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Characterizing correlations with full counting statistics: Classical Ising
and quantum XY spin chains
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We propose to describe correlations in classical and quantum systems in terms of full counting statistics
of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the
classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising
model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of
the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the
full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in
this case, reproduces the previously known phase diagram. We also discuss the relation between our approach
and the Lee-Yang theory of zeros of the partition function.
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I. INTRODUCTION

Thermodynamic phases are traditionally described by
correlations of local observables. In the simplest case of
phase transitions associated with symmetry breaking, phases
are distinguished by the expectation value of a local order
parameter. In more subtle situations (e.g., Kosterlitz-Thouless
phase transition), it is the decay of correlations at large dis-
tances that distinguishes between the phases. In recent years,
it was realized that other, more sophisticated characteristics
of correlations may be useful, e.g., the notion of “topological
order” (involving nonlocal order parameters) or entanglement
entropy (in the case of quantum systems).

In the present work, we consider yet another nonlocal
characteristics of correlations based on the full-counting-
statistics (FCS) approach [1] (a related problem of order-
parameter statistics was studied in Ref. [2]). It was pointed
out recently (in the context of temporal correlations) that
analytical properties of the extensive part of FCS may be used
to distinguish between different thermodynamic phases [3].
Related phase-transition effects in FCS were also discussed
in various contexts in Refs. [4–7]. Here we apply the idea
of Ref. [3] to spatial correlations and illustrate it with two
examples: the classical Ising and the quantum XY spin chains
(see also Ref. [8] for an example of one-dimensional free
fermions, which do not exhibit any phase transition).

II. FCS CHARACTERIZATION OF
THERMODYNAMIC PHASES

In our approach, a thermodynamic phase is characterized by
the singularities of the extensive part of a suitably defined FCS
generating function χ0(λ). This construction is applicable to
any infinite system (either classical or quantum, not necessarily
one-dimensional) which is periodic in space and possesses an
extensive observable taking quantized discrete values (e.g.,
the number of particles or the projection of total spin on a
given axis). Consider a large subsystem � containing N unit
cells of the infinite system. Let Q be our discrete observable
restricted to this subsystem and normalized to take integer

values. Then one can construct the FCS generating function
for the observable Q,

χ�(λ) = 〈eiλQ〉 =
∑
m

Pmeiλm, (1)

where the sum is taken over all integer numbers m and Pm

is the probability for the observable Q to take the value m.
The generating function χ�(λ) has the form of a partition
function [3] and therefore must depend exponentially on the
size of the system � [9]:

χ�(λ) ∝ χ0(λ)N. (2)

Here χ0(λ) plays the role of the extensive part of χ�(λ). It is
periodic in λ (with period 2π ), but does not have to be smooth,
and it is the singularities of χ0(λ) at real values of λ that
we propose to use as a characteristics of the thermodynamic
phase [3].

Note that the definition above is quite general and applies
to a vast number of statistical and quantum problems (in many
situations, one even has a choice between different possible
observables Q). In Fig. 1 we show two such examples: particles
on a lattice (with Q being the number of particles) and a
spin-1/2 chain (with Q being the number of up spins).

Our FCS construction is related to other characteristics of
correlations. The analytic continuation λ → i∞ produces the
“emptiness formation probability” (EFP) [10,11]. On the other
hand, in quantum systems of noninteracting fermions, FCS is
known to be related to the entanglement [12].

Singularities in χ0(λ) is a subtle characteristics of FCS. In
Ref. [3] we argued that they are related to pre-exponential
factors in staggered cumulants of the observable Q (if the
singularity occurs at λ = π ). In one-dimensional systems, we
can interpret ln χ0(λ) as the inverse correlation length of the
Jordan-Wigner string exp(iλQ) (such correlation functions
were also discussed in the context of integrable systems [10]).
In some situations, Jordan-Wigner strings may be related to
physical quantities which are directly observable, e.g., spin
correlations in the example of the XY chain below.
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FIG. 1. (Color online) Two examples of FCS in statistical or
quantum systems. In both examples, the subsystem � is encircled by
a dashed line. (a) Particles on a lattice, Q is the number of particles
(in the configuration shown, Q = 5). (b) Spin-1/2 chain, Q is the
number of up spins (in the configuration shown, Q = 2).

