
surf)/(2 + √

3) the
mean surface free energy per unit perimeter, considering
that the straight length of the edges along the perpendicular
direction is

√
3N/2, which is used to define the perimeter. The

fitted values of fsurf are given in Table I. For the rectangular
case, we obtain

f
‖
surf = −0.103 077 638 834 090 655 334(2),

(6)
f ⊥

surf = −0.116 007 497 958 656 704 304(2).

Cardy and Peschel showed in [3] that the presence of a
corner of interior angle γ along a boundary of typical size N

gives rise to a logarithmic correction to the critical free energy
density,

f (γ )
corn

ln N

S
= − cγ

24π

[
1 −

(
π

γ

)2] ln N

S
, (7)

TABLE I. The fitted edge and corner free energy and f2 in Eq. (5).

Shape fsurf fcorn f2

Triangle −0.103 077 638 834 090 655 334 3(2) 0.166 666 666 666 666 666 7(4) 0.006 804 832 446 685 952(4)
Rhombus −0.103 077 638 834 090 655 334(2) 0.145 833 333 333 333 33(2) 0.183 972 833 468 758 7(1)
Trapezoid −0.103 077 638 834 090 655 335(1) 0.145 833 333 333 333 35(2) 0.221 395 260 142 803 9(1)
Hexagon −0.103 077 638 834 090 655 335(2) 0.104 166 666 666 666 68(3) 0.475 827 152 777 481 2(2)
Rectangle −0.109 078 407 337 305 392 239(2) 0.125 000 000 000 000 001(2) 0.225 498 356 839 947 14(1)
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where c is the conformal anomaly. The total corner free energy is

fcorn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3f
(π/3)
corn = 1

6 = 0.166 666 . . . for the triangle,

2
(
f

(π/3)
corn + f

(2π/3)
corn

) = 7
48 = 0.145 333 3 . . . for the rhombus and trapezoid,

6f
(2π/3)
corn = 5

48 = 0.104 666 6 . . . for the hexagon,

4f
(π/2)
corn = 1

8 = 0.125 for the rectangle.

The fitted corner free energies fcorn for the five shapes are listed
in Table I, from which one can see that our results reproduce
the CFT results very accurately.

In a previous study on the finite square lattice in a rectan-
gular shape [27], we estimated the corner free energy fcorn =
0.125 ± 2.0−10 for rectangles with various aspect ratios. Here
we find the same result fcorn = 0.125 ± 2.0 × 10−18 on the
rectangular triangular lattice. This indicates that the corner
term of the free energy is independent of the microscopic
properties of the lattice. Therefore we have proved the CFT
prediction that the corner free energy is universal [3]. However,
our calculations are for an aspect ratio fixed at ρ = 2/

√
3

in the present work. Thus our results are not sufficient
to further verify Kleban and Vassileva’s CFT predictions
on the effect of the aspect ratio of the rectangle-shaped
lattice [21].

For higher-order terms, we give fitted coefficients in
Tables II and III. For the critical free energy of the triangle-
and rectangle-shaped triangular lattices, there are no log-
arithmic corrections except for the corner term, i.e., all
lk = 0. For the triangle, the coefficient f4 is determined to
be zero since it is extremely small in our fits if included,
and the fitting result changes little if we discard it. In
contrast to the triangles and rectangles, for the other three
shapes of triangular lattices, we find higher-order (k � 5)
logarithmic corrections in addition to the corner term. Al-
though these logarithmic corrections are very weak, with
very small coefficients, our very accurate data indicate their
existence.

TABLE II. The fitted parameters for order k � 3 in Eq. (5) for
the critical free energy of the triangle- and rectangle-shaped triangular
lattices. There are no logarithmic corrections except for the corner term,
i.e., all lk = 0.

Shape Triangle Rectangle

f3 0.117 851 130 197 757 922 7(7) −0.014 495 934 065 064 5(9)
f4 0 0.018 068 370 551 1(1)
f5 −0.002 455 231 879 142(5) −0.012 371 010 66(1)
f6 0.001 247 090 584 7(6) 0.016 864 148 9(1)
f7 −0.001 625 545 87(4) 0.003 027 43(4)
f8 0.001 247 103(1) 0.001 335(1)
f9 −0.000 561 82(3) −0.031 33(3)
f10 −0.000 583 5(5) 0.0701(4)
f11 0.001 968(5) −0.161(2)
f12 −0.002 26(2)

B. Critical internal energy density

We fit the data on the critical internal energy with the
following formula:

u = u∞ + usurf
p(N ) ln N

S
+ ucorn

ln N

S
+

∞∑
k=1

uk

Sk/2
, (8)

where p(N ) is again the perimeter. In our fits, the expansion is
truncated to k = 4. Again, this formula is different from that for
the triangular lattice with periodic boundary conditions [18],
in which there are no logarithmic surface term, no corner term,
and only odd k is presented. The bulk value u∞ is known to be
2 [17]. Our fit of u∞ is 2.0 ± 1.0 × 10−10 for the five shapes.
The other fitted parameters are given in Table IV.

