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Dynamical theory of spin relaxation
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The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in
terms of the density matrix predicts that the signal will decay to zero, and does not address the issue of individual
spin dynamics. Using stochastic calculus, we develop a dynamical theory of spin relaxation, the origins of
which lie in the component spin fluctuations. This entails consideration of random pure states for individual
protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice
and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin
and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise
and conventional spin relaxation.
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I. INTRODUCTION

The dynamics of a spin system is usually calculated using
the density matrix, following Abragam [1], for instance.
However, the usual formulation in terms of the density matrix
predicts that the signal will decay exponentially to zero, and
does not address the issue of spin dynamics from the point
of view of an individual proton in the spin population. In this
article, we draw on related mathematical ideas in the theory of
electromagnetic scattering from random media [2] and apply
the modern methods of stochastic calculus in combination
with a detailed quantum mechanical description to develop a
dynamical theory of spin relaxation, the origins of which lie
in the fluctuations and dynamics of individual spins.

Our approach entails consideration of random pure states
for individual protons, and how these pure states are correctly
combined when the density matrix is formulated. Both the
lattice and the spins are treated quantum mechanically. Such
treatment incorporates both the processes of spin-spin and
(finite temperature) spin-lattice relaxation. In our conceptual
framework, the stochastic dynamics of a single spin, existing
in a random pure state, is the primary object of consideration.
The dynamics of each individual spin can be considered
as a stochastic trajectory on the Bloch sphere. There is no
violation of quantum mechanical unitarity in this picture,
in which individual pure states evolve into random pure
states. This dynamics is a spin noise process, from which an
asymptotic probability distribution for an individual spin can
be constructed. The existence of this asymptotic distribution
rests alongside individual (proton) spin fluctuations that persist
for all time. When referred to an ensemble, such distribution
represents the spin population density in a steady state. In
this framework, it is the autocorrelation properties of the
dynamics of a single spin that are the origin of the standard
spin relaxation parameters which pertain to an ensemble.
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Thus, the spin noise process is intimately related to the
dephasing and other phenomena associated with conventional
spin relaxation. Accordingly, we retain the raw, as opposed
to ensemble averaged, density matrix which is constructed in
terms of the probability-weighted sum of projection operators
corresponding to the constituent pure states of the system.

A semiclassical treatment entails that the magnetic field
fluctuations be treated classically and there be no interactions
with the lattice; in effect, the lattice is absent (or equivalently
considered to be at infinite temperature). Our analysis entails
that the lattice also be treated quantum mechanically. Indeed,
as Abragam [1] points out, a semiclassical description (where
the coupling with the lattice is represented by classical random
magnetic field fluctuations) leads to a steady state for the
spin system described by an infinite temperature, i.e., one
for which there is no Boltzmann fraction. Such a quantum
mechanical treatment incorporates both the processes of spin-
spin and (finite temperature) spin-lattice relaxation. A quantum
mechanical treatment of the lattice modifies the equation of
motion for the density matrix via an offset by the statistical
equilibrium value. The (stochastic differential) equation of
motion for the ensemble density matrix is accordingly mod-
ified. The effect of the lattice, in the presence of isotropic
fluctuations, is to induce a polar drift which yields the desired
Boltzmann fraction, and the process of T 1 relaxation.

The paper is organized as follows. Section II introduces the
quantum mechanical density matrix in geometric terms and
the related notion of a (random) pure state. The significance
of these quantities is explained in the context of NMR for
an ensemble of spins with various examples. In Sec. III,
we apply spinor geometry to develop the (stochastic) spin
dynamics for an ensemble immersed in a random magnetic
field environment such as encountered in NMR. A detailed
account is provided of both the cases of axial and isotropic
fluctuations and the resulting dynamics of a certain modified
spin density, that scales with the square root of the spin
population, is calculated explicitly. When coupled to thermal
degrees of freedom (the “lattice”), the stochastic dynamics is
also derived. The central result of the paper is a stochastic
differential equation for the combined processes of spin-spin

022110-11539-3755/2013/87(2)/022110(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.022110


TIMOTHY R. FIELD AND ALEX D. BAIN PHYSICAL REVIEW E 87, 022110 (2013)

and spin-lattice relaxation in terms of the modified spin density.
It is shown that, when an ensemble average is effected, the
ordinary (deterministic) equations of spin-spin and spin-lattice
relaxation are recovered and have the desired properties
familiar from standard theory of NMR. With regard to quantum
mechanical unitarity, we demonstrate that random pure states
evolve into themselves under stochastic evolution, and explain
the role of the lattice in this respect. The paper concludes
in Sec. IV with a discussion of related issues in quantum
foundations and experimental implications in NMR.

II. GEOMETRY OF THE NMR DENSITY MATRIX

Our analysis of spin dynamics will be expressed in relation
to the concept of the quantum mechanical density matrix,
which is the basic tool for describing dynamics of NMR. To set
our results in the appropriate geometric context, we review here
the essential features of the density matrix and extend these
in geometrical terms (cf. [2]). Recall the following general
expression for the quantum mechanical density matrix:

σ̂ =
∑

i

pi |αi〉〈αi |, (1)

where we assume |αi〉 are normalized, 〈αi |αi〉 = 1. Thus,
the density matrix arises as the probability-weighted sum of
projection operators �̂i = |αi〉〈αi | onto the state vectors |αi〉.
On grounds of probability, we impose the unit trace condition
tr[σ̂ ] = 1, which is equivalent to

∑
i pi ≡ 1. In terms of the

quantum statistical ensemble, we can interpret the density
matrix as representing a system consisting of a large ensemble
of states |αi〉 constituted in respective proportion pi . Thus, pi

is equal to the classical probability that a state, drawn from
the ensemble at random, is equal to |αi〉. Each component
basis vector |αi〉 represents a “pure” quantum state and we
shall consider a single proton as existing in such a (possibly
unknown and random) state, obtained, e.g., by making a
spin measurement and then allowing the state to undergo
unitary evolution with a known Hamiltonian. Thus, pure
states correspond to projection operators in the density matrix
formalism. It is essential to appreciate in the present context of
spin populations that the above resolution applies even if {|αi〉}
constitute a nonorthogonal (and possibly over-complete) basis
set, i.e., 〈αi |αj 〉 �= 0 for i �= j . In the case of a spin- 1

2 system
with a two-dimensional basis {|α〉,|β〉}, we can express the
density matrix as

σ̂ = pα|α〉〈α| + pβ |β〉〈β|, (2)

in which pα + pβ = 1.
Suppose a spin measurement is made in the z direction,

e.g., by placing the system in a magnetic field aligned with
the z axis. The eigenstates of the Hamiltonian are then the
orthogonal states spin “up” and “down” (|↑〉 and |↓〉), respec-
tively. According to classical probability laws applied to the
ensemble P[A] ≡ P[A|B]P[B] + P[A|B̄]P[B̄] and quantum
probability rules applied to the transition between a pair of
pure states P[A|B] = |〈ψA|ψB〉|2 (which is symmetric under
A ↔ B), the probability of the outcome spin ↑ is given by

P[↑] = |〈↑|α〉|2pα + |〈↑|β〉|2pβ. (3)

In the quantum mechanical formalism, this can be conveniently
expressed as

P[↑] = 〈↑|σ̂ |↑〉 = tr[σ̂ �̂↑]. (4)

Corresponding expressions hold in the higher dimensional case
for arbitrary states. Indeed, through the same type of reasoning,
the expectation of any observable Ô is given by

〈Ô〉 =
∑

α

〈αi |Ô|αi〉pα = tr[σ̂ Ô], (5)

where, as before, the basis {|αi〉} need not be orthogonal. The
relation between classical (ensemble) and quantum probabil-
ities can be illustrated further, in the context of the density
matrix. Suppose |α〉,|β〉 are equal to |↑〉,|↓〉, respectively, then
P[↑] = pα and P[↓] = pβ . It is important to appreciate that
there is not such an immediate translation from the classical
to quantum probabilities, in general. For example, if |α〉 = |↑〉
and |β〉 �= |↓〉, then

P[↑] = pα + |〈↑|β〉|2pβ (6)

so P[↑] �= pα (unless pβ = 0, in which case pα = 1, a system
of identically prepared spins in the positive z direction).
Indeed, the formalism illustrates that some considerable care
is needed in the passage between quantum and classical
probabilities. For example, if a quantum ensemble is prepared
as a classical mixture of (only) pure states |α〉,|β〉 (i.e., a
randomized collection of particles in either of these pure states
mixed in the proportion pα : pβ) then we find, according to (4),

P[α] + P[β] = 1 + |〈α|β〉|2, (7)

which exceeds unity for any pair of nonorthogonal states.
The resolution of this apparent inconsistency is that quantum
observables yield only orthogonal eigenbases as measurement
outcomes.