We propose to classify thermodynamic phases by the num-
ber and type of singularities of χ0(λ) at real values of λ. Thus
obtained counting phases do not have to exactly reproduce the
conventional phase diagram. Below, we illustrate this proposal
with two examples.

III. ONE-DIMENSIONAL ISING MODEL

Our classification results in a nontrivial phase diagram for
the one-dimensional Ising model. We consider the classical
Ising chain in an external field described by the Hamiltonian

H = J
∑

j

σjσj+1 + �
∑

j

σj , (3)

where the Ising spins σj take values ±1 and the statistical
weights of spin configurations are given by exp(−H ) (the tem-
perature is incorporated in the parameters J and �). This model
is equivalent to the “weather model” considered in Ref. [3],
and one finds two different counting phases: “analytic” (A) and
“nonanalytic” (NA). In the NA phase, χ0(λ) has a singularity at
λ = π . The phase diagram is shown in Fig. 2(a), in coordinates
� and J [13,14]. The phase-transition line is given by

cosh � = e2J . (4)

0 1 2
0

0.5

A phase

Γ

J

NA phase

0 1
0

1

NA I

γ

h
NA phase

(a)

A

NA II

(b)

FIG. 2. (Color online) (a) The counting phase diagram of the
classical Ising chain. The shaded upper region is the “nonanalytic”
(NA) phase, and the lower region is the “analytic” (A) phase [14].
The phase diagram is symmetric with respect to the change of sign of
�. (b) The counting phase diagram of the spin-1/2 XY chain at zero
temperature. The three phases are Nonanalytic I, Nonanalytic II, and
Analytic. On the dashed line γ = 0, |h| < 1, the dependence of FCS
on γ is nonanalytic. The phase diagram is symmetric with respect to
the (independent) changes of sign of γ and h.

This counting phase transition has a simple physical
interpretation. If one considers the Jordan-Wigner string

Vπ (j ) =
j∏

k=j0

σk (5)

(with respect to some reference site j0), then the counting phase
transition corresponds to a nonanalyticity of the correlation
length of the exponentially decaying correlation function
〈Vπ (0)Vπ (j )〉, as a function of the parameters J and �. In
the A phase, the correlation function 〈Vπ (0)Vπ (j )〉 exhibits a
pure exponential (at � < 0) or a staggered-exponential (at
� > 0) decay as a function of j , while in the NA phase
there are additional incommensurate oscillations in j . Note
that this counting phase transition is not a thermodynamic
phase transition in the usual sense: in fact, thermodynamic
phase transitions are not possible in statistical one-dimensional
systems with local interactions. The thermodynamic partition
function of the Ising model does not have a singularity at the
counting phase transition, but nonlocal Jordan-Wigner-type
correlations (5) do. This example illustrates a clear distinction
between counting and conventional thermodynamic phase
transitions.

Finally, we remark that the counting phase diagram of the
one-dimensional Ising model found in this section can also be
understood in terms of the Lee-Yang theory of zeros of the
partition function. Details of this connection are presented in
Sec. V.

IV. SPIN-1/2 XY CHAIN

We now turn to a quantum example where a nontrivial
counting phase diagram may be explicitly constructed: the
spin-1/2 XY chain in a transverse magnetic field. The
Hamiltonian of the system is [16]

Ĥ =
∑

j

(
1 + γ

2
σx

j σ x
j+1 + 1 − γ

2
σ

y

j σ
y

j+1 − h σ z
j

)
. (6)

Without loss of generality, we assume γ � 0 and h � 0. We
are interested in the counting phase diagram with respect
to the number of up spins (as the observable Q in our
construction) at zero temperature (in the particular case of
γ = 1, the FCS in this system was studied in Ref. [1]). By
the Jordan-Wigner transformation, this model can be mapped
onto a quadratic fermionic system [16,17], and the generating
function χ�(λ) for a subchain of N sites can be written as
a N × N Toeplitz determinant. By a simple extension of the
derivation in Ref. [11], we find

χ�(λ) = det
1�j�k�N

∫ 2π

0

dq

2π
σ (q,λ)eiq(j−k) (7)

with the symbol σ (q,λ) of the Toeplitz determinant given by
[cf. Eq. (17) of the first paper of Ref. [11]]

σ (q,λ) = 1 + eiλ

2
+

(
1 − eiλ

2

)
cos q − h + iγ sin q√

(cos q − h)2 + γ 2 sin2 q
.

