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Effect of dimensionality on the percolation threshold of overlapping nonspherical hyperparticles
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We study the effect of dimensionality on the percolation threshold ηc of identical overlapping nonspherical
convex hyperparticles in d-dimensional Euclidean space Rd . This is done by formulating a scaling relation for
ηc that is based on a rigorous lower bound [Torquato, J. Chem. Phys. 136, 054106 (2012)] and a conjecture that
hyperspheres provide the highest threshold, for any d , among all convex hyperparticle shapes (that are not a trivial
affine transformation of a hypersphere). This scaling relation also exploits the recently discovered principle that
low-dimensional continuum percolation behavior encodes high-dimensional information. We derive an explicit
formula for the exclusion volume vex of a hyperparticle of arbitrary shape in terms of its d-dimensional volume v,
surface area s, and radius of mean curvature R̄ (or, equivalently, mean width). These basic geometrical properties
are computed for a wide variety of nonspherical hyperparticle shapes with random orientations across all dimen-
sions, including, among other shapes, various polygons for d = 2, Platonic solids, spherocylinders, parallepipeds,
and zero-volume plates for d = 3 and their appropriate generalizations for d � 4. Using this information, we
compute the lower bound and scaling relation for ηc for this comprehensive set of continuum percolation models
across dimensions. We demonstrate that the scaling relation provides accurate upper-bound estimates of the
threshold ηc across dimensions and becomes increasingly accurate as the space dimension increases.
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I. INTRODUCTION

Clustering and percolation behavior of many-particle sys-
tems is of relevance in a host of physical and chemical
phenomena, including gelation and polymerization, structure
of liquids and glasses, hopping in semiconductors, metal-
insulator transition in condensed matter systems, nucleation,
condensation of gases, chemical association, conduction in
dispersions, aggregation of colloids, and flow in porous media
[1–6]. Considerable attention has been devoted to percolation
on lattices, whose percolation thresholds, in some two-
dimensional cases, are amenable to exact analysis [4,5]. Unlike
lattice percolation, it has not been possible to obtain exact
results for the percolation threshold of any two-dimensional
continuum (off-lattice) percolation model. Recently analytical
estimates of the threshold, including rigorous bounds, have
been obtained for the prototypical continuum percolation mod-
els of overlapping hyperspheres and oriented hypercubes in
d-dimensional Euclidean spaceRd that apply in any dimension
d [7,8]. In this paper, we provide an analytical framework to
predict percolation thresholds for a wide class of continuum
percolation models, namely, identical overlapping hyperparti-
cles in Rd of any convex shape and in any dimension d.

An important consequence of the analysis in Ref. [7], which
we exploit in the present work, is that the large-d percolation
value for any hyperparticle shape is an important contribution
to the corresponding low-dimensional percolation value. In
other words, low-dimensional percolation properties encode
high-dimensional information. The analysis was aided by a

*torquato@princeton.edu
†yjiao@princeton.edu

remarkable duality between the equilibrium hard-hypersphere
(hypercube) fluid system and the continuum percolation model
of overlapping hyperspheres (hypercubes), namely,

P (r; η) = −h(r; −η), (1)

where P (r; η) is the pair connectedness function at some radial
distance r , the quantity

η = ρv (2)

is a dimensionless or reduced density, ρ is the number density,
and v is the volume of a hyperparticle [9]. Additionally, h(r; η)
is the total correlation function for the corresponding equilib-
rium hard-particle models at packing fraction η, fraction of
space covered by the hard particles. The duality relation (1)
relates a statistical property of a topological problem on the
one hand to that of a geometrical problem on the other [10].
Importantly, the duality relation (1) is exact in the large-d
limit and for low densities for any d up to through the
third virial level and is a relatively accurate approximation
in low dimensions for densities up to the percolation threshold
ηc [7].

It was also shown in Ref. [7] that lower-order Padé
approximants of the mean cluster number S of the form
[n,1] (where n = 0,1 and 2) provide upper bounds on S and
hence yield corresponding lower bounds on the threshold ηc

for d-dimensional overlapping hyperspheres and overlapping
oriented convex hyperparticles with central symmetry [11]
(e.g., spheres, cubes, regular octahedra, and regular icosahedra
for d = 3) [7]. The simplest of these lower bounds on ηc ([0,1]
Padé approximant) is given by

ηc � 1

2d
, (3)
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where it is to be noted that 2d is the ratio of the exclusion
volume vex associated with an oriented convex hyperparticle
with central symmetry [12] (which includes the hypersphere)
to the volume v of the hyperparticle. This trivially translates
into a lower bound on the mean number of overlaps per sphere
at the threshold Nc:

Nc ≡ 2dηc � 1. (4)

The lower bound estimates as well as Percus-Yevick-like
approximations were demonstrated [7] to become accurate in
relatively low dimensions, improve in accuracy as d increases,
and become asymptotically exact in the large-d limit, i.e.,

ηc → 1

2d
, d → ∞ (5)

and

Nc ∼ 1, d → ∞. (6)

The aforementioned trends and asymptotic results were
shown to hold for overlapping convex d-dimensional particles
(or hyperparticles) of arbitrary shape and orientational
distribution when appropriately generalized [7]. For example,
for identical overlapping hyperparticles of general anisotropic
shape of volume v with specified probability distribution of
orientations in d dimensions, the simplest lower bound on ηc

and on Nc generalize as follows:

ηc � v

vex
, (7)

Nc ≡ ηc

v

vex
� 1, (8)

where

vex =
∫
Rd

f (r,ω)p(ω) dr dω (9)

is the generalized exclusion volume associated with a hyper-
particle, f (r,ω) is the exclusion-region indicator function [7],
r and ω are the centroid position and orientation of one particle,
respectively, with respect to a coordinate system at the centroid
of the other particle with some fixed orientation, and p(ω)
is the orientational probability density function. Moreover,
in the high-dimensional limit for any convex hyperparticle
shape, the following exact asymptotic results [13] immediately
follow:

ηc ∼ v

vex
, d → ∞ (10)

and

Nc ∼ 1, d → ∞. (11)

It was demonstrated in Ref. [7] that the lower bound (7)
on ηc improves in accuracy in any fixed dimension as the
particle shape becomes more anisotropic. This property will
be exploited in Sec. VI to obtain an upper bound on ηc.

We note that the bounds (7) and (8), and the associated
asymptotic limits (10) and (11), also apply to overlapping zero-
volume (d − 1)-dimensional hyperplates with specified orien-
tations in Rd when the relevant parameters are appropriately
generalized. While these “infinitesimally thin” hyperplates
in Rd have vanishing volumes, their exclusion volumes are
nonzero at number density ρ. However, an appropriately

defined “effective volume” veff must be chosen in order to
define a reduced density η of the form (2) for hyperplates.
The choice for this effective hyperplate volume that we use
henceforth is the volume of a d-dimensional hypersphere of
characteristic radius r , i.e.,

veff = πd/2

�(d/2 + 1)
rd, (12)

where r is related to some characteristic length scale of the
hyperplate and �(x) is the Euler Gamma function. Thus,
bounds (7) and (8) still apply for hyperplates when v in
expression for the reduced density η is replaced by the effective
volume (12), i.e.,

ηc � veff

ve
. (13)

Application of the aforementioned continuum percolation
results for nonspherical hyperparticles was only briefly ex-
plored in Ref. [7]. The main objective of the present paper
is to carry out such an investigation for a wide variety of
identical nonspherical convex hyperparticles with random
orientations across dimensions in order to ascertain the effect
of dimensionality on the corresponding thresholds. This will
be done by first ascertaining the exclusion volume of a wide
variety of nonspherical hyperparticle shapes, and then applying
the lower bound (7) on ηc and a scaling relation for ηc, the latter
of which we obtain in the present paper.

All of the results described above reveal that the topological
problem of percolation in low dimensions becomes a purely
geometrical problem in high dimensions. This behavior is
explicitly manifested by the duality relation (1) and the
fact the threshold ηc is determined solely by the exclusion
volume associated with a hyperparticle in the high-d limit
[cf. (10)], a purely geometrical characteristic. Exploiting the
latter result, the principle that low-dimensional results encode
high-dimensional information [7], and a conjecture (postulated
here) that hyperspheres provide the highest threshold among
all convex hyperparticle shapes (that are not a trivial affine
transformation of a hypersphere) for any d, enables us to
devise the aforementioned scaling relation for ηc for arbitrarily
oriented hyperparticles of general nonspherical shape, which
is also shown to bound ηc from above. This scaling relation is
primarily applied to randomly oriented hyperparticles, but we
also apply it to other cases.