A natural and pertinent question to consider at this stage
is how many ways there are of representing a given density
matrix in terms of pure states, according to (1). We confine
our attention here to the case of spin- 1

2 since we are concerned
with protons in NMR, and in this case the geometry is
particularly simple and illuminating. It is sufficient to consider
a two-dimensional basis {|α〉,|β〉}, as introduced above. We
can choose to represent a given density matrix by a point P in
the interior of the Bloch sphere S (see Fig. 1). Its resolution
among �α is determined by passing a line L through P

and finding its intersection with S, say at points A and B

corresponding to the basis elements |α〉 and |β〉. Thus, points
on the surface of the sphere S represent pure states. The
ensemble probabilities are then determined by the ratio of the
distances dPA and dPB from P to A and P to B, respectively,
according to

pα : pβ = dPB : dPA. (8)

Therefore, as P approaches A, the density matrix approaches
�α , which renders the system an ensemble of identical pure
states |α〉. Now, for points P that do not lie on S, this
resolution is nonunique. Indeed, there exist infinitely many
bases {|α〉,|β〉} that resolve a given density matrix, realized
in the geometry by rotating the line L about the point P .
Uniqueness is only obtained if we confine ourselves to an
orthogonal basis by constructing L as the line joining P to the
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FIG. 1. Bloch sphere depicting the “NMR ball” of radius ε =
|2p − 1| where ε, p are given by Eqs. (10) and (85), respectively, and
typically ε 	 1, p ≈ 1

2 .

center O of the interior of S (provided that P �= O). Then,
the points A and B are antipodal and 〈α | β〉 = 0. In the
case that P = O, there exist infinitely many resolutions, all
of which are orthogonal; the ensemble average then contains
no “quantum information.” It is a straightforward exercise
to show that this metric geometry is statistically consistent
under changes of basis. In other words, if we represent a given
ensemble by P and determine the coefficients of a change of
basis according to the metrical relation (8), then the quantum
probabilities obtained via (4) are identical in the two bases.
This geometry provides an illustrative tool for our discussion
of NMR spin noise, which enables its key features to be readily
interpreted. In the context of the density matrix geometry,
NMR phenomena can be viewed as taking place within a small
solid ball Bε of radius ε (shaded in Fig. 1) centered at the origin
of the interior of the sphere S. The size of the radius ε 	 1
results from the value of the “Boltzmann fraction” which,
according to statistical mechanics, is given by

Nupper/Nlower
= exp(−�E/kT ) > 1, (9)

where k is Boltzmann’s constant, T is the temperature,
and Nupper / Nlower are the number of spins in the upper
and lower half cones, respectively. This ratio exceeds, but
is approximately equal to, unity in typical experimental
situations. Thus, according to (8) we have

0 < ε = exp(−�E/kT ) − 1

exp(−�E/kT ) + 1
	 1 (10)

(see, e.g., [1]). The distance ε scales proportionately with the
radius of the sphere, which here we have set equal to unity.
The figure illustrates the semiclassical geometry of the density
matrix for a spin- 1

2 system in NMR. In this picture, the pure
(proton) states are distributed over the intersections of the
double cone with the sphere of pure states S. The angle θ of
the double cone is determined by the spin quantum number
j according to cos2θ = j 2/j (j + 1) and so in the case of
protons, for which j = 1

2 , we have cos θ = 1/
√

3 and so
θ ≈ 54.7◦. As the spin quantum number tends to infinity, the
angle of this cone tends to zero, which can be considered as the
“classical limit” of this quantum geometry. In a fully quantum

mechanical framework, as we shall develop in the sections
that follow, the pure states are situated over the entire surface
S with a certain distribution that conforms to the Boltzmann
fraction mentioned above. We emphasize that the density
matrix description is valid for quantum statistical ensembles
of pure states that are nonorthogonal. Although this feature
is understood within the foundations of quantum mechanics,
it is not generally appreciated in the context of NMR. Our
discussion of spin noise in NMR requires that we consider such
ensembles, which arise asymptotically through the acquisition
of a uniform phase distribution in the transverse magnetization,
for a large number of pure states (proton spins). As an
illustration, we recall the situation familiar in a pulsed NMR
experiment. Let us assume that a rf pulse is applied at a pulse
flip angle of 90◦ to the longitudinal B0 direction. As a result,
rf energy �E is absorbed, and the net local magnetization is
rotated into the transverse plane. Each component spin vector
then rotates about the longitudinal axis at (approximately) the
Larmor precession frequency ω0 governed by the relations
�E = h̄ω0 = hγB0/2π , where γ is the gyromagnetic ratio
(which varies throughout space depending on the details of
the molecular environment). The resulting motion of the
net local magnetization vector Et can be understood by
analogy with the Eulerian top in classical mechanics. As time
progresses following the pulse, energy is transferred from
the proton spins to the surroundings during the process of
“spin-lattice” relaxation, and the longitudinal component of
the net magnetization is gradually restored to the equilibrium
value prior to the pulse being applied. Likewise, random
exchange of energy between neighboring spins and small
inhomogeneities in the total magnetic field cause perturbations
in the phases of the transverse spin components and dephasing
occurs, so that the net transverse component of magnetization
decays to zero. Now, the situation of this experiment can
be readily interpreted in the context of the geometry of the
density matrix. At equilibrium, the density matrix can be
conveniently represented in the {|↑〉,|↓〉} basis according to
(2) with p↑,↓ determined by the Boltzmann fraction. However,
following the 90◦ pulse, such a resolution among the projection
operators for these orthogonal basis elements is no longer
possible, as the geometry illustrates. In the {|↑〉,|↓〉} basis,
the density matrix now has nonzero components proportional
to |↑〉〈↓| and |↓〉〈↑|. Thus, the nonequilibrium character of
NMR experiments involving radiation is represented in terms
of off-diagonal elements in the density matrix or, alternatively,
in terms of a resolution amongst projection operators in a
basis that is not aligned to the background magnetic field; the
coefficients of such are supplied by the metrical geometry.
(It is a matter of convenience in terms of the calculations
involved as to which basis is chosen.) At equilibrium (before a
pulse is applied), the density matrix lies at the point E, which
can be considered as arising from a uniform distribution of
spins represented as points on the intersections of the upper
and lower half cones with S. As indicated in the figure, the
distribution is more concentrated on the upper cone which has
lower energy, and thus the average of these pure spin states
results in the point E situated above the origin O. After a 90◦
pulse is applied, the density matrix rotates to the transverse
plane; correspondingly, the entire double cone rotates through
the same angle about the positive y axis. The result is that
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the original density matrix is rotated to the point P shown. As
explained above, the pure states are those situated on the Bloch
sphere (i.e., the two-dimensional surface of the sphere); the
spherical geometry results from the fact that we are concerned
with a collection of protons, which have spin- 1

2 . The density
matrix description is thus a convenient way of representing
statistical ensembles of large numbers of quantum states
and their average properties. Physically, the nonuniqueness
described above suggests that the density matrix description
is an incomplete one, at least on a microscopic scale. Our
analysis that follows will demonstrate this incompleteness,
and remedy the situation by providing a detailed description
in terms of the dynamical properties of the constituent
underlying pure states of the system. The process of ensemble
averaging will necessarily recover the ordinary density matrix
description, and we shall see how this arises explicitly.

