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Holey random walks: Optics of heterogeneous turbid composites
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We present a probabilistic theory of random walks in turbid media with nonscattering regions. It is shown
that important characteristics such as diffusion constants, average step lengths, crossing statistics, and void
spacings can be analytically predicted. The theory is validated using Monte Carlo simulations of light transport
in heterogeneous systems in the form of random sphere packings and good agreement is found. The role of step
correlations is discussed and differences between unbounded and bounded systems are investigated. Our results
are relevant to the optics of heterogeneous systems in general and represent an important step forward in the
understanding of media with strong (fractal) heterogeneity in particular.
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I. INTRODUCTION

Multiple scattering of light is ubiquitous in nature and a
proper account of the phenomenon is essential in important
areas such as atmospheric science [1–3], biomedical optics
[4–6], and material characterization [7–10]. The transport of
light in turbid media is typically treated within the framework
of classical radiative transfer, i.e., as a Poissonian random
walk of independent and exponentially distributed ballistic
segments (steps) (see Refs. [2,5,11]). For optically thick sam-
ples, i.e., on scales over which light experiences a large number
of scattering events, macroscopic transport is well described
by a diffusion equation with a simple expression for the
diffusion constant D = v�/3, where v is the energy velocity
and � the mean step length [12–14]. It is important to realize
that this widely used expression is intimately linked with the
assumption of a uniform (random) distribution of scatterers
that yields exponentially distributed random steps. However,
there is an abundance of real turbid systems in which scatterers
are not uniformly distributed. In such systems, the distribution
of step lengths between successive scattering events is no
longer exponential and, due to quenched disorder (i.e., a frozen
geometry), correlations between these steps can be significant.
This invalidates the above given expression for D. As it has
become better understood that the presence of inhomogeneities
has important implications in a wide variety of contexts, from
the optics of cloudy atmospheres [3,15–17] to spectroscopy
of the human body [18–26] and transport in colloids, porous
media, and foams [27–31], this matter calls for attention.

Deviations from the homogenized viewpoint can be par-
ticularly important for strongly heterogeneous systems that
are characterized by, or can be modeled as, a turbid medium
with embedded nonscattering regions of significant size. Here
clouds are an important example [15,16,32]. The interest in
systems with nonscattering regions has been increased further
by the recent fundamental studies of superdiffusion of light in
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disordered materials with an engineered fractal heterogeneity
(i.e., nonscattering regions of sizes ranging over several
orders of magnitude), dubbed Lévy glasses [33,34], in which
transport relies on an interplay between a broad step length dis-
tribution and quenched disorder [35–37]. Yet another example
of turbid systems with holes is complex porous media, where
broad pore size distributions can influence light diffusion [29].

Unfortunately, since light transport in heterogeneous sys-
tems is intrinsically dependent on the specific heterogeneity,
its description in general terms is particularly challenging.
Significant effort has been devoted to the non-Poissonian
transport mechanisms appearing in heterogeneous systems,
mainly by finding new ways to homogenize the medium
and setting up generalized transport equations [32,38–44].
However, little is known about light transport in turbid media
with quenched disorder in the form of nonscattering regions.
Interestingly, the problem of how nonscattering regions impact
transport in scattering media has been studied in the specific
context of neutron diffusion in pebble bed reactors [45,46].
Therein a rather intricate expression of the modified diffusion
constant has been derived, neglecting step correlations and
being applied essentially to weakly scattering media contain-
ing monodisperse scattering volumes or holes. A theoretical
study of transport in strongly heterogeneous media in general
(i.e., including polydispersive and fractal-like media), which
provides physical insight into the modification of the diffusion
process, the onset of diffusion at early times, the importance
of step correlations, and the impact of finite system size on
transport, is however still missing. The main purpose of this
work is to address this issue.

In this article we present a probabilistic theory of light
transport in turbid media containing nonscattering regions.
Addressing both monodispersive and polydispersive systems,
we show that important quantities such as asymptotic diffusion
constants, step length distributions, and void crossing statistics
can be analytically predicted via remarkably simple and
intuitive formulas. The success of the theoretical approach
is verified by an extensive analysis of random walks in
disordered three-dimensional polydispersive sphere packings
(the intersphere volume is set to be homogeneously turbid).
Our findings provide important insight into light transport
in materials with spatial heterogeneity in scatterer density,
including porous materials and disordered optical materials
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with engineered fractal heterogeneity, such as Lévy glasses
[33–37,47,48].

The remainder of the paper is organized as follows. The
analytical approach for holey random walks is presented in
Sec. II. Based on equilibrium considerations, we show that
the mean step length equals that of a homogenized system.
Using an analytical model for the spacing between spheres in
random sphere packings, we derive an analytical expression
for the diffusion constant, as modified by the presence of
holes in the system. In Sec. III we perform an extensive
study of multiple scattering in holey systems formed by
monodispersive and polydispersive sphere packings (from the
weakly to the strongly scattering regime) to check the validity
of the derived diffusion constant and multisphere crossing
probabilities. The evolution of the mean-square displacement
is used to study the onset of diffusion and the role of step
correlations is investigated and discussed. We also investigate
finite-size effects on transport in turbid media with fractal
heterogeneity (Lévy glasses), showing that they cannot be
described by normal diffusion. A summary is given in Sec. IV.

II. ANALYTICAL DESCRIPTION OF HOLEY
RANDOM WALKS

Let us consider the general case of a random walk in
a composite medium consisting of arbitrarily shaped non-
scattering regions embedded in a turbid medium (a holey
system), the void filling fraction being φ (see Fig. 1). We will
assume that isotropic scatterers are randomly distributed in the
turbid medium, meaning that the distance between isotropic
scattering events is exponentially distributed with a scattering
mean free path �s . The scattering mean free path is related to
single-scattering properties via

�s = 1

nσs

, (1)

where n denotes the number density of scatterers and σs the
scattering cross section. In general, the random step length
S between two subsequent scattering events in the composite
heterogeneous medium consists of two parts: a length Sturbid ∈
exp(�s) inside the turbid intervoid medium and a length Svoid

inside nonscattering voids:

S = Sturbid + Svoid. (2)

FIG. 1. (Color online) Holey random walk. Random walkers
change direction randomly in time, but only when traveling in the
turbid medium found in between the nonscattering regions (holes).
Transport is governed by the resulting step length distribution and
step correlations in a complex manner.