The rest of the paper is organized as follows. In Sec. II,
we derive an explicit formula for the exclusion volume
vex associated with a nonspherical convex hyperparticle of
arbitrary shape in terms of its basic geometrical properties.
In Secs. III and IV, we compute these geometrical properties
for a wide variety of nonspherical hyperparticle shapes with
random orientations in two and three dimensions, and for
d � 4. A conjecture that systems of identical overlapping
hyperspheres provide the highest threshold among all identical
convex hyperparticle shapes for any d is postulated in Sec. V.
In Sec. VI, we derive a scaling relation for ηc and show that it is
also an upper bound on ηc. In Sec. VII, we compute the lower
bound (7) and scaling relation for ηc for the aforementioned
comprehensive set of systems of overlapping hyperparticles
and compare the results to numerical data for ηc, including
those that we obtain here for the Platonic solids. Finally, in
Sec. VIII, we close with concluding remarks.
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II. EXCLUSION VOLUME FOR RANDOMLY ORIENTED
OVERLAPPING NONSPHERICAL HYPERPARTICLES

The exclusion volume vex associated with randomly ori-
ented overlapping convex nonspherical hyperparticles plays a
central role in this paper. In what follows, we derive an explicit
formula for vex in terms of the d-dimensional volume v, surface
area s, and mean radius of mean curvature R̄ (or mean width)
of a hyperparticle of arbitrary shape.

A. Basic geometrical characteristics of a convex body

Consider any convex body K in d-dimensional Euclidean
space Rd . Let v and s denote the d-dimensional volume and
surface area of K , respectively. For example, in R2, v and s

are the area and perimeter, respectively, of the two-dimensional
convex body or disk. In Euclidean space Rd , the parallel body
associated with the convex body K at distance ε is equal
to the sum of K and a Euclidean ball of diameter ε. This
operation preserves the convexity and compactness properties
associated with K . The notion of a parallel body or set is well
known in convex geometry and has been applied in the physical
sciences, even for nonconvex geometries; see, for example, the
so-called dilation processes that has been applied in the study
of heterogeneous materials [5,15,16]. Figure 1 illustrates the
parallel body associated with a rectangle in two dimensions.

The famous Steiner formula [17] expresses the volume of
the parallel body vε at distance ε as a polynomial in ε and
in terms of geometrical characteristics of the convex body K ,
such as v and s. For example, for the cases d = 2 and d = 3,
Steiner’s formula yields, respectively,

vε = v + sε + πε2 (14)

and

vε = v + sε + 4πR̄ε2 + 4πε3

3
, (15)

where

R̄ = 1

8π

∫ (
1

R1
+ 1

R2

)
dS, (16)

is the radius of mean curvature of the convex body, R1 and R2

are the principle radii of curvature, and dS denotes the integral
over the entire surface of the convex body.

FIG. 1. (Color online) Two-dimensional illustration of the paral-
lel body at a distance ε associated with a rectangle of side lengths
a and b, which is the union of the blue (or dark gray) and yellow
(or light gray) regions.

The Steiner formulas (14) and (15) can be generalized for
a convex body K in any dimension d:

vε =
∑
k=0

Wkε
k, (17)

where Wk are trivially related to the quermassintegrals or
Minkowski functionals [17]. Note that W0 = v, W1 = s, and
Wd = vs(d; ε), where

vs(d; a) = πd/2ad

�(1 + d/2)
(18)

is the volume of a d-dimensional sphere (hypersphere) of
radius a. Of particular interest in this paper is the lineal
characteristic in Eq. (17), i.e., the (d − 1)th coefficient:

Wd−1 = �(d)R̄, (19)

where

�(d) = dπd/2

�(1 + d/2)
(20)

is the total solid angle contained in d-dimensional sphere and
R̄ is the radius of mean curvature in an space dimension d,
which is trivially related to the mean width w̄ of K via the
following expression:

R̄ = w̄

2
. (21)

The mean width w̄ is a lineal (one-dimensional) measure of
the “size” of K . Consider a convex body to be trapped en-
tirely between two impenetrable parallel (d − 1)-dimensional
hyperplanes that are orthogonal to a unit vector n in Rd . The
“width” of a body w(n) in the direction n is the distance
between the closest pair of such parallel hyperplanes, implying
that the hyperplanes contact the boundaries of the body. The
mean width w̄ is the average of the width w(n) such that n is
uniformly distributed over the unit sphere Sd−1 ∈ Rd . Figure 2
illustrates the concept of the width of a convex body in R2.

B. Explicit formula for the d-dimensional exclusion volume

General formulas for the exclusion volume associated with
identical randomly oriented nonspherical convex particles in
two and three dimensions have long been known [18,19]. For
example, for d = 2, it is known [18] that

vex = 2v + s2

2π
, (22)

FIG. 2. (Color online) Illustration of the width w of a convex body
in two dimensions. In R2, w(θ ) is function of the angle θ between the
normal n of the parallel planes (shown as red arrows) and the convex
body. The mean with w̄ is obtained by averaging w(θ ) over the angle
θ , i.e., integrating w(θ ) over the angle θ and dividing by 2π .
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where s is the two-dimensional surface area or perimeter of the
convex body. Note that the first term of 2v is trivial, accounting
for the fact that two bodies are excluding one another, and
hence the exclusion volume must be at least 2v. At first glance,
one might surmise that the appropriate three-dimensional
expression for the exclusion volume involves a second term
that is proportional to s3/2/(4π ), where s is the surface area
of the three-dimensional convex body. However, instead the
correct three-dimensional formula [19] is

vex = 2v + sM

2π
, (23)

where

M = 4πR̄. (24)

The second terms in the two- and three-dimensional formulas
(22) and (23), respectively, appear to be functionally distinct
from one another. However, we will see shortly that by
expressing both formulas in terms of R̄ a unifying formula
emerges that is valid not only for d = 2 and d = 3, but also
for arbitrary d.

To our knowledge, a formula for the exclusion volume
associated with identical randomly oriented d-dimensional
convex nonspherical bodies K for any d has heretofore not
been given explicitly. We find that this exclusion volume is
given by

vex = 2v + 2(2d−1 − 1)

d
sR̄. (25)

We arrive at this general formula for any d by first recognizing
that for the special case d = 2, the radius of mean curvature
is trivially related to the two-dimensional surface area or
perimeter, namely, s = 2πR̄, which enables us to rewrite
relation (22) as

vex = 2v + sR̄. (26)

Similarly, using Eq. (24), we can re-express relation (23) for
d = 3 in terms of R̄:

vex = 2v + 2sR̄. (27)

We see that these two- and three-dimensional formulas differ
by a coefficient multiplying the product sR̄, independent of the
shape of the convex body. Assuming that this coefficient de-
pends only on dimension, the general d-dimensional formula
for vex associated with any convex body K must have the form

vex = 2v + C(d)sR̄, (28)

where C(d) is a d-dimensional coefficient that still must
be determined. To determine C(d) as a function of d, we
exploit the assumption that (28) must apply to any convex
body so that one can use the most convenient shape, i.e., a
d-dimensional sphere (hypersphere). Note that the dimen-
sionless exclusion volume vex/v of a hypersphere, among
all convex hyperparticles of nonzero volume, takes on its
minimum value of 2d [7]. For a hypersphere of radius a, the
volume v is given by Eq. (18), R̄ = a, and the surface area is
given by

ss(d; a) = dπd/2

�
(
1 + d

2

)ad−1. (29)

Using these last four geometrical-property relations in con-
junction with formula (28) yields

C(d) = 2d − 2

d
. (30)

Substitution of this expression into relation (28) gives the
general relation (25) for the exclusion volume.

We now show that the general formula (25) is indeed
exact for any d. Using relation (25) and the fact that vex/v

is minimized for hyperspheres (with vex/v = 2d ) among all
convex hyperparticles of nonzero volume, we can obtain the
following inequality involving s, R̄, and v:

sR̄ � dv, (31)

where the equality holds for hyperspheres only. This bound
is a type of isoperimetric inequality and has been proved
in the study of convex geometry using completely different
techniques [20]. The fact that the general expression (25) for
vex independently leads to a rigorously proven isoperimetric
inequality for any convex body in Rd clearly justifies our
assumptions concerning the form (28) and indirectly proves
that (25) is an exact formula for any convex body in Rd .
Moreover, we have computed vex/v for a hypercube in R4

using Monte Carlo simulations and verified that the numerical
value agrees very well with the analytical result given by
Eq. (25), as expected.