III. SPIN DYNAMICS

A. Spinor geometry

We begin with an exposition of the spinor geometry of a
spin- 1

2 system. In homogeneous coordinates (ξ,η), we write a
spin state vector as

|ψ〉 = ξ |↑〉 + η|↓〉, (11)

which maps to the normalized state vector

|ψ〉 = (ζ |↑〉 + |↓〉)/√1 + |ζ |2, 〈ψ |ψ〉 = 1 (12)

in which ζ = ξ/η is the familiar (inhomogeneous) stereo-
graphic coordinate for the Bloch sphere, and satisfies

ζt = eiφt cot 1
2θt (13)

in polar coordinates (θ,φ). The projection operator onto this
pure state vector is thus

|ψ〉〈ψ | = 1

1 + |ζ |2 [ζ ζ |↑〉〈↑| + ζ |↑〉〈↓|
+ ζ ∗|↓〉〈↑| + |↓〉〈↓|], (14)

which in density matrix form is

σ = 1

1 + |ζ |2
(

ζ ζ ∗ ζ

ζ ∗ 1

)
(15)

and in polar form

σ = 1

2

(
1 + cos θ eiφ sin θ

e−iφ sin θ 1 − cos θ

)
. (16)

For an ensemble, we introduce the modified spin density

� = 1

N1/2

N∑
j=1

σ (j ), (17)

which differs from the standard density matrix in respect of the
reciprocal scaling by the square root of the spin population, as
opposed to the population itself [cf. (1)]. For single pure states
and ensembles, respectively, in relation to (17), we shall write

σt =
(

σ
↑↑
t σ

↑↓
t

σ
↓↑
t σ

↓↓
t

)
, �t =

(
�

↑↑
t �

↑↓
t

�
↓↑
t �

↓↓
t

)
. (18)

B. Random Hamiltonian

The unperturbed Hamiltonian is given by H0 = −μ · B0

(taking due note of the minus sign) where the magnetic
moment is μ = γ s (γ is the gyromagnetic ratio) for spin
s = 1

2h̄σ in which (σx,σy,σz) are the Pauli matrices. In matrix
notation, then we have

H0 =
(

E 0

0 −E

)
. (19)

This implies a negative energy eigenvalue E < 0 for B0 in the
positive z direction and thus the spins tend to align parallel to
the magnetic field [cf. (83) and the discussion of Sec. III E].
In what follows, we shall consider a time-dependent random
perturbed Hamiltonian

H (t) = H0 + H1(t) = −γ s · B(t) (20)

in which B(t) is the effective random magnetic field envi-
ronment experienced by an individual (proton) spin. This
consists of the main field B0 plus a (rapidly) fluctuating
field B1(t) corresponding to the rapid (rotational) motion
of the spin (nucleus) in its magnetic environment. We shall
not be concerned with the specific interaction, e.g., dipole-
dipole, chemical shielding, quadrupolar, that gives rise to the
effective field fluctuations, and concentrate on the cases of
axial and isotropic fluctuations in the “extreme narrowing”
approximation where the autocorrelation time for B1(t) is
extremely small.

C. Axial fluctuations

Consider a transverse magnetization subject to magnetic
field fluctuations in the axial z direction. According to the
spinor geometry introduced above, the normalized transverse
state vector, at an azimuth angle φ, can be expressed in terms
of the spin ↑ , ↓ state vectors by

|→(φ)〉 = 1√
2

(|↑〉 + eiφ|↓〉). (21)

The projection operator for a transverse pure state is therefore

P̂ (φ) = |→(φ)〉〈→(φ)|
= 1

2 (|↑〉〈↑| + eiφ|↓〉〈↑| + e−iφ|↑〉〈↓| + |↓〉〈↓|).
(22)

In matrix form, we identify

|↑〉〈↑| =
(

1 0

0 0

)
, |↓〉〈↑| =

(
0 0

1 0

)
,

(23)

|↑〉〈↓| =
(

0 1

0 0

)
, |↓〉〈↓| =

(
0 0

0 1

)

and thus we find the “transverse” density matrix

P̂ (φ)
→ = 1

2

(
1 e−iφ

eiφ 1

)
. (24)
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FIG. 2. Geometry of transverse magnetization for a spin ensemble.

Thus, for a spin ensemble, the transverse magnetization can
be represented as

E (N)
t =

N∑
j=1

s(j )︷ ︸︸ ︷
aj exp

[
iϕ

(j )
t

]
(25)

in which the “form factors” aj can be taken to have the uniform
(over j ) value 1/

√
N according to (17), so that all spins in

the population carry equal weight. This has the mathematical
structure of a random walk as applied in the theory of scattering
from random media [3], and its geometry is depicted in Fig. 2.

1. Abragam’s analysis

It is appropriate at this point to recount Abragam’s treatment
of the master equation for the density matrix (p. 276 in [1]).
Abragam begins with the equation of motion for the density
matrix in the presence of a perturbed Hamiltonian

1

i

dσ

dt
= −[H0 + H1(t),σ ] (26)

in which the perturbation H1(t) is a stationary operator-valued
random process. Then, in the interaction representation with

σ ∗ = eiH0t σ e−iH0t , H1
∗(t) = eiH0tH1(t)e−iH0t , (27)

Abragam [1] obtains

1

i

dσ ∗

dt
= −[H1

∗(t),σ ∗]. (28)

[For a general operator A, the (Heisenberg) transformed
operator is defined as A �→ A∗ .= eiH0tAe−iH0t . In the present
context, applied to the density matrix σ and Hamiltonian H ,
this amounts to an overall rigid rotation of the Bloch sphere
about the B0 axis at the Larmor frequency. In our calculations,
we operate in a corotating frame, in NMR language “on
resonance,” and so the asterisk superscript can be dropped.]
This equation is then integrated by successive approximations
up to second order, which gives

σ ∗(t) = σ ∗(0) − i

∫ t

0
[H1

∗(t ′),σ ∗(0)]dt ′

−
∫ t

0
dt ′

∫ t ′

0
dt ′′[H1

∗(t ′),[H1
∗(t ′′),σ ∗(0)]]. (29)

The time derivative of this equation, via a change of variable
τ = t − t ′, yields

dσ ∗

dt
= −i[H1

∗(t),σ ∗(0)]

−
∫ t

0
dτ [H1

∗(t),[H1
∗(t − τ ),σ ∗(0)]]. (30)

Abragam [Eq. (33), Ch. VIII in [1]] then concludes with an
equation for the evolution of the average density matrix:

dσ ∗

dt
= −

∫ ∞

0
dτ [H1

∗(t),[H1
∗(t − τ ),σ ∗(t)]] (31)

in which the overbar denotes an ensemble average. (The reader
should consult p. 276 in [1] for details of certain technical
assumptions involved in reaching this conclusion, which are
not so immediately relevant for the present discussion.) It
is precisely this average that removes the underlying spin
noise process from Abragam’s analysis. Thus, the status of
Abragam’s analysis and standard NMR description, in relation
to the results we present here, can be summarized by the
following:

Standard theory provides an exact quantum mechanical
description of the ensemble average density matrix, in terms of
which one can deduce the standard spin relaxation parameters
(such as free induction exponential decay with a characteristic
time scale of T 2), which are deterministic ensemble properties.
The underlying spin population, on the other hand, requires
the analysis in terms of the raw, i.e., nonaveraged, density
matrix. The results herein determine the component spin
dynamics of the raw density matrix, thus accounting for
real-time measurements of the NMR signal (such as observed
spin noise), which is random. This reveals the origins of spin
relaxation in terms of the fluctuations in individual spins which
exist in random pure states.

