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Power fluctuation theorem for a Brownian harmonic oscillator

J. I. Jiménez-Aquino* and R. M. Velasco†

Departamento de Fı́sica, Universidad Autónoma Metropolitana–Iztapalapa, 09340 México, D.F., Mexico
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In this paper we study the validity of the total power fluctuation theorem spent on a Brownian harmonic
oscillator when the system is driven out of equilibrium through the drag of the potential minimum. The theorem
is first proved for an ordinary harmonic oscillator in two cases: The first one considers the particle in a thermal
bath under the action of Gaussian white noise, and in the second one the drift is provided by an additional
external Gaussian colored noise satisfying the characteristics of an Ornstein-Uhlenbeck process. We go further,
by considering a charged harmonic oscillator under the action of an electromagnetic field. The theorem is also
proven as in the two cases given above. In both of those cases, we illustrate the theorem for a uniform motion of
the trap potential minimum and show that in the presence of external colored noise, the theorem is only valid in
the stationary state.
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I. INTRODUCTION

The fluctuation theorems (FT’s) continue to be a hot
topic in the statistical mechanics of small systems out of
equilibrium. They have been studied from the experimental
and theoretical points of view in a variety of systems ranging
from physics to chemistry to biology [1–38]. A few years
ago they were extended to quantum systems [25–32] as well.
The study of FT’s for thermodynamic quantities such as work,
heat, and entropy production produces essential results for
the understanding of nonequilibrium phenomena. Basically,
the FT relates the probability densities P (A),P (−A) in
processes that drive the system out of equilibrium such that the
ratio P (A)/P (−A) = eA, where A represents the work, heat,
entropy production, or some other physical quantity. The FT’s
for the aforementioned quantities have been proven for both the
transient and stationary-state regimes. An important number
of theoretical studies in this area rely upon the Langevin
equations in which both the fluctuating and dissipative forces
are originated from the same environment (commonly referred
to as a thermal bath). When a balance between both forces is
established by the fluctuation-dissipation relation, it enables
the system to reach an equilibrium state. Otherwise, when
the fluctuating and dissipative forces are originated from
different environments, the system can reach a nonequilibrium
steady state. This kind of fluctuating force is known as an
external noise and leads to a breakdown of the fluctuation-
dissipation relation [39–46]. The simplest generalization of
the equilibrium state is a nonequilibrium steady state (NESS)
that arises physically due to the lack of balance between
dissipation and fluctuations caused by the driving of the
external forces that maintain the system in a nonequilibrium
situation. The simplest example is a Brownian particle in a
fluid, confined into a harmonic potential and dragged with
constant velocity. In addition to the potential force, the particle
experiences friction and thermal forces due to the surrounding
medium. To maintain the NESS, work on the particle has to
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be performed, which in turn is partly dissipated in the fluid
as heat and partly stored as potential energy in the harmonic
potential.

Over the past 5 years, the work and entropy production
fluctuation theorems have also been explored and verified in
the study of charged Brownian harmonic oscillators in the
presence of electromagnetic fields [33–38]. It is interesting
to note that the diffusion process in a plasma, studied as
a Brownian motion problem across a magnetic field, was
solved a long time ago [47,48] and assumed to arise from
local fluctuations of the electric field that induce collisions
between particles in a Brownian motion–like manner. In
Ref. [47], a situation in which the density gradient occurs in a
direction orthogonal to the magnetic field where the magnetic
pressure is dominant was considered. The ion velocity is
much less than the electron velocities, so the mean friction
dynamics on an ion will be proportional to the ion velocity.
After these pioneering works, the studies performed in this
context have considered such fluctuations as a thermal noise
where the fluctuation-dissipation relation holds [33–38,47,48].
In this case, a balance between both the fluctuating elec-
tric field and the friction force originated from the same
environment allows the system to reach the equilibrium
state.