Note that for d = 2, inequality (31) yields the standard
isoperimetric inequality s � 4πv, where we have used the
fact that the surface or perimeter s = 2πR̄. The d-dimensional
generalization of this standard isoperimetric inequality is

s �(d)d � dv
d−1
d , (32)

where �(d) is given by Eq. (20) [20]. It is clear that this
inequality is not the same as (31).

We see that in the case of a (d − 1)-dimensional convex
hyperplate in Rd that possesses zero volume, i.e., v = 0, the
exclusion-volume formula (25) yields

vex = 2(2d−1 − 1)

d
sR̄. (33)

We shall consider examples of such convex bodies for d � 3
in the subsequent sections.

III. RADII OF MEAN CURVATURE AND EXCLUSION
VOLUMES FOR VARIOUS NONSPHERICAL

PARTICLES IN TWO AND THREE
SPACE DIMENSIONS

Here we present results for the aforementioned geometrical
characteristics of a variety of convex bodies that are randomly
oriented in two and three dimensions possessing both nonzero
and zero volumes. In the former instance, it is convenient to
consider the dimensionless exclusion volume vex/v. Two- and
three-dimensional exclusion volumes are known for a variety
of convex nonspherical shapes that are randomly oriented
[18,19]. It necessarily follows that such exclusion volumes
are larger than the corresponding values when all of the
particles are aligned and centrally symmetric, in which case
vex/v1 = 2d , independent of the particle shape [7].
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TABLE I. Volumes, surface areas, radii of mean curvature, and exclusion volumes for some convex particles K in R2. The radius of mean
curvature and exclusion volume correspond to randomly oriented convex particles having nonzero volumes.

K v s R̄ vex/v

Circular disk, radius a πa2 2πa a 4
Octagon, side a 2(1 + √

2)a2 8a 4a

π
2 + 16

π (1+√
2)

Hexagon, side a
√

3a2

4 6a 3a

π
2 + 4

√
3

π

Pentagon, side a

√
25+10

√
5a2

4 3a 5a

2π
2 + 50

π

√
25+10

√
5

Square, side a a2 4a 2a

π
2 + 8

π

Equilateral triangle, side a
√

3a2

4 3a 3a

2π
2 + 6

√
3

π

Rectangle, sides a1, a2 a1a2 2(a1 + a2) a1+a2
π

2 + 2(a1+a2)2

a1a2π

Spherocylinder, radius a

cylindrical height h πa2 + 2ah 2(πa + h) h

π
+ a 2 + 2(πa+h)2

πa(πa+2h)

Ellipse, semiaxis a

semiaxis b � a πab 4bE(
√

1 − a2

b2 ) 2b

π
E(

√
1 − a2

b2 ) 2 + 8b

π2a
E2(

√
1 − a2

b2 )

A. Two dimensions

Table I provides volumes, surface areas, radii of mean
curvature, and exclusion volumes for some two-dimensional
convex particles. This includes the circle, certain regular
polygons, rectangle, spherocylinder, and ellipse. The exclusion
volumes for these particles can easily be obtained from relation
(22). Alternatively, the radius of mean curvature R̄ can be
obtained from the volume of the parallel body associated with
the convex body at distance ε that is of order ε and use of
relation (19). The corresponding exclusion volume can then
be found employing relation (25) for d = 2.

In the “needle-like” limit for an ellipse (b/a → ∞), the
general quantities R̄ and vex/v given in Table I become

R̄ ∼ 2b

π
,

vex

v
∼ 8

π2

b

a
, b/a → ∞. (34)

The radius of mean curvature for a randomly oriented, zero-
volume line of length a in R2 is easily obtained from the
rectangular case in Table I with a1 = 0 and a2 = a, yielding

R̄ = a

π
(line). (35)

The corresponding exclusion volume is extracted from Table I
in the rectangular case by first multiplying both sides of the
relation for vex/v by the volume v = ab, and then setting
a1 = 0 and a2 = a, which gives

vex = 2a

π
(line). (36)

Not surprisingly, R̄ for a line of length a is identical to that of
a needle-like ellipse of major axis 2b = a [cf. (34)].

B. Three dimensions

Table II provides volumes, surface areas, radii of mean
curvature, and exclusion volumes for some three-dimensional
convex particles. This includes the sphere, Platonic solids,
rectangular parallelepiped, spherocylinder, and spheroid. The
radius of mean curvature R̄ can be obtained from the volume of
the parallel body associated with the convex body at distance ε

that is of order ε2 and use of relation (19). The corresponding

exclusion volume can then be found employing relation (25)
for d = 3.

It is easy to extract R̄ and vex/v from the spheroid results in
Table II the “prolate-needle” (b/a → ∞) and “oblate-needle”
(b/a → 0) limits, which are, respectively, given by

R̄ ∼ b

2
,

vex

v
∼ 3π

4

b

a
, b/a → ∞, (37)

and

R̄ ∼ π

4
a,

vex

v
∼ 3π

4

a

b
, b/a → 0. (38)

Table III provides surface areas, radii of mean curvature,
and exclusion volumes for some three-dimensional convex
plates. This includes the circular, square, equilateral triangular,
rectangular, and elliptical plates. The radius of mean curvature
R̄ can be easily obtained from the volume of the parallel
body associated with the convex body at distance ε that is of
order ε2 and use of relation (19). The corresponding exclusion
volume can then be found using relation (25) for d = 3.
Alternatively, in the cases of circular, square, and rectangular
plates, R̄ and vex can be obtained from Table II as special cases
of the cylinder (when h = 0) and rectangular parallelpiped
(a1 = a2 = a, a3 = 0 for the square plate and a3 = 0 for the
rectangular plate). To get vex in these cases, one must first
multiply vex/v in Table II by the volume v and then take the
aforementioned limits.

IV. RADII OF MEAN CURVATURE AND EXCLUSION
VOLUMES FOR VARIOUS HYPERPARTICLES

We present here explicit formulas for the radii of mean
curvature and exclusion volumes for a variety of hyperparticles
in Rd with random orientations possessing both nonzero and
zero volumes (hyperplates).

A. Hypercube and hyperrectangular parallelpiped

1. Hypercube

The determination of the radius of mean curvature R̄ for a d

cube (hypercube) of edge (or side) length a is easily obtained
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TABLE II. Volumes, surface areas, radii of mean curvature, and exclusion volumes for some convex particles K in R3. The radius of mean
curvature and exclusion volume correspond to randomly oriented convex particles having nonzero volumes.

K v s R̄ vex/v

Sphere, radius a 4πa3

3 4πa2 a 8

Icosahedron, side a 5
12 (3 + √

5)a3 5
√

3a2 30
8π

cos−1(
√

5
3 )a 2 + 90

√
3 cos−1(

√
5

3 )

π (3+√
5)

Dodecahedron, side a 15+7
√

5
4 a3 3

√
25 + 10

√
5a2 30

8π
cos−1( 1√

5
)a 2 + 90

√
25+10

√
5 cos−1( 1√

5
)

π (15+7
√

5)

Cube, side a a3 6a2 3a

4 11

Octahedron, side a
√

2
3 a3 2

√
3a2 3

2π
cos−1( 1

3 )a 2 + 9
π

√
3
2 cos−1( 1

3 )

Tetrahedron, side a
√

2
12 a3

√
3a2 3

4π
cos−1(− 1

3 )a 2 + 18
π

√
3
2 cos−1(− 1

3 )

Rectangular parallelpiped

sides a1, a2, a3 a1a2a3
∑3

i<j 2aiaj
1
4

∑3
i=1 ai 2 + (

∑3
i<j ai aj )(

∑3
i=1ai )

a1a2a3

Cylinder, radius a,

height h πa2h 2πa(a + h) πa+h

4 2 + (a+h)(πa+h)
2ah

Spherocylinder, radius a,

cylindrical height h πa2(4a+3h)
3 2πa(2a + h) h+4a

4 2 + 3(2a+h)(4a+h)
a(4a+3h)

Prolate spheroid
semiaxes a = c, b � a,

e2 = 1 − (a/b)2 4πa2b

3 2πa2(1 + b

ae
sin−1 e) b

2 (1 + a2

b2e
tanh−1 e) 2 + 3

2 (1 + b

ae
sin−1 e)

×(1 + a2

b2e
tanh−1e)

Oblate spheroid
semiaxes a = c, b � a,

e2 = 1 − (b/a)2 4πa2b

3 2πa2(1 + b2

a2e
tanh−1 e) b

2 (1 + a

be
sin−1 e) 2 + 3

2 (1 + b2

a2e
tanh−1 e)

×(1 + a

be
sin−1 e)

from the d-dimensional generalization of Steiner’s formula.
Associated with the ε neighborhood of an edge is a portion of
a (d − 1)-dimensional hypercylinder of height a and radius ε,
the volume of which is given by

vcyl = vs(d − 1; ε) a = π (d−1)/2

�
(
1 + d−1

2

) a εd−1, (39)

where vs(d; a) is the volume of a d-dimensional hypersphere
of radius a explicitly given by Eq. (18). Hence, the volume
associated with a hypercube edge is vcyl/2d−1. Since a
hypercube has a total of d2d−1 edges, the total volume
associated with all of the edges is dvcyl. Therefore, equating
this volume with the term Wd−1ε

d−1 in Steiner’s formula (17)
and using (19) yields

�(d)R̄εd−1 = dvcyl, (40)

and hence the radius of mean curvature for a hypercube of side
length a is given by

R̄ = �
(
1 + d

2

)
√

π�
(

d+1
2

) a. (41)

For large d, we obtain the asymptotic result

R̄ ∼
√

d

2π
, d → ∞. (42)

Not surprisingly, for large d, the longest diagonal, which grows
like

√
d , is the dominant contribution to R̄.