The leading correction is due to the edges (or surface),
which has not been determined to our knowledge. We denote
the surface internal energy per unit length of the edge along one
bond direction by u

‖
surf , and that perpendicular to that direction

by u⊥
surf . For the triangle, rhombus, trapezoid, and hexagon, we

have usurf = u
‖
surf . For the rectangle we have usurf = (2u

‖
surf +√

3u⊥
surf)/(2 + √

3), and

u
‖
surf = −0.551 328 89(2), u⊥

surf = −0.551 328 95(7). (9)

This is an interesting result because it means that the surface
internal energy per unit length is symmetric for an edge along
or perpendicular to an arbitrary bond direction. Comparing
this result with usurf for the rectangle-shaped square lattice in
our previous work [27], where usurf = 0.636 619 8(1), we find
that the ratio is 1.154 700 5, which is very close to 2/

√
3 =

1.154 700 538 . . .. Because the exact value of usurf for the
square lattice is 2/π [11], we conjecture that the exact value of
the surface internal energy for the triangular lattice is given by

u
‖
surf = u⊥

surf = −
√

3/π. (10)

Following the convention for the critical free energy, we
write the coefficient of (ln N )/S as ucorn. We denote the
corner correction by u

(γ )
corn, where γ is the angle of the corner.

Under the assumption that ucorn is the sum of the corners,
contributions, we have

ucorn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3u
(π/3)
corn for the triangle,

2
(
u

(π/3)
corn + u

(2π/3)
corn

)
for the rhombus and trapezoid,

6u
(2π/3)
corn for the hexagon,

4u
(π/2)
corn for the rectangle.
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TABLE III. The fitted parameters of Eq. (5) for the critical free energy. The third- and fourth-order logarithmic
corrections l3 and l4 are zero.

Shape Rhombus Trapezoid Hexagon

f3 0.048 611 111 111 12(2) −0.002 106 928 657 56(2) −0.060 140 653 040 55(7)
f4 −0.008 101 851 86(2) 0.013 632 817 06(2) 0.034 722 222 17(7)
f5 0.003 811 44(6) −0.006 861 68(6) −0.018 097 6(4)
f6 −0.002 15(1) −0.008 94(1)0 0.0150(1)
f7 −0.0008(5) 0.0316(6) −0.018(7)
f8 −0.026(4) −0.113(5) −0.56(9)
f9 0.032(2) 0.097(3) 0.21(3)
l5 0.003 463 39(1) 0.004 948 74(1) 0.009 997 97(6)
l6 −0.003 461(2) −0.008 767(3) −0.008 63(2)
l7 0.0024(1) 0.0117(2) 0.011(2)
l8 0.006(2) 0.011(3) 0.17(5)
l9 0.007(5) 0.070(8) 0.9(2)

From Table IV, we obtain the corner terms for the three angles:

u(π/3)
corn = −0.551 332(1),

u(π/2)
corn = 0.036 927(2), (11)

u(2π/3)
corn = 0.183 781(3).

In the previous study on the square lattice [27], we obtained
the corner term ucorn = −0.4502(1) for rectangles with various
aspect ratios. It is different from the present result ucorn =
0.147 707(6) for the rectangle-shaped triangular lattice, which
indicates that the corner term of the internal energy depends
on the microscopic structure of the lattice, and thus is not
universal.

The other parameters u1, u2, u3, and u4 are also estimated
and listed in Table IV. We have tried other forms of formula to
fit the critical internal energy. The coefficients of the possible
logarithmic corrections ln S/Sk/2 with k � 3 are extremely
small. However, we cannot exclude these terms definitely
based on the current data. More accurate data are needed to
settle this issue.

C. Critical specific heat

The data for the critical specific heat are fitted using the
following formula:

c = A0 ln N + c0 + csurf
p(N ) ln N

S
+ ccorn

ln N

S
+

∞∑
k=1

ck

Sk/2
,

(12)

where p(N ) is the perimeter. In our fits, the expansion is
truncated to k = 4. Compared with the expansion for the
triangular lattice with periodic boundary conditions [18], there
are additional logarithmic surface and corner terms.

The leading term A0 ln N is known from the exact result
[18], which reads A0 = 3

√
3

4π
(ln 3)2 ≈ 0.499 069 378 0 . . .. Our

fit yields A0 ≈ 0.499 069 374(5). The other fitted parameters
are listed in Table V.

The leading correction p(N ) ln N/S is caused by the edges.
We denote the surface specific heat per unit length of the edge
along one bond direction by c

‖
surf , and that perpendicular to

this direction by c⊥
surf . For the triangle, rhombus, trapezoid,

and hexagon, we have csurf = c
‖
surf ; for the rectangle, we set

csurf = (2c
‖
surf + √

3c⊥
surf)/(2 + √

3), and find

c
‖
surf = 0.166 354(2), c⊥

surf = 0.105 462(2). (13)

Note that this term is absent in the torus case [8] and not
mentioned in the long strip case [11], but exists in the cylindical
case with Brascamp-Kunz boundary conditions [14,15].