Very recently, we have found that there exists another
quantity closely related to the total work that also satisfies
the fluctuation theorem. This is the time derivative of the total
work, which we refer to as the total power spent on the system
as it is driven out of equilibrium. It should be mentioned
that the total work Wτ used in the present contribution is
the same as that proposed in Ref. [8], which according to
the energy conservation law, satisfies �U = Wτ − Q, where
Q is the heat dissipated to the surrounding medium and
�U is the potential energy of the Brownian particle that is
dragged through water molecules; both the total work and heat
are fluctuating quantities and path-dependent [8,9]. While in
Ref. [8] it was shown that the conventional stationary-state
fluctuation theorem and transient fluctuation theorem of the
total work hold, another FT holds for the dissipated heat.
However, in Ref. [9] a corrected fluctuation relation was
shown to have a general validity for the dissipated heat. It
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is our main interest in this contribution to study the validity of
the total power fluctuation theorem (PFT), following similar
ideas behind the proof of a corresponding theorem for the
total work [6,8,33,37]. The total power P also satisfies
P ≡ dWτ/dτ = dQ/dτ + d�U/dτ , where dQ/dτ denotes
the power dissipated in the form of heat to the surrounding
medium and d�U/dτ denotes the power stored in the form
of potential energy by the particle. We first study the theorem
for an ordinary Brownian harmonic oscillator in two cases:
first, when the particle is embedded in a thermal bath of
temperature T leading to the unavoidable presence of thermal
fluctuations (internal noise), assumed to be a Gaussian white
noise (GWN). In this case, the fluctuation-dissipation relation
holds. The next case is when an additional external Gaussian
Ornstein-Uhlenbeck (GOU) noise is considered. In both cases,
we assume a uniform motion in the minimum of the harmonic
trap responsible to drive the system out of equilibrium. In the
case of the GWN only, the total PFT is shown to be valid in an
exact way, whereas with the additional presence of the external
GOU, the theorem is valid only in the stationary state. We
also prove the PFT when the Brownian harmonic oscillator is
electrically charged and in the presence of an electromagnetic
field. In this problem, the magnetic field is considered a
constant vector and the electric field a time-dependent vector.
In addition, we first show the PFT when the system is
embedded in a thermal bath of temperature T and the thermal
noise comes from the local fluctuations of the electric field.
In this case, the external time-dependent electric field will
be responsible for the uniform motion of the minimum trap
potential. In this case the exact validity of the total PFT is also
shown. In the presence of an additional external GOU, the total
PFT is valid only in the stationary state.

Our work is presented in the following way: In Sec. II
we introduce the usual Langevin equation for a Brownian
harmonic oscillator, whereas in Sec. III we prove the PFT
assuming a uniform motion for the minimum trap potential.
The theorem is proved first when the system is driven by a
thermal GWN only. Then it is shown for an additional GOU
noise. In Sec. IV we consider the problem in the presence
of an electromagnetic field and Sec. V is devoted to the
demonstration of the corresponding PFT. In addition, the case
of thermal GWN is first studied, followed by that including
an additional OU noise. Our concluding remarks are given in
Sec. VI.

II. LANGEVIN EQUATION FOR A
HARMONIC OSCILLATOR

Let us first consider a Brownian particle of mass m

embedded in a thermal bath of temperature T such that the
particle is subject to an external harmonic potential U (r,r∗) =
(k/2)|r − r∗|2, with k a constant. Here r∗ is the time-dependent
position of the potential minimum that is dragged with
arbitrary velocity v∗(t) = dr∗/dt . We will suppose that at
time t = 0, the potential minimum is located at the origin
of coordinates r∗(0) ≡ r∗

0 = 0, whereas for t > 0 it moves
arbitrarily with the velocity v∗(t). The Langevin equation for
the harmonic oscillator is then

m
dv
dt

= −γ v − k(r − r∗) + ξ (t), (1)

where γ > 0 is the friction coefficient and ξ (t) a Gaussian
noise with zero mean value 〈ξi(t)〉 = 0 and correlation
function

〈ξi(t)ξj (t ′)〉 = Gij (t − t ′), i,j = x,y,z, (2)

where Gij (t − t ′) is an arbitrary function. The problem will
be studied in the overdamped approximation of the Langevin
equation, which is then given by

dr
dt

= −a r + a r∗ + γ −1ξ (t), (3)

where a = k/γ is a characteristic frequency in this problem.
Equation (3) can be solved in terms of the deterministic
trajectory 〈r〉 and variable R = r − 〈r〉; those variables satisfy
the following differential equations:

d〈r〉
dt

= −a〈r〉 + ar∗, (4)

dR
dt

= −aR + γ −1ξ (t). (5)