It suffices to examine the above dynamics for a transverse
component |→(φ)〉〈→(φ)| of the density matrix, and then
extend via linearity of (30) in σ . Consider a perturbed Hamil-
tonian given by H (t) = H0 + H1(t) in which the magnetic
field perturbation is purely axial so that

H1(t) = 1

2
σ · (0,0,k1/2�t ) = 1

2
k1/2�t

(
1 0

0 −1

)
. (32)

In this expression, �t is a white noise process with the Dirac
delta function autocorrelation property 〈�t�t ′ 〉 = δ(t − t ′).
The description we provide here therefore aligns with the
extreme narrowing approximation for which the spectral
density of the perturbing Hamiltonian is independent of
frequency and the (reciprocals of the) spin-spin and spin-lattice
relaxation times T 1 and T 2 are equal. (We refer to Sec. III E
for an explicit derivation of the latter property within our
current framework.) The first commutator term in (30) can
be computed explicitly as

1

4
k1/2�t

[(
1 0

0 −1

)
,

(
1 e−iφ

eiφ 1

)]

= 1

2
k1/2�t

(
0 e−iφ

−eiφ 0

)
. (33)
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Likewise, for the second commutator term, we have

1

4
k�t�t−τ

[(
1 0

0 −1

)
,

[(
1 0

0 −1

)
,
1

2

(
1 e−iφ

eiφ 1

)]]

= 1

4
k�t�t−τ

[(
1 0

0 −1

)
,

(
0 e−iφ

−eiφ 0

)]

= 1

2
k�t�t−τ

(
0 e−iφ

eiφ 0

)
. (34)

Thus, (30) yields the transverse density matrix stochastic
dynamics:

dP̂ (φ)
→

dt
= −1

2
ik1/2�t

(
0 e−iφ

−eiφ 0

)

− 1

2
k

∫ t

0
dτ �t�t−τ

(
0 e−iφ

eiφ 0

)
. (35)

The corresponding differential projection operator is therefore

dP̂ (φ)
→ = −1

2
ik1/2

(
0 e−iφ

−eiφ 0

)
dW

(φ)
t

− 1

2
k

(
0 e−iφ

eiφ 0

) ∫ t

τ=0
(−dW

(φ)
t−τ ) ◦ dW

(φ)
t . (36)

2. Stratanovich calculus

In the above, we use the relationship between stochastic
differential equations (SDE) and Langevin representations,
thus, �t = dWt/dt for a Wiener process Wt , to be understood
in this specific instance in the sense of Stratonovich since the
original dynamics is presented in the form of an ordinary
differential equation (ODE). In the above expression, the
integral part is equal to Wt ◦ dWt in which the symbol “◦”
indicates the Stratonovich interpretation. In other words, we
can consider an approximate solution to an SDE

dXt = btdt + σtdWt (37)

with drift bt and volatility σt , generated by a sequence x
(n)
t

of solutions to the ODE dx(n)/dt = b + σ�(n) in which �
(n)
t

is a sequence of processes whose integral W
(n)
t = ∫ t

0 �(n)
s ds

converges to the Wiener process as n → ∞. Then, the solution
x(n) converges to the Stratonovich (as opposed to Ito) solution
of the SDE (37). (Cf. [4] for a complete discussion concerning
the relationship between ordinary and stochastic differential
equations of relevance here.)

So, the resulting equation (36) should be understood in
the sense of Stratonovich, which is the most natural from the
point of view of an underlying ODE, as in (26). However,
in order to make direct contact with more recent work in the
theory of electromagnetic scattering from random media and
the modern methods of stochastic calculus, we translate to the
Ito interpretation via the identity

WtdWt ≡ Wt ◦ dWt − 1
2dt (38)

in which the left-hand side is an Ito differential. (It should be
emphasized that such translation does not alter the stochastic
process involved, rather, it is to be viewed as a different
mathematical representation.) Accordingly, the expected value
of the left-hand side above is zero. (See Appendix B in [3]

for an exposition of the interrelationship between the Ito and
Stratonovich interpretations of SDEs.) Observe that, in terms
of the expression

∫ t

0 �t�t−τ dτ arising above, the factor of 1
2

can be considered to enter through the expectation of the same,
〈. . .〉 = ∫ t

0 δ(τ )dτ = 1
2 , in which careful attention should be

paid to the asymmetry in the interval of integration with respect
to the peak in the delta distribution function. Thus, considering
the perturbation expansion infinitesimally, i.e., as t → 0, and
using (38) we find that (36) becomes

dP̂ (φ)
→ = −1

2
ik1/2

(
0 e−iφt

−eiφt 0

)
dW

(φ)
t

− 1

4
k

(
0 e−iφt

eiφt 0

)
dt. (39)

Since the Ito differential of a component spin random phasor
is d(e−iφt ) = −ie−iφt dφt − 1

2e−iφt dφt
2, comparing with the

components of P̂ (φ)
→ in (24), we identify the phase dynamics

φt = k1/2W
(φ)
t . (40)

Hence, the azimuthal angle is a scaled Wiener process, in
which the physical origin of the constant k is through the
magnitude of the perturbing Hamiltonian H1(t), according to
(32) above.

It is important to appreciate the truncation of the perturba-
tion expansion (30) at second order in the case of the extreme
narrowing approximation where the perturbing Hamiltonian
H1(t) is modeled via a (differential of a) Wiener process.
This feature can be understood to arise since the Wiener
process satisfies the exact relations dWα

t = 0 for α > 2, which
express the fact that higher than second order moments of
its increments (per unit of time) vanish. Consequently, the
associated Kramers-Moyal expansion is second order, and in
this case reduces to the heat equation. The vanishing higher
moment property of the Wiener process implies that higher
order (in H1) terms of (30) are zero.

Observe that there is no violation of quantum mechanical
unitarity in this picture, in which individual pure states evolve
into random pure states.

D. Isotropic fluctuations

We have seen in the case of axial fluctuations that the state
vector evolves as a Wiener process on the equatorial circle on
the Bloch sphere. In the more general case, we shall consider
a perturbation involving fluctuations in all directions:

H1(t) = 1

2
k1/2σ

(
�

(x)
t ,�

(y)
t ,�

(z)
t

)
= 1

2
k1/2

(
�

(z)
t �

(x)
t − i�

(y)
t

�
(x)
t + i�

(y)
t −�

(z)
t

)
. (41)

Applying the same arguments to the case of isotropic fluctu-
ations, via (41), we deduce that (26)–(30) lead to isotropic
rotational diffusion, for which we develop the dynamics
explicitly below.

1. Rotational diffusion

We construct an isotropic stationary diffusion process on the
unit (Bloch) sphere. In spherical polar coordinates, the position
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vector of a point on the unit sphere (in ambient Euclidean
coordinates) is rt = (sin θt cos φt , sin θt sin φt , cos θt ), and in
terms of these coordinates the spherical Laplacian on the unit
sphere is given by

∇2f = 1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+ 1

sin2θ

∂2f

∂φ2
. (42)

The heat equation on the sphere can then be written as

∂f

∂t
= 1

2
k∇2f (43)

and expressed in these coordinates. The probabilistic interpre-
tation of the function f in this equation is that, for an element of
probability δP, we have δP = f δ2A where δ2A = sin θδ θδ φ

is the area element on the unit sphere. [To see how this arises
from an ambient diffusion in three-dimensional Euclidean
space explicitly, consider the full 3-Laplacian in spherical po-
lar coordinates ∇2 = 1

r2 {∂r (r2∂r ) + 1
sin2 θ

∂2
φ + 1

sin θ
∂θ (sin θ∂θ )}

acting on f (3) = ρ(3)/r2 sin θ so that δP = f (3)δ3r. The
resulting (Fokker-Planck) equation for ∂ρ/∂t contains ∂r terms
of the form ∂r (r2∂r )( ρ

r2 ) = ∂2
r ρ − ∂r ( 2ρ

r
). Removal of such ∂r

terms and setting r = 1 maps to zero the radial component of
the generator of the diffusion (cf. Chap. 3 in [3]) and restricts
the process to the unit sphere; locally the sphere process is
two-dimensional Brownian motion in the tangent space at each
point P . For the probability density in spherical coordinates
ρ(θ,φ), we make the identification ρ ↔ f sin θ . It follows
that