Here it should be noted that Sturbid and Svoid are not indepen-
dent random variables. On the contrary, they are positively
correlated: A long step in the turbid medium is more likely to
be accompanied by one or several crossings of nonscattering
regions.

A. Equilibrium considerations

Assuming that the density of states is homogeneous (which
in optics corresponds to a constant refractive index), random
walkers at equilibrium should sample the two constituents
according to their respective volume fraction. We then expect
that a fraction φ of the average step is located to voids, i.e.,

E[Svoid] = φE[S], (3)

E[Sturbid] = (1 − φ)E[S]. (4)

In terms of expectations values we have

E[S] = E[Svoid] + E[Sturbid]; (5)

using that we also know by definition that E[Sturbid] = �s , we
reach E[S] = φE[S] + �s and conclude that

E[S] = �s

1 − φ
= �h. (6)

This important result that tells us two things: The mean step
length is independent of the shape and size distribution of the
nonscattering regions and equals the homogenized scattering
mean free path �h that would govern a system where the
scatterers were randomly distributed over the full volume
instead of only a volume fraction 1 − φ [n going from n0

to n0(1 − φ) in Eq. (1)]. Thus E[S] is dependent only on φ,
not on the sizes of the voids. This means that the mean step
will grow only with an increase of φ and not with the inclusion
of increasingly larger voids.

B. General remark regarding diffusion

Although the mean step is a very important quantity,
transport properties are determined by the step length dis-
tribution as a whole. In particular, when steps can be
considered independent, the diffusion constant that governs
the macroscopic spreading of random walkers is determined
by the ratio of the first two moments of the step distribution
(when finite). This important relation can easily be derived
by considering the summation of independent d-dimensional
isotropic random steps, all following the same (arbitrary)
step length distribution. One finds that the mean-square
displacement asymptotically grows as 2dDt with a diffusion
constant D given by

D = 1

2d
v
E[S2]

E[S]
, (7)

where S denotes the scalar length (norm) of the individual
steps and v is the walk velocity. For purely exponential steps in
three dimensions, corresponding to a homogenous distribution
of isotropic scatterers, this expression reduces to the famous
relation

D = 1
3v�, (8)
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where � is the mean length of the exponential steps. It
should be noted that this relation is normally derived via
the radiative transfer equation [13,49], not by considering
the summation of random variables (however, see, e.g.,
Refs. [50,51] for similar considerations). For a general holey
system, with heterogeneous distribution of scatterers, steps are
not exponential distributed and the simple formula of Eq. (8)
does not hold. Interestingly, we have already shown that the
mean step length E[S] of the holey system is independent
of the scatterer distribution. The second moment E[S2], in
contrast, will depend on the particular heterogeneity and
scatterer density in a complex manner.

C. Sphere packings as holey systems

As indicated above, transport in a general holey system
is complicated. Besides the issue of step length distribution,
step correlations may be important and must not be forgotten.
To gain insight into this complicated matter we will turn to
systems where the nonscattering part of the system has the
form of a polydispersive random sphere packing. In this and
the following section, we will present an analytical theory of
transport in such systems. In subsequent sections, this theory
will be compared to Monte Carlo simulations of random walks
in sphere-packing realizations.

Let ri (i = 1, . . . ,M) denote the different radii of the
involved spheres and ni their respective number densities. A
random walker traveling in this system will scatter randomly in
time, but only when outside the nonscattering regions. While
being scattered, the chance of crossing at least one sphere
in the coming step depends on the probability that the next
step is longer than the distance to the next sphere surface
(along the new walker direction). This distance can be seen
as a random variable and is here denoted �ps (point-sphere
spacing). If a sphere is crossed, the probability of crossing
also a second sphere before being scattered now depends on
the sphere-sphere spacing along the direction of the walker.
This distance also is a random variable and we denote it �ss

(sphere-sphere spacing). The actual step length distribution
will be determined by the distributions of these random
variables (of course, in combination with the intersphere
scattering mean free path �s). Figure 2 illustrates the definition
of these two essential distance variables.

The average spacing between spheres �ss, as experienced
by the random walker, can be analytically calculated from the
filling fraction and the sphere distribution. If we consider a
random line drawn through the sphere packing, it is evident
that a fraction 1 − φ of it will be drawn through the intersphere
medium. Letting E[ζ ] denote the average length of the
individual chords through the spheres, we have that

E[�ss]

E[�ss] + E[ζ ]
= 1 − φ (9)

and, similarly to Olson et al. [52], conclude that

E[�ss] = 1 − φ

φ
E[ζ ]. (10)

The average chord length E[ζ ] can in turn be calculated from
the sphere distribution. Let pi denote the probability that a
random chord is made in a sphere of radius ri . Intuitively, this

r̄

ū

ū

p

Δ ps

r̄ s

Δ ss

FIG. 2. (Color online) From a random-walk perspective, two
central characteristics of the sphere packing are the distribution of
the (i) distance from a random point r̄p (scattering event) along a
random direction ū to a sphere surface �ps(r̄p,ū) and (ii) distance to
the next sphere along a random direction when leaving a sphere at
a random point r̄s, �ss(r̄s,ū). Their distributions can be assessed via
statistical analysis of sphere packings. Later we show that the mean
value of �ss, as experienced by the random walker, can be analytically
predicted.

probability should be proportional to the total surface area of
the sphere category, i.e.,

pi = Ai∑
j Aj

= nir
2
i∑

j nj r
2
j

. (11)

In fact, this view is equivalent to the equilibrium argument
adhered to in this article: The total path made through the
different sphere categories should equal their fraction of the
total volume. Assuming an isotropic flux of random walkers
close to the sphere surfaces (see the discussion in Ref. [53]),
the length of a chord through a sphere of radius ri follows a
triangular probability density function fi(x) = x/2r2

i in 0 �
x � 2ri . The average chord is �i = 4ri/3 and the mean-square
chord is 2r2

i . The probability density function of a random
chord ζ in the polydispersive packing fζ (x) is a weighted sum
of the individual chord distributions fi :

fζ (x) =
∑

i

pifi(x) =
∑

i:2ri>x

pi

x

2r2
i

. (12)

