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Dynamical properties of random-field Ising model
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Extensive Monte Carlo simulations are performed on a two-dimensional random field Ising model. The purpose
of the present work is to study the disorder-induced changes in the properties of disordered spin systems. The time
evolution of the domain growth, the order parameter, and the spin-spin correlation functions are studied in the
nonequilibrium regime. The dynamical evolution of the order parameter and the domain growth shows a power
law scaling with disorder-dependent exponents. It is observed that for weak random fields, the two-dimensional
random field Ising model possesses long-range order. Except for weak disorder, exchange interaction never wins
over pinning interaction to establish long-range order in the system.
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I. INTRODUCTION

The random field Ising model (RFIM) belongs to a class
of disordered spin models in which the disorder is coupled to
the order parameter of the system. Much has been studied on
various aspects of RFIM since Imry and Ma [1] introduced
this model. It has experimental realizations in a diluted
antiferromagnet [2]. Its Hamiltonian differs from that of a
normal Ising model by the addition of a local random field
term, which results in a drastic change of its behavior in both
equilibrium and nonequilibrium situations. In one dimension
(d = 1), the RFIM does not order at all [3]. Imry and Ma
argued that the random fields assigned to spins change the
lower critical dimension from dl = 1 (pure case) to dl = 2.
Later a number of field theoretical calculations [4] suggested
that dl = 3. Finally, in 1987 came the exact results by Bricmont
and Kupiainen [5], which showed that there is a ferromagnetic
phase in three dimensions. In 1989 Aizenman and Wehr [6]
provided us with a rigorous proof that there is no ferromagnetic
phase in two-dimensional (2D) RFIM and thus dl = 2. This
means that the ground state is paramagnetic. However, in
1999 Frontera and Vives [7] had shown numerical signs of
a transition in the 2D RFIM at T = 0 below a critical random
field strength. They explained in their paper that the proof
by Aizenman and Wehr cannot be misunderstood as a proof
that ordered phase cannot exist. We mention in passing that
Aizenman, in his recent seminars, claims that the 2D RFIM
exhibits a phase transition in the disorder parameter [8].
Recently Spasojevic et al. [9] gave numerical evidence that the
2D nonequilibrium zero-temperature RFIM exhibits a critical
behavior. The Hamiltonian for such a system is, in general,
given by

H = −J
∑
〈ij〉

sisj +
∑

i

ηisi + Hext

∑
i

si , (1)

where J is the coupling constant, conventionally set to unity
in the present work. ηi is the quenched random field, and Hext
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is the external magnetic field. In the present work the external
magnetic field Hext is set to zero.

The local static random fields give rise to many local
minima of the free energy and the complexity of the random
field free energy also gives rise to long relaxation times as the
system lingers in a succession of local minima on its way to
the lowest energy state. For the zero field Ising model in two or
more dimensions below the critical temperature Tc, there form
domains of moderate size in the early time regime, in which
all the spins are either up or down and as time progresses the
smallest of these domains shrink and vanish, closely followed
by the next smallest, until eventually most of the spins on
the lattice are pointing in the same direction. The reason for
this behavior is that the domains of spins possess a surface
energy, having a domain wall cost an energy which increases
with the length of the wall, because the spins on either side of
the wall are pointing in opposite directions. The system can
therefore lower its energy by flipping the spins around the edge
of a domain to make it smaller. Thus the domains “evaporate,”
leaving most of the spins either up or down.

However, the story is different for RFIM. In the RFIM,
domains still form in the ferromagnetic regime, and there
is still a surface energy associated with the domain walls,
but it is no longer always possible to shrink the domains to
reduce this energy. The random field acting on each spin in the
RFIM means that it has a preferred direction. Furthermore, at
some sites there will be a very large local field ηi pointing
in one direction, say, up direction, which means that the
corresponding spin will really want to point up, and it will
cost the system a great deal of energy if it is pointing down.
The acceptance ratio for flipping this spin contains a factor
exp(−2β|ηi |), which is a very small number if |ηi | is large. It
is said that the domain wall is pinned by the local field; i.e.,
it is prevented from moving by an energy barrier produced by
the large random field. If the domains eventually stop growing,
the system will be in a disordered phase (although the domain
size may be very large). This describes the d = 2 RFIM.