∂ρ

∂t
= 1

2
k

[
− ∂

∂θ
(ρ cot θ) + ∂2ρ

∂θ2
+ 1

sin2θ

∂2ρ

∂φ2

]
, (44)

which is the Fokker-Planck equation. From this we can read
off (see, e.g., [3]) a pair of coupled SDEs for the (θt ,φt )
process

dθt = k1/2dW
(θ)
t + 1

2k cot θtdt, dφt = k1/2

sin θt
dW

(φ)
t (45)

in which the Wiener processes W
(θ)
t , W

(φ)
t are indepen-

dent so that the product of their Ito differentials vanishes,
dW

(θ)
t dW

(φ)
t = 0, and are normalized in the sense that

dW
(θ)2
t = dt , dW

(φ)2
t = dt . Observe that, consistent with the

requirement of isotropy, Eq. (45) implies (by applying Ito’s
formula to rt ) that drt |2θ = drt |2φ , i.e., the squared fluctuations
due to the θ , φ motions separately are equal in magnitude (in
other words, the diffusion tensor for the two-sphere process
with respect to the ambient Euclidean metric is isotropic).
Since the probability distribution for this process is uniform
on the Bloch sphere (with area measure induced from the
volume form in the ambient Euclidean 3-space), an element
of probability satisfies 1

4π
sin θ dθ dφ = δP = pθφdθ dφ for

joint probability density function pθφ . Thus, we have the joint
and marginal probabilities

pθφ = 1

4π
sin θ, pθ = 1

2
sin θ, pφ = 1

2π
(46)

and, hence, θ , φ are statistically independent.

In this geometric context, for mathematical completeness, it
is informative to consider the distribution of the stereographic
coordinate ζ . Writing an element of probability as p|ζ |d|ζ | =
pθdθ and using |ζ | = cot 1

2θ and (46) for pθ yields p|ζ | =
2|ζ |

(1+|ζ |2)2 . This distribution is heavy tailed: the first moment

E[|ζ |] exists, but all integer moments of higher order are
infinite (thus, |ζ | has infinite variance). For the expected value
we have E[ζ ] = 0 since θ , φ are independent and eiφ has
zero mean (this is in spite of the corresponding state P being
uniformly distributed on the Bloch sphere). It is important
to appreciate here that, while the (polar and stereographic)
coordinates depict a certain orientation, the situation as regards
dynamics and distribution on the Bloch sphere is totally
symmetric.

Observe for these dynamics that the probability that the
two-sphere process hits a pole is zero, the event of which
is analogous to a Wiener process in two dimensions hitting
the origin (or any given point). This situation should be
contrasted with the circle diffusion case where the probability
of hitting an antipodal point is one. In this respect, it should
be appreciated that the circle of azimuth is compactified to a
single point at the poles. With regard to the behavior of the
drift at the poles, locally we have diffusion on the Euclidean
tangent plane. The polar angle measures the absolute distance
from the origin (pole), which can be recognized as the Bessel
process. Consistently, the polar drift, which is proportional to
the cotangent of the polar angle, coincides with the Bessel
drift for small angles (equal to the reciprocal angle). The
(mathematical) reader should compare, e.g., Chap. 4 in [3]
for a detailed account of the Bessel process in any number
of dimensions. The process for the spin vector is described in
terms of intrinsic polar coordinates so that it is constrained to
lie on the Bloch sphere without imposing boundary conditions.
In this way, the isotropic spin diffusion process, the origins via
(41) of which lie in isotropic magnetic field fluctuations in the
ambient 3-space, is described in terms of nonisotropic (polar)
coordinates. Thus, the singularities that appear in (45) are
“apparent,” i.e., coordinate, ones.

2. Stereography

The differential of the stereographic coordinate can be
calculated from the Ito product formula d(AtBt ) = AtdBt +
BtdAt + dAtdBt where attention should be paid, in gen-
eral, to the additional second order term. In our specific
case

dζt = eiφt d
(
cot 1

2θt

) + (deiφt ) cot 1
2θt , (47)

and the second order term vanishes due to the independence
between the polar and azimuthal fluctuations (the diffusion is
isotropic). According to Ito’s formula and (45),

d(eiφt ) = ieiφt dφt − 1

2
eiφt dφ2

t

= ieiφt

(
k1/2

sin θt

dW
(φ)
t

)
− 1

2
eiφt

(
k

sin2θt

)
dt. (48)
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Again, via Ito’s formula, we have d(cot 1
2θt ) =

− 1
2 csc2 1

2θtdθt + 1
4 cot 1

2θtcsc2 1
2θtdθ2

t and hence

dζt = eiφt
( − 1

2 csc2 1
2θt

[
k1/2dW

(θ)
t + 1

2k cot θtdt
]

+ 1
4k cot 1

2θtcsc2 1
2θtdt

+ [
ik1/2 csc θtdW

(φ)
t − 1

2k csc2θtdt
]

cot 1
2θt

)
. (49)

Close inspection of the combined drift terms above (via the
trigonometric t formulas for sine and cosine in terms of tangent
of half the angle, for instance) reveals an overall zero drift.
Thus, the stereographic coordinate for the spin relaxation
process is a martingale. There remain two fluctuating terms
in dW

(φ)
t , dW

(θ)
t with volatilities expressed in angular form

as read off from (49). Using the expressions |ζ | = cot 1
2θ ,

ζ/|ζ | = eiφ , the residual fluctuating terms can be more
compactly expressed in terms of the stereographic coordinate
alone, and thus

dζt = 1

2
k1/2ζt

(
1

|ζt | + |ζt |
)(−dW

(θ)
t + idW

(φ)
t

)
. (50)

The diffusion tensor for this process is therefore isotropic,
dζ 2

t = 0, and the magnitude of the diffusion or squared
volatility depends (only) on |ζ | (the polar angle) according to

|dζt |2 = 1

2
k|ζt |2

(
1

|ζt |2 + 2 + |ζt |2
)

dt (51)

in which the squared volatility coefficient can be recognized
trigonometrically as 1

2k csc4 1
2θt . In the limits |ζ | → ∞

and |ζ | → 0, corresponding to approach of the north (spin-↑)
and south (spin-↓) poles of the Bloch sphere, this coefficient
tends to infinity and 1

2k, respectively, as we anticipate from
the locally constant diffusion on the Bloch sphere and the
nature of the stereographic mapping which sends the north
pole to infinity in the complex ζ plane.

Remark. The results above should be compared and
contrasted with the polar representation of two-dimensional
Brownian motion Bt = Rte

iαt = Xt + iYt , where X,Y are
(scaled) independent Brownian motions

dXt = κ1/2dW
(x)
t , dYt = κ1/2dW

(y)
t . (52)

The differentials of the modulus and phase components can
then be computed, using the property dB2

t = 0, as

dRt = 1

2Rt

(BtdB∗
t + B∗

t dBt ) + 1

4Rt

dBtdB∗
t

= 1

Rt

(XtdXt + YtdYt ) + 1

4Rt

(
dX2

t + dY 2
t

)
= κ1/2dW

(R)
t + κ

2Rt

dt (53)

and

dαt = 1

2i

(
dBt

Bt

− dB∗
t

B∗
t

)

= 1

R2
t

(−YtdXt + XtdYt ) = κ1/2

Rt

dW
(α)
t (54)

in which we identify radial and angular Wiener processes from
their Cartesian counterparts

dW
(R)
t = 1

Rt

(
XtdW

(x)
t + YtdW

(y)
t

)
,

(55)

dW
(α)
t = 1

Rt

(−YtdW
(x)
t + XtdW

(y)
t

)
.

The above expression demonstrates explicitly the orthogonal-
ity property dRtdαt = 0. Then, from the Ito product formula,
we deduce

dBt = κ1/2eiαt
(
idW

(α)
t + dW

(R)
t

)
(56)

in which computation the drift terms that arise cancel.
Thus, both the stereographic spin noise and two-dimensional
Brownian motion processes are martingales, but the former
has a distinct and intricate (stochastic) volatility structure
encapsulated by (50).