The mean overall chord then becomes

E[ζ ] =
∑

pi�i =
∑

pi

4ri

3
(13)

and its mean square

E[ζ 2] =
∑

pi2r2
i . (14)

D. Exponential spacing model

From statistical analysis of random sphere packings, we
generally find that E[�ps] ≈ E[�ss] and distributions have
near-exponential decay. We therefore propose a model in
which the actual (complicated) distributions of �ps and �ss

are modeled with a single exponentially distributed random
spacing � with mean spacing �̄, i.e., � ∈ exp(�̄). In fact,
it has been shown that spacing between random objects is,
to a very good approximation, exponential at low filling
fractions [52]. At higher filling fractions, spacing distributions

022120-3



SVENSSON, VYNCK, GRISI, SAVO, BURRESI, AND WIERSMA PHYSICAL REVIEW E 87, 022120 (2013)

are no longer perfectly exponential, but rather a complicated
function of the exact structure [52,54,55]. However, also in
such cases we will show that the errors due to the use of a
simple exponential spacing model can be reasonably small.

Within the exponential spacing model, the probability that
an exponentially distributed step Sturbid ∈ exp(ls) will not take
the random walker to a sphere is

P0 = P (Sturbid < �) = �̄

�̄ + �s

. (15)

Given the memoryless property of the Poisson process that
governs scattering events, the number of crossings natu-
rally follows a geometric distribution. This means that the
probability of crossing n spheres between two scattering
events is

Pn = (1 − P0)nP0. (16)

The average number of sphere crossings per step N is, within
this model,

E[N ] =
∑

nPn = 1 − P0

P0
= �s

�̄
. (17)

In order to fulfill the equilibrium condition, �̄ must be
chosen so that the average step samples the medium according
to volume fractions. Assuming that the numbers of sphere
crossings and involved chord lengths are independent, we
should have that

E[N ]E[ζ ]

E[N ]E[ζ ] + �s

= φ. (18)

Using Eq. (17), we then reach the conclusion that

�̄ = E[�ss] = 1 − φ

φ
E[ζ ]. (19)

The exponential spacing model we have now outlined
allows us to the estimate the step length distribution. In
particular we can use it to estimate the mean-square step E[S2].
Again, we will assume that for each step, the involved chord
lengths are independent of the number of sphere crossings. By
splitting the outcome of S2 into the number of crossings and
summing the conditional expectations (details in Appendix A)
we find that

E[S2] = E
[
S2

turbid

] + E
[
S2

void

] + 2E[SturbidSvoid]

= 2�2
s +

∞∑
n=0

Pn{nE[ζ 2] + n(n − 1)E[ζ ]2}

+ 2
∞∑
i=0

PnnE[ζ ](n + 1)
�̄�s

�̄ + �s

= 2�2
h + φ�h

E[ζ 2]

E[ζ ]
. (20)

E. Diffusion constant for a holey system

Assuming that step correlations are negligible and remem-
bering that E[S] = �h, the expression for E[S2] given above
[Eq. (20)] allows us to write a closed-form expression for
the diffusion constant that governs macroscopic transport.

Introducing the homogenized diffusion constant

Dh = 1
3v�h (21)

and the chord-domain diffusion constant (the diffusion con-
stant for a random walk with steps purely following the chord
step distribution)

Dζ = 1

6
v
E[ζ 2]

E[ζ ]
, (22)

we reach, via Eq. (7), the surprisingly simple relation

D = Dh + φDζ . (23)

Interestingly, the diffusion constant of the heterogeneous
system is given by the homogenized diffusion constant plus a
term that is independent of the intervoid scattering mean free
path �s . Note also that, as expected, the expression reduces to
the homogenized diffusion constant as φ approaches zero.

III. MONTE CARLO SIMULATIONS OF TRANSPORT
IN QUENCHED DISORDER

To illustrate the validity and importance of the theory
presented in the preceding sections, this section will compare
it with Monte Carlo (MC) simulations of transport in
quenched random sphere packings. We use the term quenched
to emphasize that the random walk is done in the quenched
(frozen) heterogeneity of a random sphere packing and not in
the fully annealed disorder model. The sphere packings used in
our simulations are created by the random sequential addition
of spheres [56] in descending order of size. Moreover, they are
created to have periodic boundary conditions, i.e., so that the
complete (cubic) sphere packing can act as a unit cell that can
be stacked in all directions. As illustrated in Fig. 3, random
walks are performed so that when crossing a boundary of the
unit cell, the random walk can be continue on the opposite
side of the same unit cell (while keeping track of unit cell
coordinates). The use of periodic boundary conditions in this
manner allows us to use realistic sizes of sphere packings and
still being able to track walkers for long times and average
dynamics over local disorder realization in an efficient way.
Still, the size of the unit cell is made large enough to render the
effects of periodicity negligible (the sizes of utilized sphere
packings are carefully stated). We base our investigations
on equilibrium starting conditions, i.e., allowing walkers to
start randomly over the whole unit cell (including the interior
of the nonscattering regions). For step statistics, only full
steps between scattering events are considered. To be on
the optical time scale, walkers are set to travel at a speed of
v = 200 μm/ps (corresponding to a refractive index of 1.5).

A. Monodisperse sphere packing

The first case study is a holey system based on a monodis-
persive sphere packing. The nonscattering part of the material
is composed of randomly placed spheres of radius 50 μm, the
sphere filling fraction being φ = 0.3. Figure 4 exemplifies
the mean-square displacement obtained by averaging the
dynamics of 5 × 105 random walkers launched randomly in
a cubic system with a side of about 12 mm (106 randomly
placed spheres). The average spacing between spheres is, in
this case, 155.6 μm [as given by Eq. (10)]. As discussed in the
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START

END

FIG. 3. (Color online) Two-dimensional illustration of un-
bounded holey random walks based on a sphere packing with periodic
boundary conditions. When a walker leaves the sphere packing unit
cell (marked square), the walk continues on the opposite side of the
same sphere packing. The path of interest (red path, partly outside
the unit cell) is reconstructed by keeping track of boundary crossings,
but the path outside the unit cell is in reality a path inside the only
unit cell (blue path). The use of periodic boundary conditions in this
manner enables the use of realistically sized sphere packings, efficient
averaging over disorder realization by allowing walkers to start also
close to the sphere-packing boundaries, and long-time tracking of
spreading. At the same time, the size of the unit cell is made large
enough to render the effects of periodicity negligible.

figure caption, the outcome is in excellent agreement with our
theory.