Using Eqs. (25) and (41) and the fact that the surface area
and volume of a hypercube of side length a are given by
s = 2d ad−1 and v = ad , respectively, we obtain the following

TABLE III. Surface areas, radius of mean curvature, and exclusion volumes for some convex plates K in R3 possessing a volume v = 0.
The radius of mean curvature and exclusion volume correspond to randomly oriented convex plates.

K s R̄ vex

Circular plate, radius a 2πa2 π

4 a π 2a3

Square plate, side a 2a2 1
2 a 2a3

Equilateral triangular plate, side a
√

3
2 a2 3

8 a 3
√

3
8 a3

Rectangular plate, sides a1, a2 2a1a2
1
4 (a1 + a2) a1a2(a1 + a2)

Elliptical plate, semiaxis a,

semiaxis b � a 2πab 1
2 bE(

√
1 − a/b ) 2πab2E(

√
1 − a/b )
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expression for the exclusion volume:

vex

v
= 2 + 4(2d−1 − 1)√

π

�
(
1 + d

2

)
�

(
d+1

2

) . (43)

In the large-d limit, this expression and (42) yield the
asymptotic result

vex

v
∼

√
2d

π
2d , d → ∞. (44)

2. Hyperrectangular parallelpiped

Consider a d-rectangular parallelpiped (hyperrectangular
parallelpiped) with edges of side lengths a1, a2, . . . , ad . Using

a similar analysis as for the hypercube, we find the radius of
mean curvature is given by

R̄ = �
(
1 + d

2

)
d
√

π �
(

d+1
2

) d∑
i=1

ai. (45)

Employing Eqs. (25) and (45) and the fact that the surface
area of a hyperrectangular parallelpiped of side lengths
a1,a2, . . . ,ad is given by s = ∑d

i<j<k<l··· 2aiajakal · · · (where
aiajakal · · · is the product of d − 1 different side lengths)
and v = ∏d

i=1 ai , we obtain the following expression for the
exclusion volume:

vex

v
= 2 + 2(2d−1 − 1)

d2
√

π

�
(
1 + d

2

)
�

(
d+1

2

)
(∑d

i<j<k<l··· 2aiajakal · · ·
) (∑d

i=1
ai

)
∏d

i=1 ai

. (46)

Consider the special case in which there are d − 1 edges
with side length a and the remaining edge with side length b.
Then, formulas (45) and (46) simplify as follows:

R̄ = �
(
1 + d

2

)
√

πd �
(

d+1
2

) [(d − 1)a + b] , (47)

vex

v
= 2 + 4(2d−1 − 1)

d2
√

π

�
(
1 + d

2

)
�

(
d+1

2

)
×

[
(d − 1)

b

a
+ 1

] [
(d − 1)

a

b
+ 1

]
. (48)

We shall subsequently make use of these relations in deriving
certain hyperplate results.

B. Hyperspherocylinder

Consider a d-spherocylinder (hyperspherocylinder) of
height h and radius a, which can be decomposed into
hypercylinder of height h and two hemispherical caps of radius
a (i.e., hypersphere of radius a). The volume of order εd−1

associated with the ε neighborhood of a hyperspherocylinder
is

π (d−1)/2εd−1h

�( d+1
2 )

+ πd/2dεd−1a

�(1 + d/2)
, (49)

which when equated with the term Wd−1ε
d−1 in Steiner’s

formula (17) and using (19) gives

�(d)R̄εd−1 = dπ (d−1)/2εd−1h

�
(

d+1
2

) + πd/2dεd−1a

�(1 + d/2)
, (49)

and hence the radius of mean curvature for a hypersphero-
cylinder is given by

R̄ = �
(
1 + d

2

)
d
√

π �
(

d+1
2

) h + a. (50)

For large d, we find the asymptotic result

R̄ ∼
√

1

2πd
h + a, d → ∞. (51)

We see that if h grows mores slowly with dimension than
√

d ,

R̄ ∼ a, d → ∞. (52)

The surface area and volume of a spherocylinder are given,
respectively, by

s = ss(d − 1; a)h + ss(d; a) (53)

and

v = vs(d − 1; a)h + vs(d; a), (54)

where ss(d; a) and vs(d; a) are the surface area and volume of a
d-dimensional hypersphere of radius a given by Eqs. (29) and
(18), respectively. These relations combined with Eqs. (25)
and (50) yield the exclusion volume to be given by

vex

v
= 2 + 2(2d−1 − 1)

d

[
ss(d − 1; a)h + ss(d; a)

vs(d − 1; a)h + vs(d; a)

]

×
[

�
(
1 + d

2

)
h

d
√

π �
(

d+1
2

) + a

]
. (55)

In the large-d limit, this relation yields the asymptotic result

vex

v
∼

[
h

a

√
1

2πd
+ 1

]
2d , (56)

where we have used (51). We observe that in order for
the contribution to the scaled exclusion volume from the
cylindrical portion [first term in Eq. (56)] not to vanish as
d becomes large, the aspect ratio h/a must grow as fast as

√
d

or faster.
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C. Hyperoctahedron and hypertetrahedron

A regular d-crosspolytope or regular hyperoctahedron (also
known as the orthoplex) is the d-dimensional generalization
of the three-dimensional regular octahedron. For d = 1 and
d = 2, the regular hyperoctahedron is a line and square,
respectively. A regular d-simplex or hypertetrahedron is the
d-dimensional generalization of the three-dimensional regular
tetrahedron. For d = 1 and d = 2, the regular hypertetrahe-
dron is a line and equilateral triangle, respectively. For d � 5,
there are only three types of convex regular polytopes: the reg-
ular hypercube, hyperoctahedron, and hypertetrahedron [22].
For a regular hyperoctahedron and regular hypertetrahedron,
the radius of mean curvature is not as easy to derive from
Steiner’s formula, but integral formulas for it have been derived
Refs. [23–25].

1. Regular hyperoctahedron (d-crosspolytope)

For a regular hyperoctahedron with unit side length, the
radius of mean curvature is given by Refs. [24,25]

R̄ =
√

2 d(d − 1) �
(

d
2

)
2
√

2π�
(

d+1
2

) IO(d), (57)

where

IO(d) =
∫ ∞

0
exp(−2x2) erf(x)d−2 dx. (58)

Note that for d = 2 and d = 3, we, respectively, have

IO(2) =
√

π

2
√

2
(59)

and

IO(3) = 1√
2π

tan−1

(
1√
2

)
. (60)

Substitution of these formulas into Eq. (57) recovers the results
for R̄ listed in Tables I and II for the square and octahedron,
respectively. For large d, it is straightforward to show that

IO(d) ∼ π
√

ln d

2d2
, (61)

which implies

R̄ ∼
√

ln d

d
, d → ∞. (62)

The surface area and volume of a regular hyperoctahedron
are given, respectively, by

s = 2(d+1)/2
√

d

(d − 1)!
(63)

and

v = 2d/2

d!
. (64)

These relations combined with Eqs. (25) and (57) yield the
exclusion volume to be given by

vex

v
= 2 + 4d3/2(d − 1) �

(
d
2

)
(2d−1 − 1)

π�
(

d−1
2

) IO(d). (65)

In the large-d limit, this relation and (62) give the asymptotic
result

vex

v
∼

√
2 ln(d) 2d , d → ∞. (66)

2. Regular hypertetrahedron (d-simplex)

For a regular hypertetrahedron with unit side length, the
radius of mean curvature is given by Refs. [23,25]

R̄ = d(d + 1) �
(

d
2

)
2
√

2 π�
(

1+d
2

) IT (d), (67)

where

IT (d) =
∫ ∞

−∞
exp(−2x2)

[
1 + erf(x)

2

]d−1

dx. (68)

Note that for d = 2 and d = 3, we, respectively, have

IT (2) = π

2
√

2
(69)

and

IT (3) = 1

2
√

2π
cos−1

(
−1

3

)
. (70)

Substitution of these formulas into Eq. (67) recovers the results
for R̄ listed in Tables I and II for the equilateral triangle and
tetrahedron, respectively. For large d, it is simple to show that

IT (d) ∼ 2π
√

ln d

d2
, (71)

which implies

R̄ ∼
√

ln d

d
, d → ∞. (72)

We see that in the large-d limit, the radii of mean curvature
for a regular hyperoctahedron and regular hypertetrahedron
become identical.