All these features can be visualized from some snapshots
presented in Fig. 1. In the early time regime, domains begin
to form and grow in size [Figs. 1(a)–1(d)]. This is seen in
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FIG. 1. (Color online) Time evolution of domains for a 128 × 128 system at T = 0.50. The strength of disorder is η0 = 1.0. The yellow
(gray) regions indicate domains of up spins.

a pure system too. As time flows, the domains stop growing
and the domain wall is pinned [Figs. 1(e)–1(h)] even at a low
temperature. The introduction of a local static random field
term changes the behavior of the system completely in a later

time regime and renders the system in a disordered phase even
at a very low temperature.

These disordered spin systems have been an active area of
research for quite some time now [10–16]. The purpose of the
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present work is to study the disorder-induced changes in the
properties of these systems, with emphasis on the dynamical
evolution of the domain growth, the order parameter, and the
spin-spin correlation functions in the nonequilibrium region.

In most of the studies on RFIM, the domain size (or the
cluster size) was determined in terms of the fluctuations of the
magnetization [17–21]. The fluctuations in magnetization are
only a measure of domain size, not the actual domain size.
In this work we have measured the actual domain size by the
Hoshen-Kopelman algorithm [22]. The method of determining
cluster size by the Hoshen-Kopelman algorithm allows us to
make a more accurate study of its growth with time. Moreover,
there are many ways in which the random fields could be
chosen. In most of the studies, they were chosen to have a
Gaussian distribution with some finite width σ , or to have
values randomly ±h where h is a constant. However, the
interesting properties of RFIM are believed to be independent
of the exact choice of the distribution, which is a consequence
of the phenomenon of universality [23]. In the present work,
the random fields are chosen from a uniform distribution of
varying strengths.

The rest of the paper is arranged as follows. Section II
discusses the computational details and gives the definition
of the thermodynamic quantities of our interest. Section III
presents the results in detail. Finally in Sec. IV we summarize
our results.

II. THE MODEL AND ITS SIMULATION

The first term of the Hamiltonian (1) is the usual exchange
interaction term, while the second term represents the inter-
action of the random field with the spin. We call this term
the pinning interaction term since this term is responsible for
domain wall pinning. The simulations are performed on square
lattice of sizes ranging from 32 × 32 to 512 × 512 and at a
finite temperature T = 0.50, which is well below the critical
temperature of a 2D zero field Ising model. The temperature
is taken sufficiently low to reduce the thermal fluctuations.
Properties of RFIM depend on the competition between the
random fields and the ferromagnetic couplings with the ther-
mal fluctuations serving only to renormalize the strengths of
these couplings [24]. We have chosen the Metropolis algorithm
[25] to simulate the system. The Metropolis algorithm is
suitable here because the dynamics is local. Being a single spin
flip dynamics, the Metropolis algorithm is believed to represent
the natural way of evolution of a system, since the acceptance
ratio is given by the Boltzmann probability. Periodic boundary
conditions are used in the simulations.

The sizes of the domains (or clusters) are determined by
Hoshen-Kopelman (HK) algorithm [22]. The general idea of
the HK algorithm is that we scan through the lattice looking
for up spins (or down spins). To each up spin (or down spin)
we assign a label corresponding to the cluster to which the up
spin (or the down spin) belongs. If the up spin (or the down
spin) has zero neighbors of same sign, then we assign to it a
cluster label we have not yet used (it is a new cluster). If the up
spin (or the down spin) has one neighbor of same sign, then we
assign to the current spin the same label as the previous spin
(they are part of the same cluster). If the up spin (or the down
spin) has more than one neighbor of same sign, then we choose

the lowest-numbered cluster label of the up spins (or the down
spins) to use the label for the current spin. Furthermore, if these
neighboring spins have different labels, we must make a note
that these different labels correspond to the same cluster. The
HK algorithm is a very efficient cluster identification method
for two-dimensional systems. The domain size corresponds to
the number of spins enclosed by the boundary of a domain.