In fact, the solution of Eq. (4) can be written, after integration
by parts, as

〈r〉 − r∗ = −v∗(τ )

a
+ 1

a

∫ τ

0
e−a(τ−t)A∗(t) dt, (6)

where we have assumed that 〈r(0)〉 = 0 and A∗(t) = dv∗(t)/dt

is the acceleration of the potential minimum. On the other
hand, Eq. (5) has the following solution:

R(τ ) = R0e
−aτ + γ −1

∫ τ

0
e−a(τ−t)ξ (t) dt, (7)

where R0 = R(0) is the initial condition. Such an initial
condition is not fixed; instead it is given through a distribution.
Due to the fact that the process R(t) is stationary, the initial
distribution is a canonical one,

P (R0) =
(

1

2πσ 2

)3/2

e−|R0|2/2σ 2
, (8)

where σ 2 = 〈R0iR0j 〉 is associated with the width of the
distribution. This quantity must be evaluated each time we
consider a process occurring in the system, and its value will
be written when needed.

III. POWER AVERAGE AND VARIANCE

We begin our calculation using the definition of the total
work [8,33,34,36–38] done on a system during a time interval
τ given by

Wτ =
∫ τ

0
v∗ · F(r,r∗) dt, (9)

where F(r,r∗) = −k(r − r∗) is the harmonic force. As stated
in Ref. [8], this work is the total energy put into the system (the
particle in the harmonic trap plus the water). As required by
the energy conservation law, part of this total work goes into
the fluid in the form of heat Q, while the other part goes into the
potential energy �U of the particle in the harmonic potential
such that �U = Q − Wτ , where �U = U (r(t + τ ),t + τ ) −
U (r(t),t). According to Eq. (9), we thus define the total power
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spent on the system in the same time interval as

P = dWτ

dτ
= v∗(τ ) · F(r,r∗). (10)

It is now clear that P = dQ/dτ + d�U/dτ , where dQ/dτ

would be the power dissipated in the form of heat to the
surrounding medium and d�U/dτ the power stored in the
form of potential energy by the particle. We now proceed to
calculate the statistics of the total power as the harmonic trap
is moving in the time interval [0,τ ]. The average of the power
as well as its variance can be further calculated if we use the
variables 〈r〉 and R and the solutions given in Eqs. (6) and (7).
First we notice that the power defined in Eq. (10) in this case
is written as

P = −k[v∗ · R + v∗ · (〈r〉 − r∗)]. (11)

Since 〈R〉 = 0, the average value of the total power then reads

〈P〉 = −kv∗(τ ) · [〈r(τ )〉 − r∗(τ )]. (12)

The average of the total power needs the solutions we obtained
in Eqs. (4) and (5). With the substitution of Eq. (6) into Eq. (12),
we thus get the total power average as

〈P〉 = γ v∗(τ ) · v∗(τ ) − γ

∫ τ

0
e−a(τ−t)v∗(τ ) · A∗(t) dt. (13)

Now, let us define the power fluctuation �P(τ ) = P(τ ) −
〈P(τ )〉; its correlation is written as

〈�P(τ )�P(τ ′)〉 = k2〈v∗(τ ) · R(τ )v∗(τ ′) · R(τ ′)〉. (14)

Now we express in a convenient way the quantities needed to
calculate the correlation defined in Eq. (14), hence

v∗(τ ) · R(τ ) = e−aτ R0 · v∗(τ ) + γ −1C(τ ) · v∗(τ ) (15)

and

C(τ ) =
∫ τ

0
e−a(τ−t)ξ (t) dt. (16)

Upon substitution of Eq. (15) into Eq. (14) we get in terms of
components that

〈�P(τ )�P(τ ′)〉 = k2[e−2aτ v∗
i (τ )v∗

j (τ ′)〈R0iR0j 〉
+ γ −2v∗

i (τ )v∗
j (τ ′)〈Ci(τ )Cj (τ ′)〉]. (17)

The variance of the total power as required by its def-
inition can be calculated as VP (τ ) ≡ 〈P(τ )2〉 − 〈P(τ )〉2 =
〈�P(τ )�P(τ )〉 and is shown to be

VP (τ ) = k2〈v∗(τ ) · R(τ ) v∗(τ ) · R(τ )〉. (18)

A. Thermal Gaussian white noise

In this case we choose the function Gij (t − t ′) =
2λ δij δ(t − t ′), corresponding to the Gaussian white noise, and
thus

〈ξi(t)ξj (t ′)〉 = 2λ δij δ(t − t ′), i,j = x,y,z, (19)

where λ measures the noise intensity. According to the
fluctuation-dissipation relation it is related to the friction
coefficient by λ = γ k

B
T with k

B
as Boltzmann’s constant.

