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The effect of partial absorption on a diffusive particle which stochastically resets its position with a finite rate
r is considered. The particle is absorbed by a target at the origin with absorption “velocity” a; as the velocity a

approaches ∞ the absorption property of the target approaches that of a perfectly absorbing target. The effect
of partial absorption on first-passage time problems is studied, in particular, it is shown that the mean time to
absorption (MTA) is increased by an additive term proportional to 1/a. The results are extended to multiparticle
systems where independent searchers, initially uniformly distributed with a given density, look for a single
immobile target. It is found that the average survival probability P av is modified by a multiplicative factor which
is a function of 1/a, whereas the decay rate of the typical survival probability P typ is decreased by an additive
term proportional to 1/a.
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I. INTRODUCTION

Strategies to tackle search problems typically involve a
mixture of local steps and long-range moves [1]. The local
part of the search is often considered as a diffusive process,
whereas the long-range moves may be drawn from some
Lévy distribution [2] or, as studied recently, may be the
stochastic process of “resetting” the search to some preferred
position [3–6]. From a theoretical perspective the dynamics of
the searcher seeking its target may be simply modeled by a
diffusive particle or random walker which is absorbed by the
target when it arrives at the target’s position. Then a measure
of the efficiency of the search is the mean time to absorption
of the process [7].

One simplification inherent in this description is that
absorption occurs instantaneously, i.e., the searcher instan-
taneously finds or identifies the target upon contact. Of course
real searches are less reliable and other factors come into
play, e.g., human or animal error may occur in foraging or
searching for a face in a crowd, or there may be stochasticity
in the biochemical binding reaction of a protein searching for a
target promoter site on a length of DNA. Moreover, in certain
situations the target itself may switch stochastically between
states that are visible or invisible to the searcher, for example,
a fleeing prey hiding from a predator or a binding site that
switches from being available to unavailable through external
factors.

In the reaction kinetics literature a partial reaction is often
modeled by a so-called radiation boundary condition, where
the probability density flux into the target site is proportional
to the probability density at the target site [7–9]. However,
here we find it more convenient to instead use a “sink” term
in the master equation which represents the loss of probability
density from the target site. It has been shown [10,11] that the
two approaches are equivalent.

Our aim in this paper is to investigate the effects of a
stochastic absorption process of the searcher by the target. We
shall consider the diffusion process with stochastic resetting
and introduce a finite rather than infinite absorption rate of
the searcher by the target. We will refer to this as partial
absorption as opposed to full absorption. The mathematical

problem then becomes, rather than computing the mean first
passage time to a target site, the mean time to absorption by
that site. We investigate the robustness of the results of [3,4] to
partial absorption. We find that generally for high absorption
rate the changes are small, so that the results are indeed robust.
However, the changes in some properties are more significant
than others. For example, the mean time to absorption differs
from the mean first passage time by an additive constant,
whereas the survival probability of the target decays with time
exponentially with a rate that depends on the absorption rate.

The paper is organized as follows. In Sec. II we define
the model, discuss boundary conditions relevant to partial
absorption, and identify important dimensionless quantities
in the problem. In Sec. III we compute the survival probability
of a single diffusive particle and compute the asymptotics. In
Sec. IV we study the mean time to absorption and how this may
be minimized with respect to the resetting rate. In Sec. V we
consider many independent particles and compute the average
and typical survival probabilities for a target at the origin. We
conclude in Sec. VI.

II. MODEL

The model considered is that of a diffusive particle which
stochastically resets its position and can be absorbed at the
origin. To study the probability distribution p(x,t |x0) of the
particle at time t after having started from initial position x0

we construct the (forward) master equation,

∂p(x,t |x0)

∂t
= D

∂2p(x,t |x0)

∂x2
− rp(x,t |x0)

+ rδ(x − x0) − ap(0,t)δ(x). (1)

The final term in the master equation represents the partial
absorption process at the origin. The particle is absorbed with
rate aδ(z), where the constant a has dimensions of velocity
and we refer to it as the absorption velocity. The first term
on the right-hand side corresponds to diffusion with diffusion
constant D, and the second and third terms correspond to
resetting from all points x to the point x0 with rate r .
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We study the survival probability q(z,t) of a diffusive
searcher (particle) after time t given that it started at position
z. It is convenient to consider the backward master equation
for the survival probability which reads as follows [3]:

∂q(z,t)

∂t
= D

∂2q(z,t)

∂z2
− rq(z,t) + rq(x0,t) − aq(0,t)δ(z).

