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Information-theoretic approach to ground-state phase transitions
for two- and three-dimensional frustrated spin systems
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The information-theoretic observables entropy (a measure of disorder), excess entropy (a measure of
complexity), and multi-information are used to analyze ground-state spin configurations for disordered and
frustrated model systems in two and three dimensions. For both model systems, ground-state spin configurations
can be obtained in polynomial time via exact combinatorial optimization algorithms, which allowed us to study
large systems with high numerical accuracy. Both model systems exhibit a continuous transition from an ordered
to a disordered ground state as a model parameter is varied. By using the above information-theoretic observables
it is possible to detect changes in the spatial structure of the ground states as the critical point is approached. It
is further possible to quantify the scaling behavior of the information-theoretic observables in the vicinity of the
critical point. For both model systems considered, the estimates of critical properties for the ground-state phase
transitions are in good agreement with existing results reported in the literature.
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I. INTRODUCTION

The standard analysis of physical phase transitions involves
the analysis of order parameters and other derivatives of the
free energy [1]. An alternative approach is based not on
physical but information-theoretic observables, which have
occasionally been used in the analysis of (more or less)
complex systems [2].

The presented study extends previous studies that employed
information-theoretic methods to measure entropy (i.e., disor-
der and randomness) and statistical complexity (i.e., structure,
patterns, and correlations) for d � 1-dimensional systems
[3–6]. For one-dimensional (1D) systems, the excess entropy
constitutes a well-understood information-theoretic measure
of complexity. Effectively, it accounts for the rapidity of
entropy convergence. While the extension of entropy to higher
dimensions is rather intuitive, the extension of excess entropy
is not. As a remedy, in Ref. [5], three different approaches were
developed in order to extend the definition of excess entropy to
d > 1, allowing to quantify the complexity for spatial systems
in higher dimensions.

Most previous studies focused on characterizing the above
information-theoretic observables only for systems with-
out disorder. With regard to this, the local states method
[7], proposed for the calculation of free energies within
importance-sampling Monte Carlo (MC) simulations, was
based on entropy estimation techniques for lattice models
with discrete interactions and translation-invariant interactions
(i.e., nondisordered, pure systems). It combined upper and
lower bounds for the entropy density to compute free energies
(along with an error estimate). A comparison of numerical
simulations to exact results for the 2D Ising ferromagnet
indicated that it yields reliable estimates already for short
simulation runs (even in the critical region).

Using quite similar entropy estimation techniques, the
simulations reported in Ref. [5] were performed for the 2D
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square lattice Ising model with nearest- and next-nearest-
neighbor interactions. By means of single spin-flip Metropolis
dynamics at a comparatively low temperature, two variants of
the excess entropy were put under scrutiny. A careful analysis
indicated that these are sensitive to changes in the spatial
structure of the spin configurations as the nearest-neighbor
coupling strength was varied. They were further found to be
superior to conventional structure factors. This study allows us
to conclude that the excess entropy in 2D comprises a general
purpose measure of 2D structure.

Only recently, Ref. [8] used similar methods to characterize
local, i.e., lattice site dependent, entropies and local excess
entropies for the Kaya-Berker model. The latter is based on the
Ising antiferromagnet (IAFM) on a triangular lattice, wherein
a particular sublattice is diluted, only. The IAFM exhibits
geometric frustration and does not order at finite temperature.
In contrast to the pure model, the Kaya-Berker model orders at
finite temperature if at least a fraction p = 0.0975 of the sites
on the diluted sublattice are deleted. The simulations were
performed using single spin-flip Metropolis dynamics at fixed
dilution p = 0.15, where the freezing temperature amounts to
Tc ≈ 0.84. In the simulation, various temperatures down to
T = 0.4 were considered. It was found that the distribution
of local entropies broadens in the glassy phase below T ≈
0.8, indicating that for low temperatures local entropy is
not homogeneously distributed over the lattice. Further, the
average of the local excess entropy was observed to exhibit a
pronounced peak at the critical temperature, indicating that it
is sensitive to structural changes for the 2D configurations as a
result of the spin-glass ordering. Finally, complexity-entropy
diagrams for the frustrated Kaya-Berker model, recorded at
various temperatures, were found to be qualitatively different
from those corresponding to pure models (see Ref. [6]). This
study allows us to conclude that local entropy density and local
excess entropy are valuable observables that yield insight to
local structure and randomness for frustrated 2D systems.

Here, we aim to characterize the spatial structure displayed
by exact ground states (GSs) of disordered model systems
in terms of the information-theoretic observables entropy and
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excess entropy. For this purpose we consider the 2D random
bond Ising model (2D RBIM) as well as the 3D random
field Ising model (3D RFIM), which both exhibit disorder-
driven zero-temperature phase transitions. More precisely,
we use one of the approaches developed in Ref. [5], aimed
at understanding spatial patterns for 2D systems by parsing
them into 1D sequences. In addition we also consider the
multi-information, which, for the ordinary Ising ferromagnet
in the thermodynamic limit was proved to be maximized
at the critical point [9]. In contrast to the previous studies
we work at T = 0, aiming to characterize the ground-state
phase transitions that appear as the disorder is varied for
the above two disordered model systems (see Sec. II). In
doing so, we were interested in whether one can observe a
change in the structure of the ground states by using the above
information-theory inspired observables. Further, if the latter
is possible, it is of interest to quantify the scaling behavior of
these observables in the vicinity of the phase transition.