The surface area and volume of a regular hypertetrahedron
are given, respectively, by

s =
√

d(d + 1)

2(d−1)/2(d − 1)!
(73)

and

v =
√

d + 1

2d/2d!
. (74)

These relations combined with Eqs. (25) and (67) yield the
exclusion volume to be given by

vex

v
= 2 + d3/2(d + 1)3/2 �

(
d
2

)
(2d−1 − 1)

π�
(

d−1
2

) IT (d). (75)

In the large-d limit, this relation and (72) yield the asymptotic
result

vex

v
∼

√
2d ln(d) 2d , d → ∞. (76)

Among the three possible convex regular polytopes in
high dimensions (hypercube, hyperoctahedron, and hyperte-
trahedron), the hypertetrahedron has the largest dimensionless
exclusion volume vex/v for any fixed dimension d � 3, while
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FIG. 3. (Color online) The dimensionless exclusion volume vex/v

versus dimension d for the three convex regular polytopes: hypercube,
hyperoctahedron, and hypertetrahedron.

the hypercube has the smallest value. Figure 3 shows vex/v

versus d for 3 � d � 11 for the three convex regular polytopes.

D. Hyperplates

1. (d − 1)-cube in Rd

Consider a hyperplate in d-dimensional space that is a
(d − 1)-cube with side length a. The radius of mean curvature
and exclusion volume of such a hyperplate are trivially
obtained from special cases of relations Eqs. (47) and (48).
That is, setting b = 0 in Eq. (47) yields

R̄ = (d − 1)�
(
1 + d

2

)
d
√

π �
(

d+1
2

) a. (77)

The corresponding exclusion volume is extracted from Eq. (48)
by first multiplying both sides of the equation by the volume
v = ad−1b, and then setting b = 0, yielding

vex = 4(d − 1)(2d−1 − 1)�
(
1 + d

2

)
d2

√
π �

(
d+1

2

) ad, (78)

which, not surprisingly, is smaller than the exclusion volume
(43) for a d cube in Rd at fixed d. Not surprisingly, in the
high-d limit, formula (77) for the radius of mean curvature
tends to the same asymptotic expression (42) for a d cube in
Rd . This is not the case for the high-d limit of Eq. (78) for the
exclusion volume, which is given by

vex ∼
√

2

dπ
2d ad, d → ∞ (79)

and should be compared to Eq. (44), which grows faster as d

increases.
Note that in the case d = 3, the formulas (77) and (78) give

the same results reported in Table II for the instance of a square
plate in R3. For d = 2, they also yield the relations (35) and
(36) for the case of a randomly oriented line in R2.

2. (d − 1)-sphere in Rd

Consider a hyperplate in d-dimensional space that is a
(d − 1)-sphere of radius a. For such a hyperplate, R̄ can be
obtained from the corresponding relation (77) for a cubical
hyperplate by multiplying the latter by the factor

√
π �

(
d
2

)
�

(
d+1

2

) ,

which is the ratio of radius of mean curvature R̄ = a of a
(d − 1)-sphere in Rd−1 to that of the (d − 1)-cube of side
length a in Rd−1, the latter of which is obtained by using (41).
Thus, the radius of mean of curvature for a (d − 1)-sphere of
radius in Rd is given by

R̄ = (d − 1) �
(

d
2

)2

2 �
(

d+1
2

)2 a. (80)

To illustrate the fact that this simple mapping is equivalent to
the explicit calculation of R̄ for a (d − 1)-sphere, we carry
out such a computation in Appendix A for a 3-sphere in R4.
Using the fact that the surface area of a (d − 1)-sphere in Rd

is s = 2vs(d − 1; a), where vs(d; a) is given by Eq. (18), we
obtain the d-dimensional exclusion volume to be

vex = 2(d − 1)(2d−1 − 1)π (d−1)/2�
(

d
2

)2

d �
(

d+1
2

)3 ad

<
2dπd/2

�(1 + d/2)
ad, (81)

where the upper bound is the exclusion volume of a d-sphere
in Rd [7]. Not surprisingly, in the high-d limit, formula (80)
for the radius of mean curvature tends to the radius a. In this
asymptotic limit, relation (81) becomes

vex ∼ 23/2

d
√

π

[
2π exp(1)

d

]d/2

2d ad

<
1√
dπ

[
2π exp(1)

d

]d/2

2d ad . (82)

Observe that in the case d = 3, the formulas (80) and (81)
give the same results reported in Table II for the instance of
a circular plate in R3. For d = 2, they also yield the relations
(35) and (36) for the case of a randomly oriented line in R2.

V. CONJECTURE FOR THE MAXIMUM-THRESHOLD
HYPERPARTICLE SHAPE AMONG ALL CONVEX

BODIES IN Rd

Recall that the dimensionless exclusion volume vex/v,
among all convex bodies in Rd with a nonzero d-dimensional
volume, is minimized for hyperspheres (see Sec. II B) and
its threshold ηc exactly tends to v/vex = 2−d in the high-
dimensional limit [cf. (5)]. These properties together with
the principle that low-d percolation properties encode high-d
information [7], leads us to the following conjecture:

Conjecture. The percolation threshold ηc among all sys-
tems of identical overlapping convex hyperparticles in Rd

having nonzero volume is maximized by that for identical
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hyperspheres (up to trivial affine transformations), i.e.,

(ηc)S � ηc, (83)

where (ηc)S is the threshold of overlapping hyperspheres.
Remarks. It was already noted in Ref. 7 that affine

transformations of systems of overlapping hyperspheres at
reduced density η results in systems of overlapping oriented
hyperellipsoids with exactly the same reduced density η, and
hence such transformations are trivial. Note that the aforemen-
tioned conjecture applies to hyperparticles with either random
orientations or another orientational distribution.

We note that similar reasoning leading to the aforemen-
tioned conjecture (83) for convex hyperparticles of nonzero
volume also suggests that the dimensionless exclusion vol-
ume vex/veff associated with a convex (d − 1)-dimensional
hyperplate in Rd is minimized by the (d − 1)-dimensional
hypersphere, which consequently would have the highest
percolation threshold among all convex hyperplates. Recall
that veff the effective d-dimensional volume associated with
the zero-volume hyperplate of interest, defined by Eq. (12).

VI. ACCURATE SCALING RELATION FOR THE
PERCOLATION THRESHOLD OF OVERLAPPING

CONVEX HYPERPARTICLES

Recall that lower bound (7) on the threshold ηc of
overlapping convex hyperparticles of general shapes with
nonzero volumes and a specified orientational distribution
is determined by the dimensionless exclusion volume vex/v,
which also provides the exact high-d asymptotic limit
[cf. (10)]. A special case of this lower bound is the inequality
(31), which is valid for hyperspheres as well as aligned
centrally symmetric particles for which vex/v = 2d .

Guided by the aforementioned high-dimensional behavior
of ηc, conjecture (83) for hyperspheres, and the functional form
of the lower bounds (3) and (7), we propose the following scal-
ing law for the threshold ηc of identical overlapping nonspher-
ical convex hyperparticles of arbitrary shape and orientational
distribution having nonzero volumes for any dimension d:

ηc ≈
(

vex

v

)
S

(
v

vex

)
(ηc)S = 2d

(
v

vex

)
(ηc)S, (84)

where (ηc)S and (vex/v)S = 2d are the percolation threshold
and dimensionless exclusion volume, respectively, for hyper-
spheres in dimension d. Thus, given the percolation threshold
for the reference system of hyperspheres (ηc)S and the dimen-
sionless exclusion volume vex/v for some general nonspherical
convex hyperparticle shape with a specified orientational
distribution, one can estimate the threshold ηc of such a
system of overlapping hyperparticles across dimensions via the
scaling relation (84). Note that this scaling relation becomes
exact in the high-d limit. In the next section, we will show that
this scaling relation provides reasonably accurate estimates of
ηc in low dimensions and, hence, must become increasingly
accurate as d becomes large. This is yet another manifestation
of the principle that low-dimensional percolation properties
encode high-dimensional information [7].