(2)

The process of resetting to position x0 corresponds to the
two terms on the right-hand side proportional to the resetting
rate r , which represent loss from all positions and gain at x0

of probability, respectively. The final term on the right-hand
side represents absorption at the origin. The system with no
absorbing target site (or a target which does not interact with
the searcher) is recovered by taking a = 0. The total absorption
limit can be recovered by taking a → ∞, as we now discuss.

A. Boundary conditions

The most commonly studied boundary condition in the
diffusive process literature is the totally absorbing boundary
condition wherein, once the particle meets the boundary, it
is certain that the particle is absorbed and leaves the system
instantaneously. The totally absorbing boundary condition is
therefore defined, in terms of the probability density p(x,t) of
the particle at the boundary xB , as p(xB,t) = 0.

To describe a system which includes a “reflecting wall,” it
is natural to use what is commonly referred to as the reflecting
boundary condition. Here, because all particles which try to
reach the boundary location are “reflected” back away from
the boundary, the net flux into the boundary site is zero. This
means that this boundary condition can be straightforwardly
expressed as

∂p(x,t)

∂x

∣∣∣∣
x=xB

= 0. (3)

The so-called radiation boundary condition [7,9] is given
by

∂p(x,t)

∂x

∣∣∣∣
x=xB

= a

D
p(xB,t). (4)

This can be interpreted as a boundary which displays the
characteristics of both the totally absorbing and reflecting
cases, i.e., there is partial absorption.

In principle the diffusion equation can be solved with the
radiation boundary condition by using the appropriate Green
function, but it may be that this Green function is difficult to
find. It then may be more convenient to use what is known as
a sink term in the master equation instead. In general terms,
a sink term represents the loss of probability density from a
region of space as a consequence of absorption, attenuation,
or some other similarly natured process.

To see the equivalence explicitly [10] we consider an
absorbing region of width 2xB centered at the origin of the
real line, at the boundaries of which an incident diffusive
particle is absorbed with rate a. The master equation for the
probability density of the particle in this system reads

∂p(x,t)

∂t
= ∂2p(x,t)

∂x2
− aδ(xB − |x|)p(x,t). (5)

We define the survival probability of the particle at time t as
the integral over all space,

n(t) =
∫ +∞

−∞
p(x,t)dx, (6)

and probability that the particle is at a position |x| > xB + ε

as

m(t) =
∫ −(xB+ε)

−∞
p(x,t)dx +

∫ ∞

xB+ε

p(x,t)dx. (7)

We assume that far away from the absorbing region

∂p(x,t)

∂x

∣∣∣∣
x→±∞

= 0 (8)

and perform the necessary integrals on (5) to obtain

∂n(t)

∂t
= −a[p(−xB,t) + p(xB,t)] (9)

from (6), and

∂m(t)

∂t
= D

[
∂p

∂x

∣∣∣∣
x=−xB

− ∂p

∂x

∣∣∣∣
x=xB

]
(10)

from (7). Now we demand that

lim
ε→0

∂m

∂t
= ∂n

∂t
(11)

to find

∂p

∂x

∣∣∣∣
x=±xB

= ± a

D
p(±xB,t), (12)

which is as the radiation boundary condition quoted above.
Thus we have shown that a sink term of the form

−aδ(x − xB)p(x,t) (13)

in a master equation of the form of (1) is equivalent to the
boundary condition (4).

As is comprehensively discussed in [7], the length D/a is
equivalent to the attenuation length in a composite medium.
This is a medium in which there is a boundary at x = 0, and
in the region x > 0 particles can undergo free diffusion, and
for x < 0 the density of particles is attenuated [8]. It can be
shown for this system that the probability density within the
attenuating region decreases linearly to 0 at the depth x =
−D/a = −l; hence we refer to l as the attenuation depth. This
furnishes a physical interpretation of the characteristic length
scale D/a.