3. Diagonal

We now proceed to calculate the dynamics of the density
matrix for pure states and an ensemble. Via Ito’s formula, we
have d cos θt = − sin θtdθt − 1

2 cos θtdθ2
t , and so from (45)

and (16) the differential of the spin ↑↑ component of the
density matrix is given by

dσ
↑↑
t = −k

(
σ

↑↑
t − 1

2

)
dt − 1

2k1/2 sin θtdW
(θ)
t . (57)

The differential of the spin ↓↓ component is then the negative
of this:

dσ
↓↓
t = −dσ

↑↑
t , (58)

which follows from the unit trace condition σ ↑↑ + σ ↓↓ ≡ 1 [as
evident from (16)]. With regard to the fluctuating term in (57),
define the following (real) processes pertaining to constituent
pure states and the ensemble:

d
�
χ

(j )
t

.= sin θ
(j )
t dW

(θ)(j )
t , d

�
χt

.= 1

N1/2

N∑
j=1

d
�
χ

(j )
t . (59)

Taking the square of the second relation as pertains to the
ensemble, we find

lim
N→∞

d
�
χ

2
t = E[sin2θ ]dt = 2

3dt (60)

in which we have used (46) to calculate E. It follows that

d
�
χt

.=
√

2

3
dWt . (61)

The fact that the sum in (59) yields a scaled Wiener process
follows from the stability property of the Gaussian distribution
(see, e.g., Appendix A in [3]). Now, for an ensemble, define

�↑↑ .= 1

N1/2

N∑
j=1

σ ↑↑(j ). (62)

The dynamics for the spin ↑↑ component of the ensemble is
thus determined by the following SDE:

d�
↑↑
t = −k

(
�

↑↑
t − 1

2
N

1/2

)
dt −

√
k

6
dWt . (63)
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4. Off diagonal

For mathematical convenience and a natural geometric
interpretation, let us first introduce a new complex “trans-
verse” coordinate adapted from the stereographic coordinate
introduced earlier (and which differs from the off-diagonal
component of the pure state density matrix by a factor of 2):

ζ̃
.= 2ζ

1 + |ζ |2 . (64)

In polar form ζ̃ = eiφ sin θ which, in the geometry of Fig. 1,
is the projection along the z axis of a point on the Bloch
sphere to the transverse plane. Thus, 0 � |ζ̃ | � 1 and ζ̃t is a
process on the unit disk. According to this geometry, a given
value of ζ̃ has two associated values of ζ , and thus a given
point in the transverse plane maps to a pair of equal longitude,
opposite latitude points on the Bloch sphere with stereographic
coordinates

|ζ±| = 1

|ζ̃ | [1 ±
√

1 − |ζ̃ |2], (65)

for which |ζ+||ζ−| ≡ 1, and thus ζ+, ζ− represent inverse
points. Observe that the ↑↓ component of (15) does not
determine the density matrix. Physically, this corresponds to
the fact that a given pure state transverse magnetization has two
equal and opposite possible z magnetizations. The differential
of this new coordinate can be computed explicitly as

dζ̃t = eiφt d(sin θt ) + d(eiφt ) sin θt + d(eiφt )d(sin θt )

(66)

in which the last quadratic differential term is zero in this case
due to the independence of the θ and φ fluctuations. From
Ito’s formula, we have d sin θt = cos θtdθt − 1

2 sin θtdθ2
t and

so combining with (45) we deduce

d sin θt = k1/2 cos θtdW
(θ)
t + 1

2k(cos θt cot θt − sin θt )dt.

(67)

It follows from (48) and (67) that

dζ̃t = −kζ̃tdt + k1/2eiφt
(
cos θtdW

(θ)
t + idW

(φ)
t

)
. (68)

Observe the complex valued nature of the fluctuating term
in the above SDE, for which the polar fluctuations contribute
in the instantaneous direction defined by ζ̃ (weighted by a
cosine stochastic volatility), while the azimuthal fluctuations
contribute in the direction perpendicular to this (through
multiplication by

√−1). Note that, for a single spin, the
magnitude of the radial fluctuations in the transverse plane is
less than that of the angular fluctuations (unless the underlying
state lies at either pole of the Bloch sphere); however, as
we shall see in what follows, when an ensemble of spins
is considered, the resulting fluctuating term has a circular
symmetry (its diffusion tensor is isotropic). With regard to the
linear drift term above, this has the effect of a mean reversion
to zero. An ensemble average of (68) removes the fluctuating
term on the right-hand side, while the residual drift term (which
it should be appreciated contains second order derivative terms
from Ito’s formula) yields the familiar free induction decay
(FID) which is exponential on a time scale k−1.

Now, we map this single spin dynamics onto the behavior
for an ensemble of spins. [It is worthwhile to remark that,

owing to the stochastic volatility present in (68), the dynamics
for a single spin is distinct from that we shall derive for an
ensemble, the latter yielding a constant amplitude fluctuating
term, as we shall derive.] As for the diagonal case, throughout
our analysis each spin is assumed independent from every
other spin. For the j th such spin, set ζ̃ �→ ζ̃ (j ), and likewise
for θ , φ, etc. With regard to the fluctuating terms in (68), define
another family of processes pertaining to individual spins and
the ensemble:

d
�
χ

(j )
t

.= eiφ
(j )
t

(
cos θ

(j )
t dW

(θ)(j )
t + idW

(φ)(j )
t

)
,

(69)

d
�
χt

.= 1

N1/2

N∑
j=1

d
�
χ

(j )
t .

Hence, taking the square of the component spin process above

d
�
χ

(j )2
t = e2iφ

(j )
t

(
cos2θ

(j )
t − 1

)
dt (70)

and accordingly the resultant amplitude fluctuations have
square

d
�
χ

2
t = 1

N

N∑
j=1

d
�
χ

(j )2
t = 1

N

N∑
j=1

e2iφ
(j )
t

(
cos2θ

(j )
t − 1

)
dt. (71)

For the ensemble, in the limit of a large number of spins, via
the law of large numbers, we have

lim
N→∞

[
d

�
χ

2
t

] = E[e2iφ(cos2θ − 1)]dt = 0, (72)

where the vanishing follows from the expectation values

E[e2iφ] = 0, E[cos2θ] = 1
3 , (73)

which are a consequence of (46). In a similar way, using

d
�
χ

(j )
t d

�
χ

(j )∗
t = (cos2θ

(j )
t + 1)dt , we find

d
�
χtd

�
χ

∗
t = 1

N

N∑
j=1

d
�
χ

(j )
t d

�
χ

(j )∗
t = 1

N

N∑
j=1

(
cos2θ

(j )
t + 1

)
dt,

(74)

which, for the spin ensemble, tends to

lim
N→∞

[d �
χtd

�
χ

∗
t ] = E[cos2θ + 1]dt = 4

3dt. (75)

We deduce that the resultant fluctuation �
χt is a scaled complex

Wiener process with differential

d
�
χt ≡ 2√

3
dξt (76)

in which dξ 2
t = 0 and dξtdξ ∗

t = dt . The squared property

d
�
χ

2
t = 0 implies that �

χt , when regarded as a process in the
real plane R2, has an isotropic diffusion tensor; this fact
follows from writing d

�
χt = eiδt (dxt + idyt ) for real δ,x,y

with orthogonality dxtdyt = 0 (so that eiδt represents an
instantaneous principal axis of the diffusion tensor) and taking
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the square. Now, if we define

ζ̃t
.=

N∑
j=1

1

N
1/2

ζ̃
(j )
t , (77)

the resulting dynamics is

dζ̃t = −kζ̃tdt +
√

4k

3
dξt . (78)

Correspondingly, if we introduce the spin ↑↓ component of
the ensemble modified spin density matrix

�
↑↓
t

.=
N∑

j=1

1

N
1/2

σ
↑↓(j )
t , (79)

then this satisfies

d�
↑↓
t = −k�

↑↓
t dt +

√
k

3
dξt , (80)

which is the dynamical equation for a complex Ornstein-
Uhlenbeck process.