It is noteworthy that the scaling relation (84) not only
provides a good approximation for the threshold ηc of identical
overlapping nonspherical hyperparticles, it yields an upper

bound on ηc, and hence a relatively tight one. Explicitly, we
have the following d-dimensional inequality:

ηc � 2d

(
v

vex

)
(ηc)S. (85)

This bounding property is a consequence of an observation
made in Ref. [7], namely, that, at fixed d, the lower bound (7) on
(ηc)S for overlapping hyperspheres converges more slowly to
its exact asymptotic value of 2−d than does the lower bound (7)
for nonspherical hyperparticles with a specified orientational
distribution. It then immediately follows from the functional
form of (84) that it bounds ηc for nonspherical hyperparticles
from above and converges to the exact asymptotic value of
v/vex in the large-d limit [cf. (10)].

For a zero-volume convex (d − 1)-dimensional hyperplate
in Rd , it is more appropriate to choose the reference system to
be (d − 1)-dimensional hyperspheres of characteristic radius
r , yielding the scaling relation for the threshold for some other
hyperplate shape to be

ηc ≈
(

vex

veff

)
SHP

(
v

vex

)
(ηc)SHP = 2d

(
veff

vex

)
(ηc)SHP. (86)

Here (ηc)SHP is the percolation threshold for a (d − 1)-
dimensional hypersphere and veff is its effective volume, as
defined by relation (12).

We will test these scaling laws and bounds for a variety
of hyperparticle shapes across various dimensions using the
exclusion volumes presented in Secs. III and IV and comparing
these results to available numerically determined threshold
estimates, including those values that we have obtained below
for the Platonic solids.

VII. APPLICATION OF THE SCALING
RELATION AND BOUNDS

Here we apply the lower bound (7) and scaling relation
(84) to estimate ηc for a wide class of randomly oriented
overlapping nonspherical hyperparticles in Rd , including,
among other shapes, various polygons for d = 2, Platonic
solids, spherocylinders, parallepipeds and zero-volume plates
for d = 3 and their appropriate generalizations for d � 4,
when possible. We test these estimates against available
numerical results for ηc inR2 andR3, including those obtained
here for Platonic solids using the rescaled-particle method [8].

A. Two dimensions

Table IV gives the percolation threshold ηc estimated using
the scaling relation (84) for a variety of randomly oriented
overlapping particles inR2. In the cases of squares and ellipses
with different aspect ratios, the associated threshold value η∗

c

obtained from numerical simulations [26–30] are also given in
the table. Clearly, for most of randomly oriented nonspherical
particles, the scaling relation not only bounds ηc from above,
consistent with inequality (85), the bounds are relatively tight.
Since the scaling relation already provides a good estimate
for d = 2, it becomes increasingly accurate as d increases for
reasons discussed in Sec. VI. We will see below that this is
indeed the case for d = 3.
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TABLE IV. Percolation threshold ηc of certain overlapping
convex particles K with random orientations in R2, estimated using
Eq. (84) and the associated threshold values η∗

c for squares [26,27]
and ellipses [28–30] obtained from previous numerical simulations.
The threshold of overlapping circles [31,32] is also given, which is
employed to compute the estimates.

K η∗
c ηc

Circle 1.1281
Square 0.9822 0.9925
Ellipse b = 2a 0.76 1.107
Ellipse b = 5a 0.607 0.7174
Ellipse b = 10a 0.358 0.4402
Ellipse b = 100a 0.0426 0.0543
Octagon 1.0980
Hexagon 1.0730
Pentagon 1.0463
Equilateral triangle 0.8501
Rectangle a2 = 2a1 0.9275
Spherocylinder h = 2a 1.0357

B. Three dimensions

1. Nonzero-volume convex bodies

The percolation thresholds for randomly oriented overlap-
ping Platonic solids (i.e., tetrahedron, octahedron, dodecahe-
dron, icosahedron, and cube) are estimated using a recently
developed rescaled-particle method. Implementation of this
algorithm for the Platonic solids is described in Appendix B.
In Ref. [8], the rescaled-particle method was applied to obtain
accurate estimates of ηc for overlapping hyperspheres and
oriented hypercubes.

Table V lists the numerical estimates of ηc, the associated
lower-bound values ηL given by Eq. (7), and the numerical
values of the dimensionless exclusion volumes for these
polyhedra vex/v (whose analytical expressions are given in
Table II). Observe that the tetrahedron and icosahedron possess
the smallest and largest percolation thresholds, respectively,
among the Platonic solids, which is confirmed in Table V.
As discussed above, this implies that the the tetrahedron and
icosahedron possess the largest and smallest dimensionless
exclusion volumes, respectively, among the Platonic solids. We
note that our estimate of ηc for randomly oriented overlapping
cubes is consistent with that reported in Ref. [26], i.e., ηc =
0.2444 ± 0.0003, which verifies the accuracy of our approach
for estimating ηc. These results will be employed below to

TABLE V. Numerically estimated percolation threshold ηc of
randomly oriented overlapping Platonic solids and the associated
lower bound value ηL given by Eq. (7). The numerical values of the
dimensionless exclusion volumes of these polyhedra vex/v, whose
analytical expressions are given in Table II, are also included.

K vex/v ηL ηc

Tetrahedron 15.407 43 0.064 93 0.1701 ± 0.0007
Cube 11 0.090 90 0.2443 ± 0.0005
Octahedron 10.637 97 0.093 98 0.2514 ± 0.0006
Dodecahedron 9.121 01 0.1096 0.2949 ± 0.0005
Icosahedron 8.915 26 0.1126 0.3030 ± 0.0005

TABLE VI. Percolation threshold ηc of certain overlapping
convex particles K with random orientations in R3, estimated using
Eq. (84) and the associated threshold values η∗

c for regular polyhedra
(obtained from our numerical simulations) and spheroids [30]. The
threshold of overlapping spheres [8,33] is also given, which is
employed to compute the estimates.

K η∗
c ηc

Sphere 0.3418
Tetrahedron 0.1701 0.1774
Icosahedron 0.3030 0.3079
Decahedron 0.2949 0.2998
Octahedron 0.2514 0.2578
Cube 0.2443 0.2485
Oblate spheroid a = c = 100b 0.012 55 0.011 54
Oblate spheroid a = c = 10b 0.1118 0.104
Oblate spheroid a = c = 2b 0.3050 0.3022
Prolate spheroid a = c = b/2 0.3035 0.3022
Prolate spheroid a = c = b/10 0.091 05 0.104
Prolate spheroid a = c = b/100 0.006 973 0.011 54
Parallelpiped a2 = a3 = 2a1 0.2278
Cylinder h = 2a 0.4669
Spherocylinder h = 2a 0.2972

verify the accuracy of the general scaling relation (84) for
estimating ηc of nonspherical convex hyperparticles across
dimensions, since the scaling relation becomes increasingly
accurate as d increases, as discussed in Sec. VI.

Estimates of the percolation threshold ηc using the scaling
relation (84) for a variety of randomly oriented overlapping
particles in R3 are presented in Table VI. These predictions
are compared to numerically determined threshold values.
We see that for most of the randomly oriented nonspherical
particles, the scaling relation (84), which is also an upper
bound [cf. (85)], only slightly overestimates ηc compared with
the numerical results. For oblate spheroids and prolate spheroid
of aspect ratio 2, the scaling relation slightly underestimates ηc

compared to the numerical values, implying that the numerical
results are overestimates of the actual threshold for these
systems, i.e., the numerical estimates in these instances violate
the upper bound (85). These three-dimensional results show
that scaling relation (84) for ηc improves in accuracy over the
two-dimensional results reported in Table IV.

TABLE VII. Percolation threshold ηc of certain overlapping
convex plates K with random orientations in R3, estimated using
Eq. (84). The associated threshold values η∗

c obtained from previous
numerical simulations [34] are also given if available. The threshold
of randomly oriented overlapping circular disks is also given, which
is employed to compute the estimates. The numerical values of η∗

c

listed here are given up to the number of significant figures reported
in Ref. [34].

K η∗
c ηc

Circular disk 0.9614
Square plate 0.8647 0.8520
Triangular plate 0.7295 0.7475
Elliptical plate b = 3a 0.735 0.7469
Rectangular plate a2 = 2a1 1.0987
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TABLE VIII. Numerical estimates of the percolation threshold ηc

of d-dimensional overlapping hyperspheres and oriented hypercubes
for 4 � d � 11 reported in Ref. [8]. The threshold values for the two
systems, given up to the number of significant figures reported in
Ref. [8], approach each other as d increases and become identical in
the asymptotic limit d → ∞, i.e., ηc → 1/2d [7].