B. Dimensionless variables

We first define the inverse length scale α0,

α0 =
(

r

D

)1/2

, (14)

where α−1
0 represents the characteristic diffusion length be-

tween resetting events.
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FIG. 1. Sketch of the singularities of the function (25) in the
complex s plane.

For convenience we summarize here some dimensionless
combinations of parameters which will appear later:

θ =
√

r

D
|x0| = α0|x0|, (15)

φ0 =
√

rD

a
= α0D

a
. (16)

The dimensionless quantity θ measures the ratio of the
distance of the resetting position x0 from the target (in this
case at the origin) to the inverse length α0. The dimensionless
quantity φ0 measures the ratio of the attenuation length D/a

to the characteristic diffusion length 1/α0.

III. SURVIVAL PROBABILITY CALCULATION

To solve the master equation (2) for the survival probability
with partial absorption we perform the Laplace transform on
the variable t . We define the Laplace transform of the survival
probability as

q̃(z,s) =
∫ ∞

0
q(z,t)e−stdt. (17)

We use this definition and the initial condition q(z,0) = 1 to
take the Laplace transform of equation (2):

D
∂2q̃(z,s)

∂z2
− (r + s)q̃(z,s) =−1 − rq̃(x0,s) + aq̃(0,s)δ(z).

(18)

We first find the solution to the homogeneous equation

D
∂2q̃(z,s)

∂z2
− (r + s)q̃(z,s) = 0, (19)

which yields

q̃(z,s) = Aeαz + Be−αz (20)

where

α(s) =
(

r + s

D

)1/2

. (21)

(In particular from (14) we have α0 = α(0).) From the full
equation (18) (for z �= 0) we find the particular solution

q̃(z,s) = Aeαz + Be−αz + 1 + rq̃(x0,s)

r + s
. (22)
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FIG. 2. (Color online) Plot of the value of θ that minimizes the
MTA for a given φ0. The value of θ at φ0 = 0, found numerically to
be θ∗ = 1.593 6, is indicated.

We require that our solution be finite in the limits z → ±∞,
which implies separate solutions q̃(z,s)+ and q̃(z,s)− for the
regions where z is greater than and less than zero, respectively.
Using the required continuity at z = 0 to find that A = B, we
obtain the result

q̃±(z,s) = Ae∓αz + 1 + rq̃(x0,s)

r + s
. (23)

Now we can use the discontinuity in the derivative which
comes from the δ function in Eq. (2) to find A:

D

[
∂q̃+
∂z

− ∂q̃−
∂z

]
z=0

= aq̃(0,s). (24)

From (23) and (24) we derive the solution

q̃(z,s) = 1 − Q̃(z,s)

s + rQ̃(x0,s)
, (25)

where

Q̃(z,s) = e−α|z|

1 + 2φ(s)
, (26)

φ(s) is given by

φ(s) =
√

(r + s)D

a
, (27)

and φ(0) = φ0 as given in (16). The long time behavior of
the survival probability can be determined from Eq. (25). As
illustrated in Fig. 1, the analytic structure of this function in
the complex s plane is a branch point s = −r , and a simple
pole at s = s0 which satisfies

s0[2φ(s0) + 1] + re
−

√
(r+s0)

D
|z| = 0, (28)

where

−r < s0 � 0. (29)

In the large time limit, the residue from s0 dominates the
solution to the Bromwich inversion formula for this function.
For convenience, we make a change of variable

s0 = r(u0 − 1). (30)
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Under this substitution Eq. (28) becomes

(u0 − 1)(2φ0
√

u0 + 1) + exp

(
−

√
ru0

D
|z|

)
= 0, (31)

where φ0 is given in (16). For further convenience we consider
the case where z = x0 (i.e., the initial position coincides with
the resetting position) to find

q(x0,t)

� 2u
3/2
0

[
1 + φ0u

1/2
0

]
er(u0−1)t

(3u0 − 1)φ0 + θφ0u
1/2
0 (u0 − 1) + 2u

1/2
0 + θ (u0 − 1)

.

(32)

The important point to note is that the survival probability
decays exponentially and the rate of decay increases with
absorption velocity a. If one expands to leading order in 1/a

one finds

u0 � u∗ + 4u∗(1 − u∗)

2(u∗)1/2 − θ (1 − u∗)

α0D

a
, (33)

where u∗ is the solution of (31) as a → ∞.