To calculate the power variance in this case, we need the width

in the distribution of initial conditions and the correlation
function of the quantity given in Eq. (16). In this case, the
initial conditions are distributed according to Eq. (8) with
a width consistent with the thermal equilibrium between
the particle and the thermal bath, then 〈R0iR0j 〉 = 1/(kβ)δij

and β = 1/kBT as usual. On the other hand, the correlation
function of C is a matter of a direct calculation and

〈Ci(τ )Cj (τ ′)〉 = λ

a
δij [e−a|τ−τ ′| − e−a(τ+τ ′)] (20)

so that the correlation of the total power (14) reduces to

〈�P(τ )�P(τ ′)〉 = k

β
v∗(τ ) · v∗(τ ′)ea|τ−τ ′|. (21)

For equal times τ ′ = τ we have

VP = k

β
v∗(τ ) · v∗(τ ) = a

β
γ v∗(τ ) · v∗(τ ). (22)

It can be seen that in the case of a uniform motion of the
minimum trap potential, which means that A∗(t) = 0 and v∗ ·
v∗ ≡ v2 a constant, the average of the total power is 〈P〉 =
γ v∗ · v∗ = γ v2. In this case, the variance and the total mean
power will be related by

VP = a

β
〈P〉. (23)

To establish the total power fluctuation theorem we must notice
that the total power as written in Eq. (11) is linear in the variable
R, which is described by a Gaussian distribution function.
Accordingly, the power distribution is given as follows:

P (P) = 1√
2πVP

e−(P−〈P〉)2/2VP . (24)

Now the relation between the power average and its variance
Eq. (23) allows us to establish the total power fluctuation
theorem, hence

P (P)

P (−P)
= e2(β/a)P , (25)

which corresponds to the conventional fluctuation theorem for
the time derivative of the total work Wτ . In this case, the
theorem is valid in its exact form for all times τ > 0 [9].

B. External Gaussian Colored Noise

Here we will consider both the internal GWN denoted as
ζ (t) and the influence of an external noise η(t) that satisfies
the properties of an Ornstein-Uhlenbeck noise (GOU). In this
case the noise term of Eq. (1) is then ξ (t) = η(t) + ζ (t), and
the function Gij (t − t ′) leads specifically to

〈ξi(t)ξj (t ′)〉 = D

τ
δij e

−|t−t ′ |/τ + 2λ δij δ(t − t ′), (26)

where D and τc are the intensity and correlation time of the
external noise, respectively, and λ = γ k

B
T . We again consider

a uniform motion for the potential minimum leading in this
case to the same expression for the average of the total power,
i.e., 〈P〉 = γ v∗ · v∗ = γ v2. To calculate the variance as given
by Eq. (17), we need the correlation of the initial condition
R0. In the absence of internal noise ζ (t), the initial distribution
function associated with Eq. (5) is given by the Gaussian
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distribution written in Eq. (8) [49] with σ 2
0 = 〈R0iR0j 〉 =

D/γ 2a(1 + aτc)δij . With the additional internal noise it can
be shown that

σ 2
0 = 〈R0iR0j 〉 = D

γ 2a(1 + aτc)
δij + 1

kβ
δij , (27)

and therefore after integration of Eq. (16) we get the following
expression:

k2

γ 2
〈Ci(τ )Cj (τ ′)〉

= Da

1 − a2τ 2
c

[e−a|τ−τ ′| − e−a(τ+τ ′)]δij

− Da2 τc

1 − a2τ 2
c

{
e−a(τ+τ ′)[1 − e

− τ
τ1 − e

− τ ′
τ1

]
+ e− |τ−τ ′ |

τc

}
δij + λ

a
δij [e−a|τ−τ ′| − e−a(τ+τ ′)]. (28)

where τ1 = τc/(1 − aτc). For uniform dragging of the poten-
tial minimum and for equal times τ = τ ′, Eq. (17) leads to

VP = a

β
γ v2 + Dv2a

1 + aτc

+ 2Dv2a2τc

1 − a2τ 2
c

(
e−2aτ + e

− τ
τ2

)
, (29)

where τ2 = τc/(1 + aτc). Notice that the variance calculated
in Eq. (29) can be written in terms of the average power, yet
such a relation contains a function of the time τ . This fact
prevents the PFT from being valid for all times. When the
system reaches the stationary state the variance reads