(8)

The exponential asymptotic dependence of such determi-
nants on N is given by the Szegő formula [18]. It immediately
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FIG. 3. (Color online) The absolute value and the phase of the
generating function χ0(λ) at typical points in each of the three
counting phases of the XY chain. For better visualization, the linear
part λ is subtracted from the phase of χ0(λ). In each panel, the three
curves are (from bottom to top): NA I phase (solid line), γ = 0.6,
h = 0.7; NA II phase (dashed line), γ = 0.5, h = 0.95; A phase
(dash-dotted line), γ = 0.5, h = 1.01.

produces the result for χ0(λ):

χ0(λ) = exp
∫ 2π

0

dq

2π
ln σ (q,λ), (9)

provided that σ (q,λ) has zero winding of the complex phase
as q varies from 0 to 2π . In the integral (9), the branch of
the logarithm is chosen by the analytic continuation along the
real axis of q, and the zero-winding condition implies that
ln σ (2π,λ) = ln σ (0,λ) under such an analytic continuation.

For some values of γ , h, and λ, however, the symbol (8) may
have winding number one [so that ln σ (2π,λ) = ln σ (0,λ) +
2πi]. In this case, a modification of the Szegő formula applies
[19]:

χ0(λ) = − exp

{∫ 2π

0

dq

2π
ln[σ (q,λ) e−iq] + iq0

}
, (10)

where q0 is the location of the singularity of σ (q,λ) in the
upper half plane of q with the smallest imaginary part.

A tedious, but straightforward application of Eqs. (9) and
(10) allows us to calculate explicitly χ0(λ) at all values of γ and
h. As a result, we find three counting phases shown in Fig. 2(b):
two nonanalytic phases and an analytic one. Note that the same
phase diagram appeared previously in the analysis of spin
correlations [17] and of EFP [11]. The generating functions
χ0(λ) at typical points in each of the three phases are shown in
Fig. 3. Below we summarize some properties of these phases
in terms of FCS.

Nonanalytic I phase (NA I): γ 2 + h2 < 1. In this phase, we
find (assuming λ ∈ [−π,π ], γ � 0, h � 0) for the absolute
value of χ0(λ):

|χ0(λ)| =
√

1 + γ cos λ

1 + γ
. (11)

Expressions for the phase of χ0(λ) following from Eqs. (9)
and (10) are lengthy for all the three phases, and we do not
present them here, except in several particular cases where
they can be considerably simplified. In the NA I phase, the

only singularity of χ0(λ) is a phase jump at λ = π :

Im ln χ0(±π ) = ±
(

π − arccos
h√

1 − γ 2

)
. (12)

In several special cases, χ0(λ) takes a particularly simple
form. At γ = 0,

χ0(λ) = exp

[
iλ

(
1 − 1

π
arccos h

)]
(13)

[in this case, the spin chain is equivalent to free fermions with
the density 1 − (1/π ) arccos h].

At h = 0,

χ0(λ) = eiλ/2

√
1 + γ cos λ

1 + γ
. (14)

At the phase boundary γ 2 + h2 = 1,

χ0(λ) = p eiλ + 1 − p, p = 1

2

(
1 +

√
1 − γ

1 + γ

)
, (15)

which corresponds to independent spins with the probability
p of pointing up [17].

Note that Eq. (11) is not even in γ , and therefore χ0(λ)
depends nonanalytically on γ across the line γ = 0.

Nonanalytic II phase (NA II): γ 2 + h2 > 1, |h| < 1. In this
phase (again assuming λ ∈ [−π,π ], γ � 0, h � 0), χ0(λ) has
phase jumps at points ±λc given by

cos λc = − 1 − z2
1

γ (1 + z2
1)

, z1 = h +
√

γ 2 + h2 − 1

1 + γ
. (16)

For the absolute value of χ0(λ), we find

|χ0(λ)| =
⎧⎨
⎩

√
1+γ cos λ

1+γ
, |λ| < λc,

z1

√
1−γ cos λ

1+γ
, |λ| > λc.

(17)

Once again, we do not present here full expressions for the
phase of χ0(λ). The phase jump at λc is given by

Im ln
χ0(λc + 0)

χ0(λc − 0)
= arccos

h
(
1 + z2

1

)
2z1

(18)

(this jump tends to zero at the phase boundary). At the
boundary with the NA I phase, λc → π , and χ0(λ) is given by
Eq. (15). At the boundary with the Analytic phase h = 1, one
finds λc → π/2. In the whole NA II phase, Im ln χ0(±π ) =
±π , which implies that χ0(λ) is smooth at λ = π .