IV. MEAN TIME TO ABSORPTION

The mean time to absorption (MTA) T (z) for a particle
which originated at z is [7]

T (z) = −
∫ ∞

0
t
∂q(z,t)

∂t
dt =

∫ ∞

0
q(z,t)dt = q̃(z,s = 0).

(34)

In our analysis we are considering mean first time to
absorption of the searcher by the target, not just the mean
first time to coincidence as in the case where the absorption is
perfect. This means that it is possible for the searcher to pass
through the target site without interacting with it. The MTA as
defined above in (34) is still the appropriate measure of this
process. Using Eq. (25) and the definition in Eq. (34) we can
write down an expression for the MTA:

T (z) = eα0|x0|

r
[2φ0 + 1 − e−α0|z|], (35)

and in particular,

T (x0) = 1

r
[eα0|x0| − 1] + 2eα0|x0|

r
φ0. (36)

Thus the effect of partial absorption is to increase the mean
time to absorption through the second term in (36). To
understand better this term it is instructive to consider a
more general problem which involves a resetting distribution
[3] P(x), i.e., the particle resets with rate r to a random
position drawn from the distribution P(x). The resetting
term rq(x0,t) in the backward master equation (2) becomes
r
∫

dxP(x)q(x,t), so for the survival probability q(z,t), the
master equation itself reads

∂q(z,t)

∂t
= D

∂2q(z,t)

∂z2
− rq(z,t)

+ r

∫
P(x)q(x,t)dx − aq(0,t)δ(z). (37)

The calculation of the mean time to absorption is a straight-
forward generalization of that presented above and the
result is

T (z) = 1

2
√

rDp∗(0)
(1 − e−α0|z| + 2φ0), (38)

where

p∗(x) = α0

2

∫
dx ′P(x ′)e−α0|x−x ′ |. (39)

p∗(x) is the stationary distribution of the diffusive process with
resetting but without any absorption [3]. Thus (38) tells us that
the effect of partial absorption is to increase the mean time to
absorption by an additional term proportional to 1/a. In fact,
the precise form of the additional term is simply 1/ap∗(0),
where p∗(0) is the stationary probability of the searcher being
at the origin (target site) in the presence of resetting but absence
of absorption.

A. Minimization of the MTA with respect to resetting rate r

Returning to (36) we are interested in finding the choice of
r which minimizes T (z). We start by considering the minimum
of T (x0) with respect to r . Setting ∂T (x0)

∂r
= 0 yields

e−θ = 1 + φ0 − θ

2
− φ0θ, (40)

where θ and φ0 are defined in (15) and (16). The solutions of
Eq. (40) are shown in Fig. 2.

In the following we analyze the solution of (40) in the
regimes a 
 α0D and a � α0D corresponding to strong and
weak absorption.

First we note that for φ0 � 1 (i.e., strong absorption, a 

α0D) Eq. (40) reduces to the transcendental equation found in
the study of total absorption [4]:

θ∗

2
= 1 − e−θ∗

. (41)

We then find that, to second order in φ0,

θ = θ∗ − 2φ0 + 2θ∗

θ∗ − 1
φ2

0 (42)

satisfies (40). It is helpful to rewrite Eq. (36) as

T (x0) = x2
0

Dθ2
[(2φ0 + 1)eθ − 1], (43)

and then, using Eq. (42), it can be shown that for φ0 � 1 the
MTA minimized with respect to r is

T ∗(x0) � x2
0

D

1

θ∗(2 − θ∗)

[
1 + 4

θ∗ φ0 + 4(3 − θ∗)

(θ∗)2
φ2

0 . . .

]
.

(44)

To study the regime φ0 
 1 (i.e., weak absorption, a � α0D),
we first rewrite Eq. (40) as

1 − θ = 1

φ0

(
e−θ − 1 + θ

2

)
. (45)

Then we can see that for φ0 
 1, θ → 1+, and explicitly to
first order in 1/φ0,

θ � 1 + 1 − 2e−1

2φ0
. (46)
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FIG. 3. (Color online) The minimized MTA, T ∗, as a function of
φ0 in units of x2

0/D. T ∗ is approximately linear for both small and
large φ0. [See Eqs. (44) and (47).]