The applicability of our theory is further elaborated in
Fig. 5, in which we study how the diffusion constant
depends on the intersphere scattering mean free path �s .
Interestingly, the example shows that even for cases where
the average spacing between spheres E[�ss] is several times
larger than �s , step correlations are negligible and our
analytical theory is applicable. Of course, when �s becomes
significantly smaller than the void size, the increase in
return probabilities should affect transport (steps become
anticorrelated). This is in good agreement with the result that
step correlations in this monodispersive system are important
only for �s < r/2 = 25 μm. The strong quenching regime
requires separate treatment and is beyond the scope of this
article.

B. Fractal sphere packing

Let us now turn to the more general case of a polydispersive
sphere packing, i.e., a situation where the nonscattering regions
vary in size. We study the limiting case of a system with
fractal heterogeneity (over two orders of magnitude) and a
high sphere filling fraction. More specifically, our sphere
packing is based on M = 18 sphere categories where the
radii ri are sampled exponentially from rmin = 2.5 μm up
to rmax = 200 μm, i.e.,

ri = rmin exp

[
ln

(
rmax

rmin

)
i − 1

M − 1

]
. (24)

0 200 400 600 800 1000
0

120

0.01 0.1 1 10 100 1000

0.01 0.1 1 10 100 1000
1

2

D
fit

=19780 μm2/ps

〈r 2(t)〉~6Dt

MSD (mm2)

Time (ps)

(a)

MSD (mm2)

Time (ps)

10−4
10−2

1

100 (b)

log−log slope

Diffusive

Ballistic
(c)

FIG. 4. (Color online) Dynamics for a holey system based on a
monodispersive sphere packing (r = 50 μm, φ = 0.3, �s = 200 μm,
and v = 200 μm/ps). The diffusion constant extracted from analysis
of the MSD evolution is in excellent agreement with the diffusion
constant predicted by our theory [Eq. (23)]. For this system theory
predicts a diffusion constant of 19 798 μm2/ps and a linear fit over
the temporal range indicated in gray in (a) gave 19 780 ± 34 μm2/ps
(mean ± standard error of the mean, as obtained from five simulation
repetitions with 105 random walkers each). The middle graph
(b) shows a log-log plot of (a). By showing the slope of the log-log
plot, the bottom graph (c) reveals the transition from ballistic to
diffusive dynamics and verifies that the temporal range used in our
analysis falls within the asymptotic diffusive limit.

The number density of the spheres is set proportional to 1/r3
i

(i.e., the different sphere categories all occupy the same volume
fraction) and the filling fraction of the system as a whole is
φ = 0.7005 (9 507 676 spheres in a cube with a side of about
2 mm).

Figure 6 highlights the success of the exponential spacing
model also for such a complex heterogeneous system. In
particular, this means that we have good quantitative knowl-
edge about the step length distribution (including the sphere
crossing statistics).

Using �s = �̄ as a first test case, Fig. 7 shows the onset of
diffusion and the asymptotic diffusion constant. Interestingly,
the asymptotic diffusion constant is in this case about 25%
lower than what we would have if steps were independent.
With decreasing scattering strength, the importance of step
correlations steadily decreases and the diffusion constant
becomes in good agreement with our analytical expression
D = Dh + φDζ . This behavior is illustrated in Fig. 8, which
shows simulations for �s being 1 to 8 times �̄. In this context,
we want to emphasize that step correlations per se do not
affect the applicability of the exponential spacing model and
the accuracy of the related E[S2] estimation [Eq. (20)]. Instead,

022120-5



SVENSSON, VYNCK, GRISI, SAVO, BURRESI, AND WIERSMA PHYSICAL REVIEW E 87, 022120 (2013)

0

0.5

1

1.5

2

25 50 75 100 125 150 175 200
−10

−5

0

Diffusion constant
(104 μm2/ps)

Discrepancy (%)

Scattering mean free path l
s
 (μm)

D
h
+φ Dζ
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h
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D
h

D
h

Quenched MC
(monodispersive system)

FIG. 5. (Color online) The analytical theory for the diffusion
constant [red solid line, Eq. (23)] is in excellent agreement with the
quenched Monte Carlo simulation of transport in a monodispersive
sphere packing with r = 50 μm and φ = 0.3 (solid dots, average of
five repetitions of 105 walkers per level of �s). This graph shows how
D obtained from simulations exceeds the homogenized diffusion
constant Dh (dashed line) exactly by the amount φDζ , largely
independent of �s . As scattering becomes stronger and stronger
(reduction in �s), anticorrelations between steps should reduce D

and deviations from our theory are expected. The bottom graph
clarifies that, in this particular case, this effect becomes important
only for �s smaller than approximately r/2 = 25 μm (here all five
repetitions are shown). Note that the mean spacing between spheres
is E[�ss] ≈ 156 μm.

they only affect the validity of the assumption of independent
steps that leads to D = Dh + φDζ [Eq. (23)].

Before ending this section we make a brief comparison to
the monodispersive system studied in the preceding section.
There we found that step anticorrelations started to play a
role only when the scattering mean free path was smaller
than the size of the involved spheres. For our polydispersive
system, the situation is more complicated. The average spacing
between spheres is only a few micrometers and the sphere
sizes range from 5 to 400 μm. One can expect that large
spheres will give rise to strong step anticorrelations, but since
the transport between these larger spheres is a complicated
function also of the smaller spheres in between, it is difficult
to know for which �s this effect becomes important. As shown
in Fig. 8, step correlation is of little important once �s is
larger than, say, 4�̄ ≈ 25 μm. As mentioned also in the figure
caption, this scattering strength gives a mean step E[S] = �h of
about 80 μm. That correlations are weak can then be (partly)
understood by realizing that most spheres are significantly
smaller than this mean step length (the mean chord of the
system is in fact not longer than E[ζ ] = 13.8 μm).