The time-dependent ensemble average of magnetization,
i.e., the order parameter, has been defined as

M(η0,t) =
〈

1

L2

∣∣∣∣∣
∑

i

si

∣∣∣∣∣
〉

t

, (2)

where L is the linear size of the system and si is the spin at
the site i. The angular bracket 〈· · ·〉t indicates the ensemble
average at time t .

The time-dependent ensemble average of the spin-spin
correlation function is defined as

ψss(η0,l,t) = 〈〈sisi+l〉l〉t , (3)

where l is the distance of separation between the spins. The
angular bracket 〈· · ·〉l indicates the ensemble average over the
distance of separation between the spins, while 〈· · ·〉t indicates
the same over time t .

The thermodynamic quantities of our interest are averaged
over 50 independent simulations to improve the accuracy and
the quality of the results. The simulations start with a random
spin configurations, characteristic of a high-temperature phase
and then quenched to a low temperature.

III. RESULTS AND DISCUSSIONS

The dynamic evolution of the order parameter defined in
Eq. (2) for different disorder strengths is shown in Fig. 2. It is
seen from Fig. 2 that for weak disorder (η0 � 0.3) the system
reaches in a steady state after a certain time (here steady state
means the fluctuations in order parameter is very small with
time). For weak disorder, the system behaves more or less like
a pure system. For larger disorder, the system takes longer
time to reach in a steady state; i.e., the system relaxes, if at all,
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FIG. 2. (Color online) Plot of the time evolution of order
parameter for L = 256. The dashed lines represent the best linear
fits according to the scaling law defined in Eq. (4).
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FIG. 3. (Color online) Variation of the exponent β(η0) with η0.
The solid line indicates the best exponential fit to the data points.

very slowly. The nature of the evolution of the order parameter
strongly depends on the strength of the disorder. The early
time behavior of the dynamic evolution of the order parameter
can be characterized by the following power law behavior:

M(η0,t) ∼ tβ(η0), (4)

where β(η0) is a disorder-strength-dependent exponent corre-
sponding to the growth of the order parameter. The dependence
of the power law exponent β(η0) on the disorder strength η0 is
shown in Fig. 3.

The exponent β(η0) falls off exponentially with the strength
of the disorder η0 as ∼ exp(−νη0) with ν = 1.35 ± 0.07.
This is quite obvious. Two types of interactions, namely, the
exchange interaction and the pining interaction, are present
in the system. For larger disorder, spin flips are not favored
due to the presence of the pinning interaction term, and
consequently the domain walls get pinned, leaving the system
in a disordered phase. As a result, the exponent β(η0) falls off
sharply with η0.

What happens is that there is always a competition between
the exchange interaction and the pining interaction. Therefore
it is interesting to observe the time evolution of the time-
dependent ensemble average of the exchange interaction
defined as

χ (η0,t) =
〈 ∑

〈ij〉
sisj

〉
t

(5)

as well as the time evolution of the time-dependent ensemble
average of the normalized pinning interaction defined as

�(η0,t) =
〈

1

η0
〈siηi〉

〉
t

, (6)

where the angular bracket 〈· · ·〉t indicates the ensemble
average at time t . Figure 4 shows the dynamic evolution of
the χ (η0,t) and the �(η0,t), respectively, and it reveals a
striking feature. It is seen that the exchange interaction χ (η0,t)
remains almost same with time except at some initial time
steps, whereas the pinning interaction �(η0,t) decays more
rapidly except for very large disorder strength. The system
evolves with time in such a way that the pining interaction
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FIG. 4. (Color online) The time evolution of the exchange
interaction χ (η0,t) and the pinning interaction �(η0,t) as defined
in Eq. (5) and Eq. (6), respectively, for L = 256.