Using this result we find that the minimized MTA is, to leading
order in 1/φ0,

T ∗(x0) � 2e
x2

0

D
φ0. (47)

We plot T ∗ as a function of φ0 in Fig. 3.

V. MANY INDEPENDENT SEARCHERS

We now consider the multiparticle version of the search
process comprising a single immobile target at the origin and
many searchers which are initially uniformly distributed on the
line with uniform density ρ. The searchers are independent
of each other and the position of each searcher evolves
stochastically starting at its own initial position to which it
resets.

The survival probability of the target Ps(t) is given [4] by

Ps(t) =
N∏

i=1

q(xi,t), (48)

where q(xi,t) is the survival probability in the single searcher
problem. The positions xi are independent and distributed
uniformly within the box [-L/2, L/2]. The average proba-
bility P av

s (t) = 〈Ps(t)〉x and the typical probability P
typ
s (t) =

exp[〈ln Ps(t)〉x], where 〈·〉x denotes averages over xi’s.
In random additive processes the average of the random

variable and its typical or most probable value exhibit the
same behavior. For multiplicative processes (where a product
of random variables is considered such as is described here),
there exist extreme events which, although exponentially rare,
are exponentially different from the typical value of the product
[12]. Thus, for multiplicative processes, it is important to
consider both average and typical values.

A. Average survival probability of the target

The average survival probability of the target P av
s (t) is

given by

P av
s (t) = 〈q(x,t)〉Nx = exp(N ln[1 − 〈1 − q〉x]), (49)

where

〈1 − q〉x = 1

L

∫ L/2

−L/2
dx[1 − q(x,t)]. (50)

Taking N,L → ∞ while keeping the density of searchers ρ =
N/L fixed [using q(x,t) = q(−x,t)] we find

P av
s (t) → exp

(
−2ρ

∫ ∞

0
dx[1 − q(x,t)]

)

≡ exp ( − 2ρM(t)). (51)

Defining

M̃(s) =
∫ ∞

0
M(t)e−stdt, (52)

we can use Eq. (25) to find

M̃(s) = r + s

srα
ln

(
1 + r

s[2φ(s) + 1]

)
. (53)

In principle this may be inverted to find P av
s (t). Rather

than present the formula which takes the form of a double
convolution, it is more instructive to examine the effect of
partial absorption on asymptotic behavior directly from (53).

For convenience we first write

φ(s) = k(r + s)
1
2 , where k =

√
D

a
, (54)

so that we can then expand (53) to leading order to find

M̃(s) =
√

D

r

1

s
(− ln s + ln r − ln[2k

√
r + 1] + O(s)), (55)

and using the identity [13]

L−1

[
− ln s

s

]
= ln t + γ, (56)

where γ is Euler’s constant, we find then that for long times

P av(t) ∼ exp [−2ρ( ln rt + γ − ln (2φ0 + 1) )] . (57)

Thus the effect of partial absorption is to change the asymptotic
decay of the average probability by a multiplicative factor
(1 + 2φ0)2ρ .

B. Typical survival probability

The typical survival probability of the target P
typ
s (t) can be

expressed as

P typ
s (t) = exp

N∑
i=1

〈ln q(xi,t)〉x

= exp

[
2ρ

∫ L/2

0
dx ln q(x,t)

]
. (58)

In the long-time limit we can use Eq. (32) to show that∫ ∞

0
dx0 ln q(x0,t) � const − t

∫ ∞

0
dx0|s0(x0)| (59)

and P typ(t) ∼ exp(−2Iρt).
We can calculate the integral I = ∫ ∞

0 dx0s0(x0) using
the following procedure. First, using Eq. (28) we make the
substitution z = −s0/r to find that z satisfies

z[φ0(1 − z)1/2 + 1] = exp[−θ (1 − z)1/2] , (60)
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which we use to rewrite I , by eliminating θ , as an integral over
dz:

I =
√

rD

∫ 0

z0

dz

(
ln z

(1 − z)1/2
+ ln[(φ0(1 − z)1/2 + 1)]

(1 − z)1/2

)
,

(61)

where

z0 = − 1

2φ2
0

(
1 −

√
1 + 4φ2

0

)
. (62)