5. Statistics of fluctuating terms

To complete our analysis of the fluctuating terms pertaining
to the spin ↑↑ (longitudinal) versus ↑↓ (transverse) com-
ponents of the density matrix, we examine their statistical
relationship. It follows from (59) and (69), together with the
orthogonality of the polar and azimuthal fluctuations, that

d
�
χtd

�
χt = 1

N

N∑
j=1

eiφ
(j )
t sin θ

(j )
t cos θ

(j )
t dt, (81)

and so for a large ensemble of spins we have

lim
N→∞

[d �
χtd

�
χt ] = E[eiφ sin θ cos θ ]dt

= E[eiφ]E[sin θ cos θ ]dt = 0 (82)

in which the last two equalities follow from (46). Thus, Wt and
ξt are uncorrelated and, since they are Gaussian, statistically
independent.

6. Scaling

If we define the quantity pertaining to an ensemble Q
.=

1
Ns

∑N
j=1 q

(j )
t where the individual component differentials

dq
(j )
t have drifts a − q

(j )
t for constant a, then the ensemble Q

drift is N1−sa − Qt . In the present context, we are concerned
with the case s = 1

2 since the r.m.s. for spin noise is N1/2; this
yields a drift of the form N1/2a − Qt , as we shall see explicit
instances of in what follows.

E. Effect of the lattice

According to a quantum statistical mechanical treatment of
the lattice [1], there exists an equilibrium value for the density
matrix

σ0 = exp[−h̄H0/kT ]/tr{exp[−h̄H0/kT ]}, (83)

which can be written in the simple compact form(
p 0

0 1 − p

)
, (84)

where p is the longitudinal polarization (Boltzmann) fraction

p = 1

1 + exp(2h̄E/kT )
. (85)

In the high field E → ±∞ or equivalently low temperature
T → 0 limits, for antiparallel and parallel fields, we have p →
0, 1, respectively. As we shall see explicitly, a contribution of
spin noise is energy and temperature independent and thus
persists in these limits. Mathematically, the coordinate ζ drifts
toward zero (infinity) [as E is negative (positive)] and ζ̃ drifts
toward zero, while (spin noise) fluctuations persist (in a pulsed
experiment the latter to be regarded as an asymptotic residual
noise). On the Bloch sphere, this corresponds to a drift toward
the south (north) poles as B0 is antiparallel (parallel) to the z

axis.

1. Modified dynamics

According to Abragam [1], the effect of the lattice is to mod-
ify the equation for the density matrix via the transformation
σ ∗ �→ σ ∗ − σ0. Dynamically, this yields an extra contribution
to the double commutator term in (30) equal to∫ t

0
dτ [H1(t),[H1(t − τ ),σ0]]. (86)

As we shall see in our following analysis, this term amounts
to a drift oriented to a pole of the Bloch sphere (the
polarity depending on the sign of E). We evaluate the single
commutator in (86) as

[H1(t − τ ),σ0] = 1

2
k1/2(1 − 2p)

(
0 �

(w)∗
t−τ

−�
(w)
t−τ 0

)
(87)

in which the quantity �
(w)
t

.= �
(x)
t + i�

(y)
t has been introduced

for notational compactness. Hence, the contribution to the dou-
ble commutator from the lattice via the additional equilibrium
density matrix term is

[H1(t),[H1(t − τ ),σ0]]

= 1

4
k(1 − 2p)

[(
�

(z)
t �

(w)∗
t

�
(w)
t −�

(z)
t

)
,

(
0 �

(w)∗
t−τ

−�
(w)
t−τ 0

)]

= 1

2
k(1 − 2p)

(
−�

(x)
t �

(x)
t−τ − �

(y)
t �

(y)
t−τ ∗

�
(z)
t �

(w)
t−τ −

)
, (88)

where the symbols “∗” and “−” in the matrix of the last line
indicate elements equal to the complex conjugate and negative
of those diagonally opposite, respectively. Observe that, under
certain circumstances, this lattice contribution vanishes. First,
if the transverse fluctuations are zero (�(x) = �(y) = 0), then
the lattice contribution vanishes, as expected since it is
only transverse magnetic fields that can effect longitudinal
relaxation. Second, in the infinite temperature and zero field
limits, for which p = 1

2 , the equilibrium density matrix is
proportional to the identity (situated at the center of the Bloch
ball in Fig. 1). It therefore commutes with all operators and
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consistently the contribution (86) vanishes, as evident from
(88).

Let us consider the off-diagonal and diagonal contributions
to the differential dσ separately. Following similar steps to the
case of axial fluctuations considered in Sec. III C, a typical
off-diagonal term in (88) yields a contribution to (86) of∫ t

0
dτ �

(z)
t �

(x)
t−τ dt = dW

(z)
t ◦

∫ t

0
−dW

(x)
t−τ︸ ︷︷ ︸

W
(x)
t

= W
(x)
t ◦ dW

(z)
t → 0, (89)

where the limit is t → 0; similarly, all such off-diagonal terms
yield zero contribution. For the diagonal terms, however, a
nonzero contribution arises. For a typical term, we find∫ t

0
dτ �

(x)
t �

(x)
t−τ dt = dW

(x)
t ◦

∫ t

0
−dW

(x)
t−τ︸ ︷︷ ︸

W
(x)
t

= W
(x)
t ◦ dW

(x)
t → 1

2
dt (90)

and similarly for terms involving �(y). Hence, the additional
contribution to relaxation due to the lattice is

dσ |σ0 = 1

2
k(1 − 2p)

(−1 0

0 1

)
dt (91)

and so the lattice contributes only to longitudinal relaxation.
Grouping the terms in the way they arise in the above derivation
(so that the drift induced by the finite temperature lattice
appears separately as the final term) leads to the central result
of the paper.

The combined processes of spin-spin and spin-lattice
relaxation are determined by the following set of stochastic
differential equations for the modified spin density:

d�t =
(

−k(�↑↑
t − 1

2N1/2) −k�
↑↓
t

∗ −

)
dt

+
(−√

k/6dWt

√
k/3dξt

∗ −
)

+ 1

2
k(1 − 2p)N1/2

(−1 0

0 1

)
dt. (92)

Once again, the symbols “∗” and “−” in the bottom rows of
the first two matrices appearing on the right-hand side of the
above equation denote the complex conjugate and negative
of the elements diagonally opposite, respectively. As derived
previously in Sec. III D5, the fluctuating terms dWt and dξt

arising in (92) are statistically independent.

2. Ensemble properties

We examine closely the implications of the dynamics
embodied by (92) for the spin ensemble. First, observe the
cancellation of the N -dependent longitudinal relaxation drift
term extant in the absence of the lattice [top line right-hand
side of (92)] with a corresponding term that arises from
the finite temperature lattice; this leaves a residual lattice
drift term that scales as N1/2. It follows from the general
solution of the Ornstein-Uhlenbeck equation (see, e.g., Chap.