VPs
= a

β
γ v2 + Da

1 + aτc

v2, (30)

which is related to the average of the total power by

VPs
=

(
a

β
+ Dea

γ

)
〈P〉, (31)

where De = D/(1 + aτc) accounts for a renormalization of the
noise intensity D by the factor 1 + aτc. Hence in the stationary
state, the total power Fluctuation theorem holds for both kinds
of Gaussian noises, that is,

P (P)

P (−P)
= e(2βP)/[a(1+Deβ/γ )]. (32)

Though the PFT is valid only in the stationary state, it is
important that it is not necessary to correct it as in the case
of heat [9]. In the GWN limiting case (τc = 0) we have De =
D. If we suppose that D = γ k

B
T = γ /β then γ /aDe = β/a

and therefore P (P)/P (−P) = e4(β/a)P , which is an expected
result. Also, when the external noise is not present, D = 0
and we recover the power fluctuation theorem as written in
Eq. (25).

IV. LANGEVIN EQUATION FOR A HARMONIC
OSCILLATOR IN AN ELECTROMAGNETIC FIELD

Consider the above Brownian harmonic particle of mass m

now with an electric charge q under the action of an electric
field. Besides, a constant magnetic field pointing along the z

axis is acting on the particle, so that B = (0,0,B). In this case,
the Langevin equation associated with the charged particle

can be split into two independent equations: One equation
is parallel to magnetic field and the other is given on the
x-y plane orthogonal to this field. Along the magnetic field
the process is the same as the z component of Eq. (1), and
therefore solved in the preceding sections. The influence of
the magnetic field is then on the (x,y) plane orthogonal to this
field, and it is the process in which we are interested now. The
two-dimensional harmonic potential is defined as U (x,x∗) =
(k/2)|x − x∗|2, where x = (x,y) is the position vector for the
charged particle, x∗ ≡ x∗(t) = (x∗,y∗) the position vector for
the potential minimum, and u = (ux,uy) the velocity vector.
As a first case, we prove the PFT, taking into account that the
thermal fluctuations come from the local fluctuations of the
electric field, and the external time-dependent electric field
Es(t) will account for the systematic electric field responsible
for the dragging of the potential minimum. At time t = 0, the
potential minimum is at the origin of coordinates, i.e., x∗(0) =
x∗

0 = 0, whereas for t > 0, it moves arbitrarily with velocity
u∗(t), where u∗(t) = dx∗/dt and u∗(t) = (u∗

x(t),u∗
y(t)). The

Langevin equation for the charged harmonic oscillator in this
case can be written as

m
du
dt

= −γ u + q

c
u × B − k x + kx∗ + μ(t), (33)

where x∗ = (q/k)Es(t) is the position vector of the potential
minimum, μ(t) a Gaussian noise with zero mean value and
correlation function

〈μi(t)μj (t ′)〉 = Hij (t − t ′), i,j = x,y. (34)

being Hij (t − t ′) an arbitrary function. In the overdamped
approximation Eq. (33) reduces to

dx
dt

= −�x + � x∗ + k−1�μ(t), (35)

where � is a 2 × 2 matrix given by

� =
(

ã �̃

−�̃ ã

)
, (36)

and the parameters are defined as ã = a/(1 + C2), �̃ = ãC,
and C = qB/cγ and contain the influence of the magnetic
field, also a = k/γ as in the previous case.

To solve Eq. (35), we follow a similar procedure as we did
in Sec. II and separate the deterministic behavior given by 〈x〉
from the one corresponding to variable X = x − 〈x〉, then

d〈x〉
dt

= −� 〈x〉 + � x∗, (37)

dX
dt

= −� X + k−1�μ(t). (38)

Their solutions are obtained in a direct way:

〈x〉 − x∗(t) = �−1u∗(t) + �−1e−�t

∫ t

0
e�t ′A∗(t ′) dt ′, (39)

X(t) = e−ãtR−1(t) X0 + k−1 C̃(t), (40)

where �−1 is the inverse of matrix � and A∗(t) = du∗(t)/dt

is the acceleration of the potential minimum, and also it
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is assumed the initial condition 〈x(0)〉 = 0. If we take into
account that � = ã I + W , with I the unit matrix and W a
real antisymmetric matrix, then e�t = eãtR(t), R(t) = eW t

being an orthogonal rotation matrix and R−1(t) = e−W t its
inverse:

W =
(

0 �̃

−�̃ 0

)
, R(t) =

(
cos �̃ t sin �̃ t

− sin �̃ t cos �̃ t

)
. (41)

The vector C̃(t) is defined as follows:

C̃(t) =
∫ t

0
e−ã(t−t ′)�R−1(t ′)μ(t ′) dt ′. (42)

V. POWER AVERAGE AND VARIANCE IN THE PRESENCE
OF AN ELECTROMAGNETIC FIELD

In a similar way as defined above, the total work Wτ done
on a system during a time τ is defined, in the two-dimensional
case, by

Wτ =
∫ τ

0
u∗ · F(x,x∗) dt, (43)

where F(x,x∗) = −k(x − x∗) is the harmonic force. The total
power dissipated by the system in the same time interval τ

reads

P̃ = dWτ

dτ
= u∗(τ ) · F(x,x∗). (44)

The statistics of the total power will be calculated using the
results given in Eqs. (37) and (38). The average of the total
power now is

〈P̃〉 = −ku∗(τ ) · [〈x(τ )〉 − x∗(τ )], (45)

in which we substitute Eq. (39); after an integration by parts
we obtain

〈P̃〉 = γ u∗(τ ) · u∗(τ ) − k�−1
∫ τ

0
e−ã(τ−t)U∗(τ ) · A∗(t) dt,

(46)

where U∗(τ ) = R(τ )u∗(τ ) and Ã∗(t) = R(t)A∗(t) is the ac-
celeration of the potential minimum affected by the rotation
matrix. The correlation of power fluctuations reads

〈�P(τ )�P(τ ′)〉 = k2〈X(τ ) · u∗(τ )X(τ ′) · u∗(τ ′)〉. (47)

Now the quantity

X(t) · u∗(t) = e−ãtu∗(t) · X0 + k−1u∗(t) · C̃(t) (48)

is required. In terms of the components, the correlation of the
total power now reads

〈�P(τ )�P(τ ′)〉 = k2e−ã(τ+τ ′)U ∗
i (τ )U ∗

j (τ ′)〈X0iX0j 〉
+U ∗

i (τ )U ∗
j (τ ′)〈C̃i(τ )C̃j (τ ′)〉, (49)

where

〈C̃i(τ )C̃j (τ ′)〉 = e−ã(τ+τ ′)
∫ τ

0

∫ τ ′

0
eã(t+t ′)�il�jkR−1

lm (t)

×R−1
kn (t ′)〈μm(t)μn(t ′)〉 dt dt ′. (50)

A. Thermal Gaussian white noise

Now we will consider that the correlation function for the
noise μ(t) satisfies

〈μi(t)μj (t ′)〉 = 2λδij δ(t − t ′), i,j = x,y, (51)

where λ satisfies the fluctuation dissipation relation, so it is
again λ = γ k

B
T . Using the definitions given above, it can be

shown that

〈C̃i(τ )C̃j (τ ′)〉 = k

β
δij [e−ã|τ−τ ′| − e−ã(τ+τ ′)]. (52)

Due to the fact that the process X(t) is stationary, it has been
shown that its initial distribution also satisfies the canonical
distribution given in Eq. (8) with σ 2 = 1/kβ, then 〈X0iX0j 〉 =
(1/kβ) δij . The power correlation (49) now reduces to

〈�P(τ )�P(τ ′) = k

β
u∗(τ ) · u∗(τ ′) e−a|τ−τ ′|. (53)

For equal times τ = τ ′ we obtain the power variance

VP̃ = k

β
u∗(τ ) · u∗(τ ) = a

β
γ u∗(τ ) · u∗(τ ), (54)

which is quite similar to Eq. (22). Again, for a uniform motion
A∗ = 0 and u∗ · u∗ ≡ u2 is a constant. In this case the variance
of the total power and the power average are also related by

VP̃ = a

β
〈P̃〉. (55)

Under these conditions, the PFT leads to

P (P̃)

P (−P̃)
= e2(β/a)P̃ , (56)

which is practically the same as that obtained in the absence
of the magnetic field as shown in Eq. (25) if we take just
v∗ = (vx,vy) = u∗. Also, the PFT is valid in its exact way, i.e.,
for all times τ > 0.