Δ ps

Δ ss

Exponential model
Δ̄ = 5.89 μm

0

0.1

0.2

0 2 4 6 8 10

Quenched MC (l
s
=    )

E[N]=1.0007±0.0001

Δ̄

0

0.5

0 1 2 3 4 5 6

Distance (μm)

Probability density

Number of sphere crossings n

P
n
= P(N=n)

FIG. 6. (Color online) The theoretical predictions of the expo-
nential spacing model are in good agreement with both quenched
simulations and statistical analysis of a strongly polydispersive sphere
packing. The success is illustrated here for the case of a fractal sphere
packing with M = 18 radius categories ranging from rmin = 2.5 μm
to rmax = 200 μm (9 507 676 spheres in a cube with a side of about
2 mm, φ = 0.7005). As shown in the top graph, the analytically
predicted mean spacing of �̄ = 5.89 μm is in good agreement with
spacing distributions obtained via statistical analysis of the sphere
packing (E[�ps] ≈ E[�ss] ≈ 6 μm). The bottom graph highlights
that the crossing probabilities Pn predicted by the exponential
spacing model [Eq. (16)] agree almost perfectly with simulations
running at �s = �̄. In particular, setting �s = �̄ (as done in this
simulation) clearly renders E[N ] = 1. The mean and mean-square
steps are also in good agreement with theory. Theory predicts
E[S] = �h = 19.669 μm and E[S2] = 1776.7 μm2 and simulations
give 19.679 ± 0.004 μm and 1692 ± 1 μm2, respectively (mean ±
standard error). That the observed mean-square step is a few percent
lower than the theoretical prediction is consistent with the fact that the
exponential model slightly overestimates the number of higher-order
multicrossings (n � 3). This in turn can be understood by looking
at the top graph and noting that the sphere-sphere spacing distance
often will be underestimated by the exponential spacing model.

C. Finite-size fractal sphere packings: Lévy glass

So far we have investigated unbounded holey systems.
In practice, one often deals with a finite-size system where
transport can be even more complicated to understand. For
homogeneous media, for example, it is well known that
the transport in slabs deviates from diffusion when the
sample thickness L is less than about 10 times the transport
mean free path [57–59]. For heterogeneous systems, we
anticipate that additional complications arise when the sizes
of nonscattering regions are on the order of the sample size.
This section therefore discusses the relation between transport
in unbounded media, as treated in the preceding sections,
and transport in finite-size media. We show that the theory
of diffusion constants is not directly applicable to bounded
systems when the size of heterogeneities is on the order of the
system dimensions.
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FIG. 7. (Color online) Transport dynamics for a holey system
based on a fractal sphere packing (sphere radii ranging from 2.5 to
200 μm, each category occupying about 4% of the volume, the overall
sphere filling fraction being φ = 0.7005). Here the walker crosses on
average one sphere between scattering events (�s = �̄ = 5.89 μm).
The exact E[S2] as obtained from simulations would, if steps were
independent, result in a diffusion constant of 2866 μm2/ps (step data
were presented in Fig. 6, but note that the exponential spacing model
in this particular case overestimates the E[S2]/E[S] ratio by about
5%). In contrast, a linear fit over the temporal range indicated in gray
in (a) gives D = 2111 ± 7 μm2/ps (mean ± standard error of the
mean, as obtained from five simulation repetitions with 105 random
walkers each). That the observed D is about 25% lower is clear
evidence that step correlations play an important role.

This issue of bounded heterogeneous systems is particularly
relevant to the ongoing discussion of anomalous transport in
Lévy glass [33–37,47,48]. Lévy glasses are turbid materials
with strong (fractal) spatial heterogeneity in the density of
scatterers. The heterogeneity is engineered and controlled by
the embedding nonscattering regions that follow a power-law
size distribution into a turbid medium. More specifically,
the nonscattering regions are composed of glass spheres
of sizes that are (ideally) exponentially sampled from the
smallest radius rmin to the largest radius rmax. Assuming one
sphere crossing per step and a negligible contribution from
the intersphere media, setting the number density of spheres
n ∼ r−(α+2) should produce a step length distribution that falls
off as �−(α+1) [34]. On scales on the order of the maximal
sphere size, as in slabs of thickness L = 2rmax, the transport
is then believed to be close to that of a Lévy walk. Although
the probabilistic theory presented here represents a significant
contribution to the topic of Lévy glass design, this falls outside
the main focus of this article. A view of this specific but
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FIG. 8. (Color online) Also for strongly polydispersive systems,
our probabilitisic theory is successful. The role of step correlations
is, however, a complicated matter. In our particular fractal system,
where 400-μm-diam spheres are the largest nonscattering regions,
the role of correlation becomes small when �s is a few times larger
than the mean void spacing �̄. At �s = 4�̄ ≈ 24 μm, the asymptotic
D obtained from MSD evolution is then only 4% lower than what
the step statistics from quenched simulations tells us. The mean step
E[S] = �h is then about 80 μm, a length that apparently is large
enough to render the step anticorrelation related to the crossing
of large spheres relatively small. Here it should be noted that the
exponential spacing model overestimates E[S2] by a few percent
(see the discussion in Fig. 6). The exact diffusion constant we would
see if steps were independent can be estimated from the step statistics
of simulations [via Eq. (7)] and is in this graph indicated by the dashed
red line. Although the error caused by our model (Dh + φDζ ) is only
a few percent, it is still important to realize that the step correlation
is negligible when the actual diffusion constants (solid dots) meet the
dashed line.

important matter is, nonetheless, given in Appendix B. Here we
will instead stick to the more general question of the relation
between transport in unbounded and bounded media.