Dimension Hypersphere Hypercube

d = 4 0.1304 0.1201
d = 5 0.054 43 0.050 24
d = 6 0.023 39 0.021 04
d = 7 0.010 51 0.010 04
d = 8 0.004 904 0.004 498
d = 9 0.002 353 0.002 166
d = 10 0.001 138 0.001 058
d = 11 0.000 5530 0.000 5160

2. Zero-volume convex plates

Table VII lists the percolation threshold ηc obtained
from the scaling relation (84) and numerical simulations
for a variety of randomly oriented overlapping zero-volume
two-dimensional plates in R3. As per relation (12), the
effective volume of these plates is chosen to be the volume
of a sphere whose radius r is a characteristic length scale of
the associated plate. In particular, for circular disks, r is chosen
to be radius of the disk. For noncircular plates, r is the radius
of a disk whose area is the same as that of the noncircular
plate of interest [34]. Importantly, the reference system for
the scaling relation is randomly oriented overlapping circular
disks, whose ηc is also given in the table. Again, the scaling
relation (84) only slightly overestimates ηc in the case of
the triangular and elliptical plates. For square plates, the
scaling relation slightly underestimates ηc, suggesting that the
numerical results overestimate the actual percolation threshold
for this system.

C. Dimensions four through eleven

1. Nonzero-volume convex bodies

In Table VIII we provide the percolation threshold ηc of
d-dimensional overlapping hyperspheres and oriented hyper-
cubes for 4 � d � 11 obtained previously via the rescaled-
particle method [8]. As expected, the threshold values for
the two systems approach each other as d increases and

2 3 4 5 6 7 8 9 10 11
d

0.0001

0.01

1

η c

HS
HC
HRP
HSC
HO
HT

FIG. 4. (Color online) Percolation threshold ηc versus dimension
d as obtained from scaling relation (84) for randomly oriented
overlapping nonspherical hyperparticles, including hypercubes (HC),
hyperrectangular parallelpipeds (HRP) of aspect ratio 2 (i.e., a1 = 2a

and ai = a for i = 2, . . . ,d), hyperspherocylinder (HSC) of aspect
ratio 2 (i.e., h = 2a), hyperoctahedra (HO), and hypertetrahedra
(HT). Values of ηc for hyperspheres (HS) [8] are also shown for
purposes of comparison.

become identical in the limit d → ∞, i.e., ηc → 1/2d [7].
The results for hyperspheres will be used to estimate ηc for the
hyperparticles discussed in Sec. IV.

To our knowledge, no numerical estimates of ηc are
available for randomly oriented anisotropic hyperparticles
for d � 4. Simulations are difficult to carry out due to the
increasing complexity in accurately detecting particle overlap
as d increases. Given the accuracy of the scaling relation (84),
verified by numerical results in R2 and R3, we now apply
it to estimate ηc for the d-dimensional randomly oriented
overlapping hyperparticles discussed in Sec. IV, where it
should provide even better predictions. Table IX summarizes
threshold values for various hyperparticles for 4 � d � 11
using (84) and the thresholds for hyperspheres listed in
Table VIII. As expected, ηc for randomly oriented hypercubes
is lower than that for oriented hypercubes in the corresponding
dimensions.

TABLE IX. Percolation threshold ηc of certain d-dimensional randomly overlapping hyperparticles estimated using Eq. (84) for 4 � d � 11,
including hypercubes (HC), hyperrectangular parallelpiped (HRP) of aspect ratio 2 (i.e., a1 = 2a and ai = a for i = 2, . . . ,d),
hyperspherocylinder (HSC) of aspect ratio 2 (i.e., h = 2a), hyperoctahedra (HO), and hypertetrahedra (HT).

Dimension HC HRP HSC HO HT

d = 4 8.097 × 10−2 7.452 × 10−2 1.109 × 10−1 6.009 × 10−2 3.471 × 10−2

d = 5 2.990 × 10−2 2.775 × 10−2 4.599 × 10−2 1.724 × 10−2 8.808 × 10−3

d = 6 1.167 × 10−2 1.092 × 10−2 1.975 × 10−2 5.560 × 10−3 2.580 × 10−3

d = 7 4.846 × 10−3 4.568 × 10−3 8.899 × 10−3 1.986 × 10−3 8.518 × 10−4

d = 8 2.116 × 10−3 2.006 × 10−3 4.167 × 10−3 7.659 × 10−4 3.071 × 10−4

d = 9 9.584 × 10−4 9.133 × 10−4 2.007 × 10−3 3.129 × 10−4 1.180 × 10−4

d = 10 4.404 × 10−4 4.214 × 10−4 9.746 × 10−4 1.314 × 10−4 4.696 × 10−5

d = 11 2.044 × 10−4 1.963 × 10−4 4.754 × 10−4 5.632 × 10−5 1.917 × 10−5
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FIG. 5. (Color online) Left panel: Dimensionless exclusion volume vex/veff versus dimension d for spherical and cubical hyperplates. Right
panel: Lower bounds on the percolation threshold ηc versus dimension d for spherical and cubical hyperplates.

The threshold ηc versus d for the systems listed in Table IX
is plotted Fig. 4. As expected, threshold values of nonspherical
hyperparticles are always below that of hyperspheres for
any fixed d. For hyperspherocylinders of aspect ratio 2
(i.e., h = 2a), the associated ηc is only slightly below the
hypersphere value in the corresponding dimensions. Similarly,
for hyperrectangular parallelpipeds of aspect ratio 2 (i.e.,
a1 = 2a and ai = a for i = 2, . . . ,d), ηc is only slightly below
the hypercube value in the corresponding dimensions.

To obtain excellent estimates of ηc for nonspherical
hyperparticles for d � 12, one can use the scaling relation
(84) together with highly accurate analytical expressions for
hyperspheres in high dimensions given in Ref. [7]; see, e.g.,
Eqs. (86) and (119) in that paper.

2. Zero-volume convex hyperplates

The left panel of Fig. 5 shows the dimensionless exclusion
volume vex/veff versus d for spherical and cubical hyperplates.
Recall that the effective volume veff of a hyperplate [i.e., a
(d − 1)-dimensional object in Rd ] is chosen to be the volume
of a d-sphere with radius r that is a characteristic length
scale of the hyperplate. For spherical hyperplates, r is chosen
to be radius of the hyperplate. For cubical hyperplates, r is
the radius of a (d − 1)-sphere whose (d − 1)-dimensional
volume (or d-dimensional area) is the same as that of the
cubical hyperplate. Clearly, vex/veff for spherical hyperplates
is smaller than that for cubical hyperplates in all dimensions
d � 3. Lower bounds on ηc for spherical and cubical
hyperplates, as obtained from inequality (13), are shown in
the right panel of Fig. 5. As expected, the lower bound for
spherical hyperplates is always greater than that for cubical
hyperplates in all dimensions d � 3.

VIII. CONCLUSIONS AND DISCUSSION

We have exploited the principle that low-dimensional
continuum percolation behavior encodes high-dimensional
information, recent analytical results on the percolation thresh-
old ηc of continuum percolation models [7], and conjecture
(83) to formulate the scaling relation (84) for ηc that is appli-
cable to a wide variety of identical overlapping nonspherical

hyperparticles with random orientations for any dimension
d. This scaling relation, which is also an upper bound on ηc,
depends on the d-dimensional exclusion volume vex associated
with a hyperparticle and was determined analytically for,
among other shapes, various polygons for d = 2, Platonic
solids, spherocylinders, parallepipeds, and zero-volume plates
for d = 3 and their appropriate generalizations for d � 4. The
scaling relation already provides a good estimate of ηc for
d = 2, becomes increasingly accurate as d increases, and
becomes exact in the high-d limit. The new estimates of
the percolation thresholds obtained from the scaling relation
could have implications for a variety of chemical and physical
phenomena involving clustering and percolation behavior
described in the Introduction. It will be interesting to see if our
conjecture that identical overlapping hyperspheres provide the
highest threshold among all overlapping systems of identical
convex hyperparticle shapes (that are not a trivial affine
transformation of a hypersphere for any d [cf. (83)]) can be
proved.

The exclusion volume vex also has physical importance
in other fields besides percolation, such as granular materi-
als, packing problems, and phase transitions in condensed-
matter systems. For example, vex plays a critical role in the
well-known isotropic-nematic transition in hard-rod systems
studied by Onsager [21]. Thus, our comprehensive study of
vex could also deepen our understanding of a variety of other
problems in condensed matter physics. The relevance of vex to
packing problems is briefly discussed below.