B. External Gaussian Ornstein-Uhlenbeck noise

In this case the external electric field will account for
the following two contributions: E(t) = Es(t) + Ef (t). Here
Es(t) represents a systematic electric field responsible for the
dragging of the potential minimum and Ef (t) the external
fluctuation with the properties of an OU noise. This fluctuating
field is thus absorbed in the noise term μ(t) such that μ(t) =
η̃(t) + ζ̃ (t), with η̃(t) ≡ qEf (t) the external OU noise and ζ̃ (t)
the thermal noise such that

〈μi(t)μj (t ′)〉 = D

τc

δij e− |t−t ′ |
τc + 2λ δij δ(t − t ′). (57)

Notice that the power variance depends on the noise character-
istics through the correlation function 〈C̃i(τ )C̃j (τ ′)〉 and the
initial conditions 〈X0iX0j 〉. Again, we notice that the process
X(t) in (40) is stationary, the initial conditions in the presence
of the magnetic field and without the influence of the internal
noise are distributed according to a Gaussian distribution as
the one given in Eq. (8), where σ 2 = 〈X0iX0j 〉 was calculated
in Ref. [49], and it is given as

〈X0iX0j 〉 = D(1 + ãτc)

γ 2ã(1 + C2)[(1 + ãτc)2 + (�̃τc)2]
δij . (58)
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With the additional internal noise it can be shown that this
initial correlation function reads

〈X0iX0j 〉 = D(1 + ãτc)

γ 2ã(1 + C2)[(1 + ãτc)2 + (�̃τc)2]
δij + 1

kβ
δij .

(59)

When the potential minimum is dragged at constant velocity
u∗(t) · u∗(t) = u2, the acceleration A∗ = 0 and thus the aver-
age power as given in Eq. (46) is simply 〈P̃〉 = γ u2. Now, it is a
matter of a direct calculation to obtain the correlation functions
required in Eq. (49). In fact, the external OU noise drives
to 〈C̃1(τ )C̃2(τ ′)〉 = −〈C̃2(τ )C̃1(τ ′)〉 = 0 and 〈C̃1(τ )C̃1(τ ′)〉 =
〈C̃2(τ )C̃2(τ ′)〉. Upon evaluation of this correlation function at
equal times τ = τ ′ we have

〈C̃1(τ )C̃1(τ )〉 = Da

[
(−1 + ãτc)

�− e2̃aτ − 2τc

�+�− G(τ )e−τ/τ̃2

+ (1 + ãτc)

�+

]
+ k

β
(1 − e−2̃aτ ), (60)

where G(τ ) = [−1 + ã2τ 2
c (1 + C2)] cos �̃τ + 2�̃τc sin �̃τ ,

τ̃2 = τc/(1 + ãτc), �+ = (1 + ãτc)2 + (�̃τc)2, and �− =
(1 − ãτc)2 + (�̃τc)2. Taking into account Eqs. (59) and (52),
the total power variance (49) for uniform motion then reads

VP̃ = Du2a(1 + ãτc)

�+ + 2Du2a[1 − ã2τ 2
c + (�̃τc)2]

�+�− e−2̃aτ

+ 2Du2a2τc[1 − ã2τ 2
c (1 + C2)]

(1 + C2)�+�− e−τ/τ̃2 cos �̃τ

− 2Du2a2τ 2
c �̃

(1 + C2)�+�− e−τ/τ̃2 sin �̃τ + aγ u2

β
(1 − e−2aτ ),

(61)

which contains a complicated dependency on time τ and its
coupling with the magnetic field. Nevertheless, the asymptotic
behavior shows in a clear way a relation between the variance
and the power average given by

VP̃s
= a

β
γu2 + Da(1 + ãτc)

�+ u2 =
(

a

β
+ Da(1 + ãτc)

γ �+

)
〈P̃〉.
(62)

To check out the consistency of the result given by Eq. (61),
it can be compared with the result obtained for zero magnetic
field. In this case �̃ = 0, ã = a = k/γ and thus

VP̃ = a

β
γu2 + Du2a

1 + aτc

+ 2Du2a2τc

1 − a2τ 2
c

(e−2aτ + e−τ/τ2 ), (63)

with τ2 = τc/(1 + aτc). This variance is the same as Eq. (29)
for v2 = u2 and therefore the SPFT (65) reduces to Eq. (32)
as it should be.