We make the substitution

y2 = 1 − z (63)

to obtain

I = 2
√

rD

∫ y0

1
dy(ln(1 − y2) + ln[(φ0y + 1)]),

where y2
0 = 1 − z0. (64)

The first term in this integral, which will henceforth be labeled
I0,

I0 = 2
√

rD

∫ y0

1
dy [ln(1 − y) + ln(1 + y)] , (65)

which can be evaluated to obtain

I0 = 4
√

rD

[
1 − ln 2 − y0 + (1 + y0)

2
ln(1 + y0)

− (1 − y0)

2
ln(1 − y0)

]
. (66)

For φ0 � 1 we find

y2
0 =

[
1 + 1

2φ2
0

(
1 −

√
1 + 4φ2

0

)] � φ2
0 (67)

and consequently,

I0 � 4
√

rD

(
1 − ln 2 − φ3

0

6
+ O

(
φ4

0

))
. (68)

To calculate the second term I1 in (64) we again use the
substitution (63) to find

I1 = −2
√

rD

φ0
[(φ0 + 1) ln(φ0 + 1) − (y0φ0 + 1) ln(φ0y0 + 1)

− φ0(1 − y0)]. (69)

From (67) we see that for φ0 � 1,

I1 � −4
√

rD

[
φ0

4
+ O

(
φ2

0

)]
. (70)

Combining the results (68) and (70) we find that for φ0 � 1,

I � 4
√

rD

(
1 − ln 2 − φ0

4

)
. (71)

In this limit, from (68) and (70), the correction to the total
absorption decay rate is linear in φ0:

P typ(t) ∼ exp

[
−8

√
rD

(
1 − ln 2 − φ0

4

)
ρt

]
. (72)

The full result for P typ(t) is

P typ(t) ∼ exp

{
−8ρt

√
rD

[
1 − ln 2 − y0 + (1 + y0)

2
ln(1 + y0) − (1 − y0)

2
ln(1 − y0)

−
(

φ0 + 1

2φ0

)
ln (φ0 + 1) −

(
y0φ0 + 1

2φ0

)
ln (φ0y0 + 1) −

(
1 − y0

2

)]}
. (73)

VI. CONCLUSION

In this work we have considered the dynamics of a diffusive
searcher in a system with a partially absorbing target, as
defined in (1), which gives a more realistic description of
many, varied search processes. Our study has revealed some
straightforward, significant, and intuitive consequences for the
dynamics as a direct result of imperfection in the absorption
at the target.

We see from Sec. III, and Eqs. (32) and (33) in particular,
that the survival probability of the searcher (or target)
decreases exponentially with time, with a decay constant
which increases as the absorption constant a increases. As the
target comes closer to being perfectly absorbing, the survival
probability decays away much sooner.

Our study of the MTA in Sec. IV has revealed that the
mean time to absorption is increased by an additive term
1/ap∗(0) [see Eq. (38)]. As a decreases and the target is made

more “imperfect,” the mean time to absorption increases, as
expected.

For multiplicative processes, such as the many-searcher
problem analyzed in Sec. V, the distinction between typical
and average probabilities becomes significant. This is empha-
sized by the difference in the form of effects of imperfect
absorption on the typical and average survival probabilities of
the target in the many-searcher system. We see from Sec. V A
that P av(t) is modified by multiplicative factor (1 + 2φ0)2ρ ,
whereas in Sec. V B it is the decay rate of P typ(t) which is
decreased by factor proportional to 1/a.

An important quantity that emerges from this this work is
the dimensionless ratio φ0 = α0D/a. This quantity is a ratio
of length scales characteristic to the system: the length scale
1/α0 = √

D/r has already been established as the characteris-
tic displacement of the searcher due to diffusion between reset
events [3], and the length D/a is the attenuation depth in the
composite medium discussed in [7]. Thus the dimensionless
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variable φ0 represents the ratio of these two length scales,
and the dynamics are only modified in terms of this ratio and
not the absolute strength of the imperfection which has been
introduced to the target. It is the competition between resetting
and the absorption that controls the dynamics of the system.

In future work it would be of interest to extend the present
calculations to higher dimensions. Also a related problem of
interest [2] would be to consider discrete time jump processes

where the searching particle may jump over the target thus
reducing the effective absorption rate.
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