Analytic phase (A): |h| > 1. In this phase, χ0(λ) has no
singularities in λ. For its absolute value we find

|χ0(λ)| =
√√√√h +

√
γ 2 cos2 λ + h2 − 1

h +
√

γ 2 + h2 − 1
. (19)

Throughout this phase, Im ln χ0(±π ) = ±π (just like in the
NA II phase). At γ = 0, the generating function takes the
particularly simple form χ0(λ) = iλ (a completely filled band
of free fermions).

We notice a remarkable property of the A phase: throughout
this phase, χ0(π ) = −1. This means that the correlations
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of the Jordan-Wigner operators (5) [where σk denote now
the z components σ z

k ] decay slower than exponentially. This
property was described in Ref. [1] as “confinement of dual
domain walls,” and it can also be understood in the fermionic
language. At |h| > 1, fermions form a completely filled (or
completely empty) band, and the anisotropy terms (involving
γ ) introduce local Cooper pairs, which, however, change the
number of particles by two. Thus the expectation value of the
Jordan-Wigner parity string 〈Vπ (0)Vπ (j )〉 is only affected by
Cooper pairs intersecting one of the end points of the string
(0 or j ). But, since pairs are local, the number of such pairs
remains finite for long strings, which leads to a saturation of
the correlations 〈Vπ (0)Vπ (j )〉 at large j .

The counting phase diagram of the XY chain [Fig. 2(b)]
coincides with that obtained from spin correlations: different
phases are distinguished by the transverse long-range order,
presence or absence of incommensurate oscillations in spin
correlations, and pre-exponential factors in exponentially
decaying spin correlations [17]. This coincidence is not
surprising, since, by the Jordan-Wigner transformation, trans-
verse spin operators σ±

j are represented by the product of
the string operator (5) and a fermion operator [16]. As a
consequence, transverse spin correlations are given by the
Toeplitz determinants, which differ from Eqs. (7) and (8) only
by a shift of the winding number (and by fixing λ = π ) [17].

The phase diagram in Fig. 2(b) also resembles those
based on EFP in Ref. [11] and on entanglement entropy in
Ref. [20]. Indeed, the EFP is given by the same Toeplitz
determinant (7), (8) with λ → i∞ [11], and the entanglement
entropy depends on the spectrum of a closely related block
Toeplitz matrix [20]. Therefore the phase boundaries which
are determined by the geometry of the square-root branching
points in Eq. (8) coincide in all the three problems. However
the FCS classification contains additional details related to
the positions of λ-dependent logarithmic branching points in
Eq. (9).

Finally, we remark that, even though the XY spin chain
considered in our work maps onto a quadratic fermionic
system, it does not obey the theorem on factorization of FCS
for noninteracting fermions of Ref. [21]: The phase NA II
with a singularity at an intermediate value of λ would not
be allowed by that theorem. The reason for this discrepancy
is that the corresponding fermionic system contains pairing
terms [16], and the theorem of Ref. [21] is not, in general, valid
for quadratic Hamiltonians with pairing (see also discussion
in the supplementary material of the last paper of Ref. [12]).
Thus the NA II phase presents an example of an interacting
system with singularitites of χ0(λ) shifted away from λ = π .

V. RELATION TO LEE-YANG ZEROS

Our theory of counting phase transitions is closely related to
the approach of Lee and Yang considering zeros of the partition
function in the complex plane of a parameter of the model
(fugacity or magnetic field) [15]. Namely, in many (but not
all) situations, the counting phase transitions are determined by
the locations of zeros of the partition function in the complex
fugacity (or magnetic-field) plane.

Consider first the case of a classical system. Then the
generating function (1) can be understood as the partition

function of the system with the imaginary part −iλ added to the
chemical potential dual to the observable Q in the subsystem
�. Thus we study the same analytic continuation of the
partition function as Lee-Yang’s one, but with a different order
of thermodynamic limits. In Lee-Yang theory, the chemical
potential acquires a uniform imaginary component in the
whole system, and then the system size tends to infinity. In
contrast, in our construction, the system size is infinite from the
very beginning, it is only the subsystem � where the chemical
potential has an imaginary part, and the thermodynamic limit
is defined by expanding the subsystem � within the same
infinite system.