As we can see, the power variance depends on the influence
of the internal noise through the parameter a/β as well on
the cooperative effect of the four parameters D, τc, ã, and
�̃ where the magnetic field is strongly coupled to the noise
correlation time through the factor (�̃τc)2 contained in �+.
Here we have two limiting cases, first when we consider a
weak magnetic field �̃τc � ãτc, �+ ≈ (1 + ãτc)2 and thus the
variance simplifies VPs

= a
β
γ u2 + Da

(1+ãτc)u
2 = ( a

β
+ aDe

γ
)〈P̃〉.

This result is consistent with the result obtained in Eq. (31)

as expected, because in this limiting case, the weak magnetic
field is practically decoupled of the noise correlation time τc.
As a second case, we consider a strong magnetic field such
that �̃τc 
 ãτc and now the asymptotic behavior is then given
as VP̃s

= a
β
γ u2 + Da(1+ãτc)

1+(�̃τc)2 u2 where the coupling between all
parameters is present. In the general case given in Eq. (62)
we can define an effective noise intensity as Dm

e = D(1 +
ãτc)/�+ and we obtain

VP̃s
=

(
a

β
+ aDm

e

γ

)
〈P̃〉. (64)

This relation between the power average and its variance, al-
lows us to establish the total stationary state power fluctuation
theorem (SPFT)

P (P̃)

P (−P̃)
= e

2β

a
((1+Dm

e a/γ )−1)P̃ . (65)

It should be noticed that the power fluctuation theorem as
written in Eq. (65) contains the influence of the internal and
external noises as well as the effect of the magnetic field.
The internal noise allows the bath temperature to play a
role through the fluctuation dissipation relation. In contrast,
the external noise is an athermal contribution because it is
independent of the bath characteristics. In both cases the
effect of the magnetic field is present through the effective
noise intensity Dm

e . When the internal noise is not taken into
account, the dissipative contribution given through the friction
is not balanced with the fluctuations, and in this case the system
remains out of equilibrium by means of external agents, though
it reaches an asymptotic behavior in which the power becomes
constant. The corresponding work done on the system behaves
linearly with time and it stays, as far as the external forcing is
present.

VI. CONCLUDING REMARKS

The power fluctuation theorem presented in this paper has
been established for an ordinary Brownian harmonic oscillator
and when it is charged and under the action of an external
electromagnetic field. In the ordinary case and for a uniform
dragging of the potential minimum, the theorem has been
proved in exact way when the system is embedded in a
thermal bath of temperature T . In this case the validity of
Eq. (23) is shown for the total power average and its variance,
which remain constant in the time interval [0,τ ], contrary
to what happens with the rate of the work average studied
in Ref. [8], being a constant only in the stationary state. If
the system is also driven by an external GOU, a constant
relation between the average and the variance is reached only
in the stationary state as shown in Eq. (31), leading then
to the validity of the total SPFT as established in Eq. (32).
This constant relation is similar to that obtained for the rate
of average work in the stationary state when the system is
driven by a Gaussian white noise, as studied in Ref. [8]. In the
presence of an electromagnetic field, the theorem also holds
for a thermal GWN caused by the fluctuations of local electric
fields. Here the external time-dependent electric field accounts
for the uniform motion of the potential minimum. The relation
between the average of the power and its variance satisfies the
constant expression given by Eq. (55), which is exactly the
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same as that obtained in the absence of the magnetic field as
given in Eq. (23) if v2 = u2. By considering the influence of
an external GOU, the external electric field now accounts for
two contributions, namely, a systematic force as before and a
random contribution that satisfies an OU process. Again, the
same as in the absence of the magnetic field, the total PFT is
only valid in the asymptotic behavior. The bath temperature
plays a role when the white internal noise is taken into account;
however, if it is absent and just the external noise is applied,
the system remains out of equilibrium and there is no balance
mechanism as exists when the noise has an internal origin.

Lastly, we think that the experiment performed by Wang
et al. [6] to demonstrate the total work fluctuation theorem for

a colloidal particle surrounded by water molecules could be
implemented in quite a similar way to demonstrate the total
PFT, first in the absence of a magnetic field and for a thermal
bath and then in the presence of this field. In the presence of
additional external colored noise, our proposal suggests the
validity of the total PFT only in the stationary state. In this
case there is a possibility of performing similar experiments
with colloidal particles (ordinary and charged).
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