Following the convention for the critical free energy, we
write the coefficient of (ln N )/S as ccorn. We denote the corner
correction by c

(γ )
corn where γ is the angle of the corner. Again,

under the assumption that the total correction is the sum of the
corners, we have

ccorn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3c
(π/3)
corn for the triangle,

2
(
c

(π/3)
corn + c

(2π/3)
corn

)
for the rhombus and trapezoid,

6c
(2π/3)
corn for the hexagon,

4c
(π/2)
corn for the rectangle.

TABLE IV. The fitted parameters of Eq. (8) for the critical internal energy per spin.

Shape Triangle Rhombus Trapezoid Hexagon Rectangle

usurf −0.551 328 91(2) −0.551 328 867(8) −0.551 328 88(1) −0.551 328 91(2) −0.551 329 0(7)
ucorn −1.653 995(3) −0.735 055(7) −0.735 06(1) 1.102 68(2) 0.147 707(6)
u1 0.135 813 1(3) −0.728 608 0(2) −1.455 311 0(3) −3.449 839 2(7) −1.124 622 4(2)
u2 −1.420 06(1) −1.093 59(3) −0.554 00(4) 1.710 14(4) −0.954 85(2)
u3 −0.702 91(8) −0.2154(3) 0.0302(4) −0.372(1) 0.1049(2)
u4 −0.0243(4) 0.113(2) 0.044(4) 0.49(1) −0.030(2)
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TABLE V. The fitted parameters of Eq. (12) for the critical specific heat of the five shapes.

Shape Triangle Rhombus Trapezoid Hexagon Rectangle

c0 −0.804 242 37(1) −0.605 103 31(1) −0.519 950 11(1) −0.267 339 5(1) −0.573 388 895(9)
csurf 0.166 355 8(3) 0.166 353 1(5) 0.166 352 0(5) 0.166 338(9) 0.138 094 1(8)
c1 −0.187 862(5) −0.036 692(3) −0.103 91(2) −0.2749(2) −0.085 29(9)
ccorn 0.7484(1) 0.3864(2) 0.3857(3) −0.343(6) −0.1510(2)
c2 0.6410(4) 0.6443(8) 0.615(1) 0.58(2) 0.6833(7)
c3 0.339(2) 0.177(6) 0.04(1) −0.09(3) −0.057(5)
c4 0.024(8) −0.12(4) −0.00(7) 1.8(3) 0.17(3)

From Table IV, we obtain the corner contributions of the three
angles,

c(π/3)
corn = 0.249 48(3),

c(π/2)
corn = −0.037 75(5), (14)

c(2π/3)
corn = −0.057(1).

In the previous study on the square lattice [27], we obtained
the corner term ccorn = 0.368(1) for rectangles with various
aspect ratios. It is different from the present result ccorn =
−0.1510(2) for the rectangle-shaped triangular lattice, which
indicates that the corner term of the specific heat depends
on the microscopic structure of the lattice, and thus is not
universal.

We have also tried other forms of fitting formula to fit
the critical specific heat data. The coefficients of the possible
logarithmic corrections ln S/Sk/2 with k � 3 are extremely
small. However, we cannot exclude these terms definitely
based on the current data. More accurate data are needed to
settle this issue.

IV. CONCLUSION

Using the BP algorithm, we have studied the 2D critical
Ising model on a triangular lattice with free boundaries.
For five shapes, triangular, rhomboid, trapezoid, hexagonal,
and rectangular, the critical free energy, internal energy,
and specific heat have been calculated. We have proved
the conformal field theory prediction about the corner free
energy and have shown that the corner free energy, which is
proportional to the central charge c, is indeed universal. For
the edges parallel or perpendicular to the bond direction, the

logarithmic edge corrections in the internal energy have been
found to be almost identical, while these corrections in the free
energy and in the specific heat have been found to be different.
Comparing with the previous result on the square lattice in the
shape of a rectangle, we have found that the corner internal
energy ucorn and the corner specific heat ccorn for the rectangle
are not universal, i.e., the coefficients in front of ln N/S in
the expansion of the internal energy and the specific heat are
different for the square and the triangular lattices.

We have also found that there exist logarithmic corrections
in higher orders, say, there are terms ln N/S5/2, ln N/S3, . . .

in the critical free energy for the rhombus, trapezoid, and
hexagon. However, these terms are absent for the triangle and
rectangle. This should be an interesting subject for further
investigation.

The BP algorithm can be applied to study some different
boundaries. The BP algorithm for a cylinder was also proposed
in Ref. [26], so a lattice with periodic conditions in a particular
direction can be studied. Moreover the BP algorithm can be
applied to a lattice with a hole. The effects of a hole on the free
energy, internal energy, and specific heat should be interesting.
They must depend strongly on the position of the hole. For
example, the change of free energy induced by a hole at the
corner should be very different from that induced by a hole at
the center. Further investigation is needed on these issues.
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