gets minimized. We would like to point out that this behavior
is characteristic to the RFIM and was not observed earlier to the
best of our knowledge. For weak disorder, the system achieves
the steady state with the flow of time resulting in the saturation
of the pining interaction and the exchange interaction as well.
For disorder strengths lying in the intermediate range, the
decay of pining interaction strongly depends on the strength
of the disorder. Now, a natural question that arises is that
how rapidly does the pining interaction �(η0,t) decay or how
slowly does the exchange interaction χ (η0,t) increase with the
strength of the random field η0. According to the nature of the
dynamic behavior seen in Fig. 4, the power law dependence of
the χ (η0,t) and the �(η0,t) with time has been proposed as

χ (η0,t) ∼ tαχ (η0), �(η0,t) ∼ t−α�(η0), (7)

where αχ (η0) and α�(η0) are two characteristic exponents
which determine the nature of growth of the exchange
interaction and the pining interaction. The variation of these
exponents with η0 is shown in Fig. 5. The values of
the exponent αχ (η0) are very small, and its variation with
the strength of the disorder η0 is negligible, which indicates
that αχ (η0) is almost independent of η0. On the other
hand, the variation of the exponent α�(η0) with η0 is
noticeable, and α�(η0) decreases rapidly with η0 and tends
to saturate for very large values of η0. These results confirm
our earlier observation on the time evolution of the exchange
interaction and the pinning interaction.

Next we focus our attention on the study of spin-spin
correlation functions defined by Eq. (3). The spin-spin cor-
relation functions ψss(η0,l) for different strengths of disorder
at different times t are shown in Fig. 6. For weak disorder,
when the system is quenched from a high-temperature phase
to a low-temperature one, long-range order is seen to develop
at a later time regime. With decreasing strength of the random
fields, the ferromagnetic couplings start to dominate over the
random fields, the domains of parallel spins become larger,
and the system is in a ferromagnetic regime. This observation
is in agreement with Refs. [26,27], which shows that there
is a critical field strength at which the correlation length
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FIG. 5. (Color online) Variation of αχ (η0) and α�(η0) with η0.

becomes divergent. This observation also supports the earlier
findings [7] of a phase transition in the 2D RFIM at T = 0.
Here the thermal fluctuations due to finite temperature serves
only to renormalize the strengths of the random fields and
the ferromagnetic couplings. For weak disorder, the pinning
interaction decays faster with time and then saturates (see
Fig. 4), which also implies presence of long-range order at
later time regime. This is why we obtained a large value of
the exponents β(η0) and α�(η0) for weak disorder strengths.
We would also like to point out here that with the increase in
system size, it takes longer time in order for long-range order
to be established. To check that the presence of long-range