We believe that in most situations this difference in the
order of the thermodynamic limits is unimportant, and the
extensive part of the generating function χ0(λ) simply equals
the Lee-Yang partition function per unit cell of the system.
In this case, the counting phase diagram and the positions of
singularities of χ0(λ) can be easily read off the locus of the
Lee-Yang zeros in the thermodynamic limit. The irrelevance
of the order of the thermodynamic limits can be most easily
understood in the case of one-dimensional classical systems:
there both χ0(λ) and the asymptotic behavior of the Lee-Yang
partition function in the thermodynamic limit are given by the
leading eigenvalue of the corresponding transfer matrix. This
connection to Lee-Yang zeros was also discussed in Ref. [22]
in the context of “dynamical phase transitions”.

In the case of a quantum system, the relation to the locus
of Lee-Yang zeros is more complicated. Here one should
distinguish two possibilities: Either the observable Q (defined
for the full system) commutes with the Hamiltonian H or it
does not.

In the case of Q commuting with H , the Lee-Yang partition
function ZLY may be related to the FCS generating function
for the full system in the grand-canonical ensemble, just like
in the classical case discussed above:

ZLY = tr e−βH+iλQ = tr e−βH eiλQ = 〈eiλQ〉 tr e−βH (20)

(here β is the inverse temperature). Therefore, one may draw
the same relation between the locus of Lee-Yang zeros and
counting phase transitions as in classical systems, provided
the order of the thermodynamic limits is unimportant. The
latter is, however, not always the case, at least for systems
with sufficiently slowly decaying correlations. An example
where the Lee-Yang approach and FCS give different results
is one-dimensional fermions at zero temperature (equivalent
to the spin-1/2 XY chain considered in Sec. IV at γ = 0).
There the FCS approach leads to a well-defined generating
function χ0(λ) [8], while the Lee-Yang approach provides
neither a good locus of zeros nor a good thermodynamic
partition function per unit cell of the lattice. The question
about the general conditions under which the two orders of the
thermodynamic limit are equivalent goes beyond the scope of
the present paper, and we leave it for future studies.

Finally, in the case of Q not commuting with H (which
applies to our example of spin-1/2 XY chain in Sec. IV at γ �=
0), the relation (20) between the Lee-Yang partition function
and full counting statistics no longer holds, and we conclude
that there is no obvious relation between the two approaches.
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VI. CONCLUSION

We have proposed a classification scheme of thermody-
namic phases and correlations in general in terms of the
analytical properties of the extensive part of FCS for a
suitably chosen discrete observable. Using FCS for describing
correlations involves nonlocal observables (1) and therefore
allows us to capture subtle details of correlations inaccessible
with local observables. In this way, counting phases may
be distinguished: Sometimes they coincide with conventional
thermodynamic phases, but sometimes one thermodynamic
phase may be further subdivided into several counting phases
reflecting differences in statistics of fluctuations of a certain
discrete variable. The physical meaning of counting phase
transitions is often subtle. In some situations it is related to the
structure of zeros of the partition function in Lee-Yang theory,
and in one-dimensional situations we relate FCS physics to the
correlations of nonlocal string observables of Jordan-Wigner
type. Deeper physical implications of these counting phase
transitions are still to be understood.

In our work, we have illustrated our proposal with two
simplest examples: one-dimensional Ising model as a classical
example and spin-1/2 XY model as a quantum one. We
have chosen those examples, since they allow an analytical
calculation of the counting phases and an easy comparison with

other available results. Studying counting phases in systems
with more complicated interactions is interesting but requires
more involved analytical or numerical methods.

In general, the role of interactions in counting phase
transitions is not yet fully understood. While it has been
shown in Ref. [21] that fermionic systems in the absence
of interactions can only exhibit singularities in χ0(λ) at real
negative eiλ, the absence of interactions is not a necessary
condition for this property. Indeed, for the spin-1/2 XY

chain at a finite anisotropy γ (see Sec. IV) both phases with
singularities at λ = π and those with singularities at λ �= π

are present.
Finally, we remark that here we have only focused on

analytic properties of the generating function χ0(λ) at real
values of λ. It may also be instructive to analyze, more
generally, the structure of singularities of χ0(λ) in the complex
plane of eiλ. This would, on one hand, provide a closer
connection to the theory of Lee-Yang zeros [15], and on the
other hand, relate it to the theory of the emptiness formation
probability [10,11].
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