The system studied in the preceding section is in fact an
unbounded Lévy glass with α = 1. Its composition closely
resembles the Lévy glass systems that have been studied
experimentally [33,48] and by simulation [37]. Our study
shows that step correlations play an important role for transport
in the unbounded systems and the resulting diffusion constant
for the system is about 2.11 × 103 μm2/ps. Looking back
at Fig. 7 and the evolution of the mean-square displace-
ment (MSD), it appears that the onset of diffusion occurs
surprisingly early. The MSD starts to grow approximately
linearly with time after 2 ps. At this time, the MSD is about
0.027 mm2, meaning that the average walker displacement
is (roughly) on the order of 150 μm. From this it may be
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FIG. 9. (Color online) Two-dimensional projection of a simulated
trajectory through a 3D Lévy glass slab. In this case, the random
walker crosses one of the largest spheres. To obtain the average
transmission properties, walkers are injected randomly on top of
the slab (the slab consists of 9 507 676 spheres, the thickness
being L = 2rmax + ε = 402 μm, φ = 0.7005). Analysis of the sphere
packing reveals that the exponential spacing model applies equally
well as in the unbounded case and that �s = �̄ = 5.89 μm indeed
renders E[N ] very close to one.

tempting to conclude that transport is diffusive after some
150 μm and that the transmission through a Lévy glass of
thickness L = 2rmax = 400 μm indeed will be diffusive. In
fact, Groth et al. [37] have claimed that transport through
Lévy glass follows regular diffusion. To check whether the
above reasoning is adequate or not and to investigate the claim
of Groth et al., we have performed simulations of the transport
through a bounded version of this sphere packing.

Figure 9 illustrates our simulations of transport through
bounded systems. Our conclusion from these simulations is
that transport through Lévy glass cannot be described by
diffusion. Along with a significant amount of ballistic and
quasiballistic transmission, we observe major deviations from
diffusion theory also in mean transmission time and the
long-time decay constant (lifetime). Diffusion theory of light
transport is well established and in the diffusive regime, for
example, it is well known [60] that the mean transmission time
t̄D follows

t̄D = (L + 2ze)2

6D
(25)

and that the decay time constant τD is given by

τD = (L + 2ze)2

π2D
(26)

In the above formulas, L denotes slab thickness and ze = 2
3�t is

the so-called extrapolation length. If transport through the slab
is diffusive with D = 2111 μm2/ps, macroscopic transport
should be identical to a random walk of independent and ex-
ponentially distributed steps with average length �t = 3D/v ≈
31.7 μm. We would thus expected a mean transmission time of
about t̄D = 15.6 ps and a decay constant of about τD = 9.5 ps.
In contrast, as shown in Fig. 10, quenched simulations result
in a mean transmission time of 17.3 ps and decay constant
of 12.4 ps. In fact, the observed combination of t̄ and τ is
not consistent with any diffusion constant. Furthermore, the
significant amount of ballistic and quasiballistic light alone
indicates that diffusion cannot capture the transport well. We

0 5 10 15 20 25 30
0

0.02

0.04

0.06

t b

Time of flight (ps)

Probability density Quenched MC
= 17.29 ± 0.10 ps
= 12.40 ± 0.02 ps

t̄
τ

Quasiannealed MC
= 16.97 ± 0.01 ps
= 11.62 ± 0.04 ps

t̄
τ

FIG. 10. (Color online) Transmission dynamics for a Lévy glass,
i.e., a bounded fractal sphere packing (slab thickness L = 402 μm,
maximal sphere diameter 400 μm). Important characteristics such
as mean transmission time t̄ and decay constant τ show that the
dynamics is not consistent with diffusion (see the main text).
This conclusion is also supported by the significant amount of
quasiballistic transmission (the truly ballistic component at tb = L/v

is not part of the shown distribution). The dynamics is instead well
reproduced by a quasiannealed simulation based on the exponential
spacing model. This mutual agreement indicates that step correlations
play a less important role here than in the unbounded case. Statistics
are based on three and ten repetitions of 106 walkers for the quenched
and quasiannealed simulations, respectively (mean times and the
decay constant are stated in the graph as the mean ± standard
error). The transmission in both cases is about 12%, while the the
ballistic fraction of the transmission is 0.6% and 0.15% (higher in the
quenched case).

therefore conclude that transport in Lévy glass is not governed
by diffusion. Instead, we found that the dynamics is well
reproduced by what we call a quasiannealed simulation in
which we mimic the step distribution but effectively remove
step anticorrelations. In this straightforward simulation, which
is a numerical correspondent to our probabilistic theory, steps
are generated on the basis of the exponential spacing model
under the requirement that when the walker is about to a make a
chord, this chord cannot be longer than the distance to the slab
boundary (see Appendix C for a more detailed description).
The step length is thus position and direction dependent,
but step correlations are heavily suppressed. Although it is
beyond the scope of this article to investigate this interesting
result in detail, it appears as if the presence of boundaries
in the quenched system strongly alters the role of step
correlations.

IV. CONCLUSION

We have presented a probabilistic theory for transport
in systems with a quenched heterogeneous distribution of
scatterers. The focus was on random systems and via a
simple model of the quenched disorder we have been able to
derive analytical expressions for, notably, the mean step, the
mean-square step, the diffusion constant, and void crossing
probabilities. Here we repeat two key results. First, we have
shown that the mean step is given by [Eq. (5)]

E[S] = �s

1 − φ
= �h
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and thus equals the homogenized (exponential) scattering
mean free path �h, being dependent only of void filling fraction
φ, not its size and shape. Second, for holey systems in the form
of random sphere packings we have also shown (in the limit of
weak step correlations) that the asymptotic diffusion constant
is [Eq. (23)]

D = 1

3
v�h + φ

1

6
v
E[ζ 2]

E[ζ ]
.

In cases where step correlations are non-negligible, under the
reasonable assumption that steps are not positively correlated,
this expression can function as an upper bound on the diffusion
constant. All our theoretical results are well supported by
Monte Carlo simulations of random walks in holey systems
based on random sphere packings. We have also shown that the
relation between transport in unbounded and bounded system
is particularly complex when heterogeneities are on the order
of the system size (especially regarding the onset of regular
diffusion and the role of step correlations).