order for weak disorder is not a result of finite size effect, we
have plotted the order parameter against time (the number
of Monte Carlo steps) for various system sizes, which is
shown in Fig. 7. It is evident from Fig. 7 that the number
of Monte Carlo steps (tx) required to achieve the long-range
order for weak disorder increases with the increase in system
size. The inset of Fig. 7 shows the plot of ln(tx) against
ln(L). It may also be noted that for weak disorder, the nature
of spin-spin correlation functions changes from exponential
decay to power law decay at late time stage, which suggests the
possibility of existence of long-range order. This observation
is in agreement with the recent observation of Aizenman [8].
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FIG. 6. (Color online) Plot of ψss(η0,l) against l for different disorder strengths at different times for L = 512.
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For strengths of disorder lying in the intermediate range, no
long-range order is seen to develop, and short-range order is
being developed with time in the system. Except for weak
random fields, exchange interaction never wins over pinning
interaction to establish long-range order in the system. Due to
this short-range order, there form small domains in the system
initially, and as time elapses, these small domains “evaporate”
to form a large domain. However, the presence of random fields
prevents the system from growing into a single domain even
at a low temperature. For very large disorder (�2.6), neither
short-range nor long-range order prevails in the system, and
the system remains in a complete disordered phase. There
is always a competition between the ferromagnetic nearest
neighbor interaction J (which favors ordering) and the random
field strength η0 (which favours disordering). In the limit
of strong random fields, the direction of spins follows the
direction of random fields.
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linear fit to the data points.
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Now we present the results of the domain growth with
time. Domain growth in quenched nonequilibrium systems is
a widely studied topic [28]. Monte Carlo simulations have been
carried out [29–32] to obtain numerically the time evolution of
these domains, and to compare the results with theory [33–36].
We concentrate on the growth of the largest domain, and it is
plotted in Fig. 8. The growth of the largest domain can be
characterized by the following power law behavior :

For η0 � 0.3


(η0,t) = tμ(η0) t � t×1,


(η0,t) = tν(η0) t×1 � t � t×2 ,


(η0,t) = ησ
0 t � t×2 . (8)

For η0 > 0.3


(η0,t) = tμ(η0), (9)

where μ(η0) is a disorder-strength-dependent exponent corre-
sponding to the growth of the largest domain at the early time
regime. Recently, Corberi et al. [37] also found that the domain
growth shows a power law scaling with a disorder-dependent
exponent in a preasymptotic regime. The variation of the
exponent μ(η0) with η0 is shown in Fig. 9. The exponent
μ(η0) falls off exponentially with the strength of disorder η0

as ∼ exp(−γ η0) with γ = 1.92 ± 0.14. It is to be noted that
although the order parameter exponent and the domain growth
exponent fall off exponentially with the strength of disorder,
the values of the exponents are different, and the fall of μ(η0)
is faster than that of β(η0).

IV. SUMMARY AND CONCLUSION

We conclude the paper with a summary of our results.
This paper has attempted to consider some aspects of the
nonequilibrium behavior of the 2D random-field Ising model
numerically at a low temperature. As seen in the preceding
sections, the RFIM exhibits a variety of behaviors depending
on the strength of the random fields. The system relaxes with
time in presence of two opposite kind of interactions, namely,
the exchange interaction and the pinning interaction, and we
have studied the dynamical evolution of these two interactions
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separately. It is seen that the fall of pinning interaction depends
on the strength of the random fields with a power law decay,
and it decays faster for weak random fields. Therefore the
dynamical evolution of the order parameter should also depend
on the strength of the random fields with a power law growth,
as has been observed. To get an insight of what is happening
inside the system, we have calculated the dynamical spin-spin
correlation functions. For weak disorder, the pinning inter-
action decays faster, and consequently the disordering effect
reduces. As a result, the system is being correlated with time for
weak disorder. Our numerical study suggests the possibility of
presence of long-range order in the 2D 2d RFIM for weak dis-
order strengths. We are inclined to comment that the 2D RFIM
exhibits a phase transition in disorder parameter even at a
temperature T > 0. The transition is manifested by a change of
nature of spin-spin correlation functions from an exponential
decay at high disorder strengths to a power law decay at weak
disorder strengths. The thermal fluctuations due to nonzero T

plays the role only to renormalize the strengths of both the
interactions, although it ceases to be of relevance at higher

temperatures. Except for weak disorder, the exchange interac-
tion never wins over the pinning interaction to establish long-
range order in the system. The study of spin-spin correlation
functions reveals that the 2D RFIM shows long-range order,
short-range order, and no order at all, each of which occurs in
a restricted range of random field strength. We have also mea-
sured the largest cluster size by using the Hoshen-Kopelman
algorithm. The behaviors of the dynamical evolution of the
largest cluster are consistent with our previous conclusions.
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