Although the main focus of this paper concerned the
percolation threshold of randomly oriented overlapping hy-
perparticles, the bound (7) and the scaling relation (84) are
also valid for overlapping particles with specific orientational
distributions when the general relation (9) for the exclusion
volume vex is used. To illustrate this point, we appeal to
two-dimensional examples depicted in Fig. 6, which shows
the exclusion regions associated with equilateral triangles in
R2 with two different particle orientations: fully aligned and
edge-to-edge. Equilateral triangles are not centrally symmetric
and so its exclusion volume vex is minimized for the edge-to-
edge configuration (i.e., vex/v = 4) and maximized when the
particles are aligned (i.e., vex/v = 6). The exclusion volume
for other relative orientations must be between these two
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FIG. 6. (Color online) Exclusion region associated with equilat-
eral triangles with volume v with specific relative particle orientations
in R2. Left panel: Triangles are perfectly aligned. The associated
exclusion region is a regular hexagon (yellow region) whose edge
length is the same as that of the triangle, resulting in vex/v = 6. Right
panel: Triangles are oriented in such a way that one can be mapped
to another by a center inversion operation. Here two particles always
form edge-to-edge contacts. The associated exclusion region is a
larger equilateral triangle (yellow region) whose edge length is twice
that of the original triangle, resulting in vex/v = 4.

extremal values. For example, we see from Table I, vex/v =
5.30797 . . . for randomly oriented equilateral triangles. Thus,
in order of increasing values of vex/v for these three exam-
ples, we have the lower bounds ηc � 0.25 (edge-to-edge),
ηc � 0.188395 . . . (random), and ηc � 0.166666 . . . (aligned),
respectively, as predicted by Eq. (7). The actual threshold
trends for these three cases should follow those given by these
bounds, as does the corresponding predictions of the scaling
relation: ηc ≈ 1.1281, ηc ≈ 0.8501, and ηc ≈ 0.7520.

It is noteworthy that the magnitude of the dimensionless
exclusion volume vex/v of a convex body with some specified
orientation distribution is closely related to how densely
such nonoverlapping objects can be packed in space [35]. In
particular, the ratio vex/v for a centrally symmetric convex
hyperparticle is minimized when the bodies are aligned
[7]. For noncentrally symmetric convex shapes, nonaligned
orientations result in a smaller value of vex/v relative to that
of the aligned case (see Fig. 6). These exclusion-volume
properties of centrally and noncentrally symmetric bodies
play a major role in recently proposed organizing principles
concerning optimal (i.e., maximally dense) packings of both
hard convex and hard concave particles in R3 [35]. Among
other results, it was conjectured that the optimal packing of
a centrally symmetric particle is achieved by the associated
optimal Bravais-lattice packing in which all the particles
are aligned (e.g., superballs [36]); while the optimal pack-
ing of a particle without central symmetry (e.g., truncated
tetrahedra [37]) is generally given by a non-Bravais-lattice
packing in which the particles have different nonaligned
orientations.

In the Introduction, we discussed the duality between the
equilibrium hard-hyperparticle fluid system and the continuum
percolation model of overlapping hyperparticles of the same
shape. A consequence of this duality relation and the so-called
decorrelation principle for disordered hard-hyperparticle pack-
ings [38,39] led to the result that the large-d percolation thresh-
old ηc of overlapping hyperparticles is directly related to the
large-d freezing-point density (onset of disorder-order phase
transition) of corresponding equilibrium hard-hyperparticle
models [7]. In a future work, we shall explore this duality

relationship to predict the onset of phase transitions in hard-
hyperparticle fluids across dimensions. Finally, we will show
elsewhere that the lower-order Padé approximants studied in
Ref. [7] lead also to bounds on the percolation threshold for
lattice-percolation models in arbitrary dimension.
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APPENDIX A: EXPLICIT CALCULATION OF THE MEAN
WIDTH w̄ OF A THREE-DIMENSIONAL SPHERICAL

HYPERPLATE IN R4

In Sec. II, we presented an explicit method to calculate the
mean width w̄ = 2R̄ of a convex body in Rd . Recall that the
width w(n) of a convex body is the smallest distance between
two impenetrable parallel (d − 1)-dimensional hyperplanes
contacting the boundaries of the body, where n is a unit
vector orthogonal to the hyperplanes. The mean width w̄

is the average of the width w(n) of the body such that
n is uniformly distributed over the unit sphere Sd−1 ∈ Rd .
Here we employ this method to obtain w̄ of a three-
dimensional spherical hyperplate (i.e., 3-sphere) of radius a

in R4.
Due to the rotational symmetry of the 3-sphere, its orienta-

tion in R4 is specified by a unit vector u, which is analogous
to the case of a circular disk in R3; see Table III. The width
w(n) of the 3-sphere is given by

w(n) = 2a
√

1 − 〈u,n〉2 = 2a sin θ, (A1)

where 〈x,y〉 is the inner product of two vectors x and y, and
θ is the angle between u and n. Therefore, the mean width is
given by

w̄ = 1

�

∫
2a sin θ dS3

= 1

�

∫ 2π

0

∫ π

0

∫ π

0
2a sin2 θ sin φ dθ dφ dψ, (A2)

where

� =
∫

dS3 =
∫ 2π

0

∫ π

0

∫ π

0
sin θ sin φ dθ dφ dψ = 2π2,

(A3)
is the four-dimensional solid angle. Carrying out the integra-
tion in Eq. (A2) yields the mean width w̄ of the 3-sphere in
R4:

w̄ = 1

2π2

16πa

3
= 8a

3π
. (A4)
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APPENDIX B: RESCALED-PARTICLE METHOD
FOR ESTIMATING ηc OF RANDOMLY ORIENTED

OVERLAPPING PLATONIC SOLIDS

In Ref. [8], we devised a highly efficient rescaled-particle
method to estimate ηc for d-dimensional hyperspheres and
oriented hypercubes, utilizing the tightest lower bound on
ηc, i.e., the pole of the [2,1] Padé approximant of the mean
cluster size S, obtained in Ref. [7]; see Eq. (119) in that
paper. The basic idea behind this method is to begin with
static configurations of overlapping particles at a reduced
density η0 that is taken to be the best lower-bound value
and then to increase η by rescaling the particle sizes until
a system-spanning cluster forms. This algorithm enables
one to accurately estimate ηc in a computationally efficient
manner, even in high dimensions [8]. Here we adapt the
method to investigate percolation properties of randomly
oriented overlapping Platonic solids, including tetrahedra,
icosahedra, dodecahedra, octahedra, and cubes in R3. Except
for overlapping cubes, whose percolation properties have been
well studied, the percolation thresholds for the other polyhedra
have heretofore not been investigated.

Initially, a Poisson distribution of a large number of points
in the periodic simulation domain is generated. Each point is
then taken to be the centroid of a polyhedron with a random
orientation and a characteristic length �0 (e.g., the diameter of
the associated circumsphere). The initial value of �0 is chosen
so that the initial reduced density η0 of the system equals the
lower-bound value given by Eq. (7). For each polyhedron i, a
near-neighbor list (NNL) is obtained that contains the centroids

of the polyhedra j whose distance Dij to particle i is smaller
than γ �0 (γ > 1). The value of γ generally depends on the
specific polyhedron of interest. A good choice for γ is a value
that yields a NNL list that only contains polyhedra that overlap
at the threshold. In our simulations, we used γ ∈ [1.25,1.5],
depending on the asphericity of the shapes [40,41]. Then the
sizes of the polyhedra are slowly and uniformly increased by
increasing �0, leading to an increase of the reduced density
by an incrementally small amount δη. After each system
rescaling, the polyhedra in the NNL are checked for overlap
using the separation axis theorem [41] and the largest cluster
is identified. This process is repeated until a system-spanning
cluster forms.

Since static particle configurations and a predetermined
NNL are used, the complexity of cluster identification is
significantly reduced. Because initial configurations with
relatively high reduced density values (i.e., the lower bound
values) are used, the amount of rescaling before the system
percolates is much smaller than that from an initial low-density
configuration. Furthermore, the reduced density η can be
incremented by a small amount δη as ηc is approached,
leading to a more accurate estimate of the percolation
threshold.

For each of the Platonic solids, we use several distinctly
different system sizes, i.e., N = 5000,10 000,50 000,100 000,
and for each system size, we generate 500 independent
realizations of the overlapping polyhedra. The results are
extrapolated by spline fitting the finite-system-size data in a
log-log plot to obtain the infinite-system-size estimate of ηc.
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