Given the abundance of turbid materials where scatterers
are not homogeneously distributed, we believe that both
our viewpoint and our results can be of value for a wide
range of topics, from fundamental work on light transport
to applied spectroscopy of heterogeneous media such as
biological tissues, food products, and powder compacts. In
particular, viewing transport as a quenched holey random walk
may turn out to be an important approach for work directed
towards the understanding of the optics and spectroscopy of
complex porous media with broad and/or anisotropic pore-
size distribution, such as pharmaceutical tablets [29,61]. In
this context, it should be noted that generalization of our
work to systems with impedance mismatch and anisotropic
heterogeneity should be rather straightforward. Accounting
for refractive index mismatch, for example, is standard in the
study of light transport [62,63]. Finally, as discussed earlier,
a theoretical account of quenched systems with strong step
correlations is more challenging, but equally important.
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APPENDIX A: DERIVATIONS FOR E[S2]

In this Appendix we provide a derivation of the expression
for the mean-square step given in the main text. We start by
expanding the mean-square step into three components

E[S2] = E
[
S2

turbid

] + E
[
S2

void

] + 2E[SturbidSvoid]. (A1)

Since E[S2
turbid] = 2�2

s by definition, the challenge is the last
two terms. As mentioned in the main text, we will make the
important assumption that the length of the different chords
involved in a step is independent of the number of spheres
crossed (this means, e.g., that we assume that the spacing
between two spheres is independent of the sizes of these

spheres). By splitting the outcome of Svoid into cases of
different numbers of sphere crossings, we can calculate the
two terms from the rules of total expectation values. Starting
with E[S2

void], we have

E
[
S2

void

] =
∞∑

n=0

PnE
[
S2

void

∣∣N = n
]

=
∞∑

n=0

PnE

⎡
⎣

(
n∑

i=0

ζi

)2
⎤
⎦

=
∞∑

n=0

Pn{nE[ζ 2] + n(n − 1)E[ζ ]2}

= E[N ]E[ζ 2] + (E[N2] − E[N ])E[ζ ]2

= φ�h

E[ζ 2]

E[ζ ]
+ 2

�2
s

�̄2
E[ζ ]2. (A2)

When calculating E[SturbidSvoid] we must remember that
they are dependent variables. We can break this dependence
by again splitting into cases of different numbers of sphere
crossings

E[SturbidSvoid] =
∞∑
i=0

PnE[SturbidSvoid|Ncross = n]

=
∞∑
i=0

PnnE[ζ ]E[Sturbid|N = n]

=
∞∑
i=0

PnnE[ζ ](n + 1)
�̄�s

�̄ + �s

= E[ζ ]
�̄�s

�̄ + �s

(E[N2] + E[N ])

= 2E[ζ ]
�̄�s

�̄ + �s

(E[N ]2 + E[N ])

= 2E[ζ ]
�̄�s

�̄ + �s

(
�2

s

�̄2
+ �s

�̄

)

= 2E[ζ ]
�̄�s

�̄ + �s

�s(�s + �̄)

�̄2

= 2E[ζ ]
�2

s

�̄
. (A3)

The step to reach the third line, involving a calculation of
E[Sturbid|N = n], deserves a comment. This term tells us
the average intervoid path made given a certain number of
crossings. Having n crossings is the same as knowing that the
step was longer than a sum of n spacings, but that the step in
the could not cross the (n + 1)th spacing. This event can be
written as

n∑
i=1

�i < Sturbid <

(
n∑

i=1

�i

)
+ �n+1. (A4)

Noting that the sum of the n spacing is an Erlang distribution
(sum of n independent exponential distributions), we can cal-
culate E[Sturbid|N = n] by doing three-dimensional integra-
tion over the joint distribution of three random variables [the
Erlang distribution, �n+1 ∈ exp(�̄), and Sturbid ∈ exp(�s)].
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The conditional expectation value is reached by integrating
over the space corresponding to the event N = n, as expressed
in Eq. (A4) (note that the joint density function must be
renormalized by the probability of the event). The result is
essentially the � function integral. A more elegant way to solve
the problem, however, is to see the problem as an encounter
of spacings �i , where the memoryless nature of the random
process makes it possible to treat each crossing independently.
If a walker manages to cross a certain spacing, the best estimate
of the spacing crossed is E[�|Sturbid > �]. In contrast, when
the walker finally does not manage to cross a spacing, the step
made in this last part (after the last void crossing) is on average
E[Sturbid|� > Sturbid]. These two terms can be calculated by
means of a two-dimensional integral over their joint probability
density function (the symmetry of the problem makes one term
follow from the other)

E[�|Sturbid > �] =
∫∫∫

�>δ
δp(�,δ)d� dδ∫∫∫

�>δ
p(�,δ)� dδ

= �̄�s

�̄ + �s

= E[Sturbid|� > Sturbid]. (A5)

Thus, when a walker manages to cross an intersphere
spacing, that spacing is on average E[�|Sturbid > �]. As
emphasized above, the memoryless nature of the exponential
distribution allows us to forget the total intersphere step already
made and make the same conclusion after each crossing. When
the walker finally fails to cross a spacing, the average step
taken after the last void crossing was E[Sturbid|� > Sturbid].
Given that there were n crossings in total, the expected path is
therefore

E[Sturbid|N = n] = nE[�|Sturbid > �] + E[S|� > Sturbid]

= (n + 1)
�̄�s

�̄ + �s

. (A6)

We reach the expression (20) by summing the three
contributions and reducing the quadratic polynomial

E[S2] = E
[
S2

turbid

] + E
[
S2

void

] + 2E[SturbidSvoid]

= 2�2
s + φ�h

E[ζ 2]

E[ζ ]
+ 2

�2
s

�̄2
E[ζ ]2 + 4E[ζ ]

�2
s

�̄

= 2�2
s

(
1 + E[ζ ]

�̄

)2

+ φ�h

E[ζ 2]

E[ζ ]

= 2�2
s

(
1 + φ

1 − φ

)2

+ φ�h

E[ζ 2]

E[ζ ]

= 2�2
h + φ�h

E[ζ 2]

E[ζ ]
. (A7)

APPENDIX B: LÉVY GLASS DESIGN

When Lévy glasses were introduced by Barthelemy et al.
[33], the scatterer concentration was selected aiming at
achieving, on average, one scattering event between sphere
crossings (i.e., E[N ] = 1, where N denotes the number
of sphere crossings in a step). The design principle was
not elaborated in more detail and exactly how the filling
fraction and scattering strength affect crossings statistics was
not known. The intersphere transport mean free path was
in fact chosen to match the smallest sphere diameter, i.e.,