8 in [3]) that “spin noise” [the off-diagonal component
of (92)] has asymptotic variance E[|�↑↓|2] = 1

3 which is
independent of the strength of the magnetic field fluctuations
prescribed by k; the constant k amounts to a time change
in the stochastic differential equation for �↑↓ and so does
not affect the asymptotic stationary probability distribution.
Thus, k determines (only) the T 2 time scale of spin noise
fluctuations, their magnitude scaling with the square-root
of the spin population size N1/2. Spin noise is manifestly
temperature independent or, in other words, independent of
the Boltzmann fraction since p features only in the diagonal
component of (92). It is evident from (92) that the spin-spin
and spin-lattice relaxation times are equal, T 1 = T 2, since
the coefficients of �↑↑ and �↑↓ in the drift term are matching
values −k. This is a familiar feature of extreme narrowing
such as we consider here, where the autocorrelation times of
the noise processes � in Eqs. (32) and (41) are zero. By solving
the ensemble averaged equations for the density matrix (92),
we can obtain the appropriate scaling with the spin population
N , for both spin-spin and spin-lattice relaxation, and also the
equilibrium Boltzmann value for T 1 relaxation. Explicitly, the
expected value E of (92) yields, for the ↑↑ component,

d�↑↑

�↑↑ − N1/2p
= −k dt, (93)

which integrates to

�
↑↑
t = N1/2p + (�↑↑

0 − N1/2p)e−kt . (94)

This is the equation for longitudinal relaxation. Similarly, for
the ↑↓ component

d�
↑↓
t

�
↑↓
t

= −k dt, (95)

�
↑↓
t = �

↑↓
0 e−kt , (96)

which is the equation for transverse relaxation.
In comparison to the square root N scaling of (17) if we

define �̂
.= 1

N

∑N
j=1 σ (j ) (so that �̂ = �/N1/2), then in the

limit N → ∞, via the law of large numbers, this tends to the
expected value

�̂ → E[σ (j )] = E[�̂]. (97)

Thus, for an asymptotically large collection of spins, we can
write

�̂ ≡ E[�̂] (98)

and �̂ becomes nonrandom. This property of �̂, which is
the object of consideration in conventional NMR, can be
understood from the fact that it is an ensemble average
quantity. Consistently, by scaling (92) [or the components of
its ensemble average (93) and (95)] by 1/N1/2 in this limit, we
obtain the system of deterministic differential equations:

d�̂ = −k

(
�̂↑↑ − p �̂↑↓

∗ −

)
dt. (99)

Observe how the 1/N1/2 scaling removes the fluctuating terms
in (92). The solution of this system is

�̂
↑↑
t = p + (�̂↑↑

0 − p)e−kt , �̂
↑↓
t = �̂

↑↓
0 e−kt . (100)
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Thus, for example, if p = 1
2 (the case of zero field or infinite

temperature), the asymptotic solution for �̂ is proportional
to the identity operator and the corresponding point in Fig. 1
is situated at the center of the Bloch ball. In this way, the
deterministic results of conventional NMR are recovered,
and moreover it is clear how they arise from the random
fluctuations in the individual spins.

F. Unitarity and mixing

We examine how an initially pure state configuration
evolves, with regard to unitarity and mixing and the effect
of coupling with the lattice. For a system containing more
than a single spin N > 1, in the absence of the lattice, it is
immediate from the geometry we have described in Sec. II that
an initial pure preparation (an ensemble with all component
spins prepared in an identical pure state) evolves into a mixed
state, via the following argument. For an ensemble, an initial
pure state will evolve via stochastic evolution into an ensemble
of distinct pure states, with probability one. Consider, then,
the case of two spin states starting at the same point on the
Bloch sphere which, at a later time, are situated at a pair of
distinct points; the resulting ensemble is described by a mixed
state whose density matrix is represented by the midpoint of
the chord joining the two component pure states, in the solid
interior of the Bloch sphere. Thus, it remains to study the
case of a single spin N = 1. In the absence of the lattice,
it is clear from the parametrization (16) that a pure state
remains pure under stochastic evolution, which is rotational
diffusion confined to the Bloch sphere according to (45).
The situation in this respect when the effect of the lattice is
included becomes more involved, however. We shall see that
a state that is initially pure for the spin system evolves into a
mixed state for the spin component S of the combined system
S ⊗ L, through its coupling with the lattice L. Unitarity for
the tensor product Hilbert space H = S ⊗ L on which the
full Hamiltonian acts requires that the combined state remain
pure, although evolving into a random pure state in S ⊗ L.
To see how this arises explicitly, first we introduce Euclidean
coordinates in the spinor representation

σ = 1

2

(
1 + z x + iy

x − iy 1 − z

)
. (101)

For a(n) (initial) pure state

x + iy = eiφ sin θ, z = cos θ (102)

so that (x,y,z) is a point on the (unit) Bloch sphere x2 + y2 +
z2 = 1. Now, a convenient measure of purity for a spin state is
the determinant

D
.= σ ↑↑σ ↓↓ − σ ↑↓σ ↑↓∗, (103)

which we require to be constant for a pure state to remain pure
under (stochastic) evolution. (The situation can be compared
with two-component spinor geometry where the vanishing
determinant corresponds to a null vector in Lorentzian space-
time.) Dropping the process suffix t temporarily for notational
simplicity, we obtain the (stochastic) differential

dD = σ ↑↑dσ ↓↓ + σ ↓↓dσ ↑↑ + dσ ↑↑dσ ↓↓

− σ ↑↓dσ ↑↓∗ − σ ↑↓∗dσ ↑↓ − dσ ↑↓dσ ↑↓∗. (104)

This can be computed explicitly for a single spin using (92)
and setting N = 1. Using the trace condition σ ↑↑ + σ ↓↓ ≡ 1,
and its differential dσ ↑↑ = −dσ ↓↓, we find

dDt = (1 − 2σ
↑↑
t )

[
k(−σ

↑↑
t + p)dt −

√
k

6
dWt

]
− k

6
dt

−
[
σ

↑↓
t

(
−kσ

↑↓∗
t dt +

√
k

3
dξ ∗

t

)

+ σ
↑↓∗
t

(
−kσ

↑↓
t dt +

√
k

3
dξt

)
+ k

3
dt

]
. (105)

Observe that in the absence of fluctuations k = 0, there are no
dynamics and this differential vanishes. The extra contribution
to the differential of the determinant, due to the lattice, is
evidently

dDlattice = 1
2k(1 − 2p)(σ ↑ − σ ↓) �= 0, (106)

which is nonvanishing for p �= 1
2 unless the state is situated

instantaneously on the equatorial plane, which occurs with
probability measure zero. Thus, an effect of the lattice is that
pure spin states evolve into mixed spin states, geometrically
situated in the interior of the Bloch sphere in Fig. 1.

Removing the coupling with the lattice is mathematically
equivalent to setting p = 1

2 , as evident from (92), for example.
If we calculate dDt explicitly in this case, we obtain a
vanishing drift and a collection of fluctuating terms involving
Wt , ξt which, on inspection using the results of Sec. III D, are
seen also to vanish. This verifies what must be the case from
the parametrization, namely, that in the absence of the lattice,
a pure spin state remains pure under stochastic evolution. A
corollary of this, via the spinor geometry of (101) and (103),
is that a mixed spin state situated at a given radius in the Bloch
ball remains on the concentric sphere of that radius under
stochastic evolution.

IV. DISCUSSION

It is worthwhile to pinpoint the three separate time scales
that arise in spin noise and relaxation, in an experimental
context. The perturbation to the Hamiltonian has very rapid
fluctuations on a time scale τc, corresponding to the rapid
(rotational) motion of the nucleus in its magnetic environment
and the precise nature of the interaction, e.g., dipole-dipole,
chemical shielding, quadrupolar. This interaction is very
weak so that, in mathematical terms, k 	 1 in (41). The
aforementioned weakness means that the motion of the density
matrix, according to (30), is relatively slow, on a time scale
τσ (even in the extreme narrowing approximation τc ≈ 0).
These two time scales are inherent to the physical system
under observation. A third time scale is the experimentally
determined sample interval τs which, for observations of
spin noise, should be chosen much less than the spin noise
correlation time τσ (cf. [5]). Thus, a typical observation entails
the following sequence of inequalities of three (independent)
time scales:

τc 	 τs 	 τσ . (107)

The work is closely aligned to some issues in quantum
foundations through the role of a random pure state, an
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essential ingredient in the derivation of the existence of spin
noise (and therefore relaxation). In this paper, we have devel-
oped the idea that a random pure state is both theoretically
and experimentally distinct from a corresponding mixed state
constructed from the asymptotic distribution pertaining to the
former; moreover, spin noise is (an example of) experimental
evidence of this distinction [5].

In relation to conventional NMR, our approach has shown
how the approximations that Abragam [1] uses are justified
within their domain of applicability, and we have demon-

strated how the standard density matrix fits within our more
general formulation. Our results reveal the intimate connec-
tions between spin noise and conventional spin relaxation.
The advantage of this approach is both conceptual and
experimental.
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