�t = 2rmin = 5 μm. The probabilistic theory presented in this
work allows a selection of the scattering strength that more
strictly fulfills the ideal Lévy glass design criteria. From
Eq. (17) we see that E[N ] = 1 is reached when �s = �̄. As can
be seen in Fig. 6, this result is confirmed by our simulations. In
this respect [using Eq. (19) to express �̄], the ideal scattering
strength is therefore

�ideal
s = �̄ = 1 − φ

φ
E[ζ ]. (B1)

Returning to the experimental work in Ref. [33], the filling
fraction, as can be calculated from recipe given in the supple-
mental information therein, was about 67%. Via calculation
of the mean chord, we find that the ideal �s for the samples
used to investigate transmission scaling ranges from 9.5 μm
(L = 550 μm, L = 2rmax being the Lévy glass slab thickness)
to 4.2 μm (L = 50 μm). Although the utilized scattering
strength clearly is of the right order of magnitude, setting
�s = 2rmin is not universally ideal. That the ideal �s varies
with Lévy glass thickness is related to the fact that thicker
samples include the use of larger spheres that fill space more
efficiently than smaller ones. If the filling fraction φ is kept
constant, the average sphere spacing will therefore increase
with thickness. It is thus important to realize that studies
of a series of Lévy glass with varying L = 2ri but with
constant φ and �s come with an inherent mismatch with
the ideal Lévy glass design principle. The implication this
finding has on the design of scaling experiments remains to
be elaborated. For completeness, it should also be noted that
scattering is not fully isotropic in the discussed experiments.
The titanium dioxide nanoparticles used give an anisotropy
factor of g ≈ 0.6, meaning that �s = (1 − g)�t �= �t . This
is an additional aspect that should be considered in the
future.

In a more recent experimental paper, Burresi et al. [48]
reported on weak localization of light (coherent backscat-
tering) in Lévy glass. Therein samples had a filling fraction
of about 70% and were manufactured using spheres of sizes
from rmin = 2.5 μm up to rmax = 115 μm (L ≈ 230 μm). Our
theory shows that the ideal �s is around 6.3 and 3.8 μm
for the studied α = 1 and 1.5 samples, respectively. In the
article, reference experiments where scatterers were dispersed
homogeneously rendered �t = 19 μm, indicating that the in-
tersphere scattering strength was lt = 19/(1 − φ) = 5.7 μm.
The experiments done were thus in close agreement with the
ideal design principle (again, disregarding that scattering was
anisotropic with g = 0.6).

Finally, a recent paper by Groth et al. [37] investigated
transmission scaling in Lévy glasses via simulations of random
walks in sphere packings. Therein simulations were stated
to run with �s = rmin/2 and it was said that this choice was
made to ensure that “there is, on average, one scattering event
between leaving and entering a sphere” (i.e., to ensure E[N =
1]). Given the findings of our present work, we believe that this
level of scattering is too strong to render E[N ] = 1 (at least for
relevant filling fractions). Above we reported that experimental
Lévy glass systems have had a filling fraction of about 70%
and the ideal scattering mean free path always is significantly
larger than the radius of the smallest sphere. Assuming that
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Groth et al. were not studying very different systems, we
believe that using �s = rmin/2 brings them far from the ideal
situation where E[N ] = 1. However, since the utilized filling
fractions were not stated, we cannot be fully quantitative.
Nonetheless, it is important to note that while setting �s

very small will take us close to the desired �−(α+1) power-
law decay in the step length distribution [multiple crossings
getting increasingly unlikely, i.e., P (N > 1) negligible], such
a procedure will induce strong step correlations that affect
transport.

APPENDIX C: QUASIANNEALED RANDOM WALK

The proposed quasiannealed random walk aims at mim-
icking the step length distribution of the quenched system
while removing step correlations related to the quenched
disorder. After random walker initiation and each scattering
event, a random step Sturbid ∈ exp(�s) to be traveled through the
turbid component is generated. The length of this step is first
compared to the distance to the boundary �b along the current
direction of propagation. If Sturbid > �b, the walker leaves
the sample and a transmission or reflection time is registered.
If, in contrast, Sturbid < �b, Sturbid is instead compared to a
randomly generated exponential distributed distance to the
closest virtual sphere �s ∈ exp(�̄) (cf. the exponential spacing
model described in Sec. II D). If Sturbid < �s , scattering will
take place and the procedure will start over when a new
direction and a new step Sturbid have been generated. If
Sturbid > �s , the walker will cross a nonscattering region, after
which the remaining part of the step Sturbid − �s will be used
as the new step forward (to be compared with the updated �b

and a new sphere spacing). The length traveled through the
void (a random chord ζ ) is generated based on the distribution
of chords predicted by equilibrium considerations, i.e., the

density function given in Eq. (12). The related cumulative
distribution functions (CDFs) are

Fζ (x) = P (ζ � x) = 1 − P (ζ > x) (C1)

= 1 −
∑

i:2ri>x

∫ 2ri

x

pi

x

2r2
i

dx (C2)

= 1 −
∑

i:2ri>x

pi

(
1 − x2

4r2
i

)
(C3)

= 1 −
∑

i:2ri>x

pi +
∑

i:2ri>x

pi

x2

4r2
i

. (C4)

Solving y = Fζ (x), we find

x = F−1
ζ (y) =

√√√√y − 1 + ∑
i:F (2ri )>y pi∑

i:F (2ri )>y
pi

4r2
i

. (C5)

We use this inverse CDF to generate the random chord length
ζ , setting

ζ = F−1
ζ (U ), (C6)

where U is a random variable uniformly distributed in [0,1].
Note that a generated chord is accepted only if it is smaller
than the current distance to the boundary. If a generated chord
is larger than the distance to the boundary it is discarded
and the generation is remade. This means that long steps to
some extent are underrepresented compared to the equilibrium
consideration that lies behind the chord length distribution.
At this stage, it cannot be ruled out that this has some
impact on quantities such as mean transit time and decay rate
(lifetime). The role of step correlations in transport through
quenched disorder certainly deserves further attention in the
future.
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