The remainder of the presented article is organized as
follows. In Sec. II we introduce the spin models that are
considered in the presented study. In Sec. III, the information-
theoretic observables entropy and excess entropy are intro-
duced and illustrated in more detail. Section IV reports on the
numerical results, further discussed in Sec. V. A summary of
the presented article is available at [10].

II. MODELS

Next, we present the two models, which were studied in
this work, the 2D RBIM and the 3D RFIM.

A. 2D random bond Ising model

We investigated GSs for the 2D RBIM, considering a square
lattice of side length L. The respective model consists of
N = L2 Ising spins, for which a particular spin configuration
might be written as σ = (σ1, . . . ,σN ), where σi ∈ {+1, − 1}.
The energy of a given spin configuration is measured by the
Edwards-Anderson Hamiltonian [11]

HRBIM(σ ) = −
∑

〈i,j〉
Jijσiσj , (1)

where the sum is understood to run over all pairs of nearest-
neighbor spins (on a 2D square lattice), with periodic boundary
conditions (BCs) in the x direction and free BCs in the
y direction. In the above energy function, the bonds Jij

are quenched random variables drawn from the disorder
distribution

P (Jij ) = exp
[−(Jij − μ)2/

(
2σ 2

J

)]
/(σJ

√
2π ), (2)

where the width of the distribution was fixed to σJ = 1.
Consequently, one realization of the disorder consists of a
mixture of antiferromagnetic bonds (Jij < 0) that prefer an
antiparallel alignment of the coupled spins, and ferromagnetic
bonds (Jij > 0) in favor of parallel aligned spins. In general,
the competitive nature of these interactions gives rise to
frustration. A plaquette, i.e., an elementary square on the
lattice, is said to be frustrated if it is bordered by an odd
number of antiferromagnetic bonds. In effect, frustration rules
out a GS in which all the bonds are satisfied. As limiting cases

(a)

(b)

FIG. 1. GS samples for (a) the L = 64 2D RBIM with mixed
boundary conditions (periodic = solid line, free = dashed line) at
μ = 1.15,0.97,0.40 (from left to right), and (b) the L = 48 3D RFIM
with fully periodic boundary conditions at b = 2.0,2.4,2.9 (from left
to right; only the spins on the x,y,z = 0 planes are displayed).

one can identify the random bond Ising ferromagnet (FM) as
μ → ∞ and the (Gaussian) 2D Edwards-Anderson-Ising spin
glass (SG) [11–13] at μ = 0. A GS spin configuration σGS

is simply a minimizer of the energy function Eq. (1). Thus,
regarding the GSs as a function of the variable μ, we expect
to find a ferromagnetic phase (spin-glass phase) for μ > μc

(μ < μc) wherein μc denotes the critical point at which the
T = 0 FM-SG transition, i.e., a continuous disorder-driven
phase transition, takes place. Samples of GSs for the 2D RBIM
for different values of the parameter μ are shown in Fig. 1(a).

The Ising spin glass is a paradigmatic model for a disordered
magnet. Since the effects of the disorder are well visible at
zero temperature, the investigation of ground-state properties
is of prime importance. For a planar version of this model,
e.g., a 2D square lattice with periodic boundary conditions in
only one direction, a solution of the GS problem is possible
by means of a mapping to an appropriate minimum-weight
perfect-matching problem. This latter problem can be solved
by means of exact combinatorial optimization algorithms from
computer science [12,14–18], whose running time increases
only polynomially with the system size. Hence, very large
systems can be treated exactly, giving very precise and reliable
estimates for the observables. The GS problem for lattice
dimensions d > 2 or systems subject to an external magnetic
field belong to the class of nondeterministic polynomial (NP)-
hard problems [15,19]. For those problems, no exact algorithm
with a polynomial running time has been found so far. From
a conceptual point of view, the existence of numerically exact
and highly efficient algorithms for the 2D SG with periodic
boundary conditions in at most one direction motivates the
special interest in this setup during the last decades.

As pointed out above, for the 2D RBIM on planar lattice
graphs (including the Ising spin glass), GS spin configurations
can be found in polynomial time. We here use a particular
mapping to an appropriate minimum-weight perfect-matching
problem, presented in Ref. [18]. The use of this approach
permits the treatment of large systems, easily up to L = 512,
on single processor systems. In a previous study [20], we
performed such GS calculations and employed a finite-size
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scaling analysis for systems of moderate sizes (L � 64)
to locate the critical point at which the transitions takes
place. Therefore, we analyzed the Binder parameter [21]
bL = 1

2 [3 − 〈m4
L〉/〈m2

L〉2] that is associated to the magneti-
zation mL. The Binder parameter is a standard observable in
statistical physics of Ising-like model systems. which, for a
given model, quantifies certain aspects of the shape of the
probability distribution function (pdf) of the order parameter
(i.e., the magnetization). It basically measures the deviation
of the kurtosis (i.e., the “peakedness”) γmL

= 〈m4
L〉/〈m2

L〉2

related to the order parameter pdf from that of a normal
distribution (having γnorm = 3). Crossing over the critical point
μc by changing the system parameter μ, a characteristic
change of the GS occurs: for μ > μc the system assumes
a ferromagnetic GS with nonzero magnetization 〈mL〉 and
spatial long-range order among the spins, while for μ < μc

the GS exhibits spin-glass order, i.e., no spatial long-range
order, and a vanishing magnetization. This is accompanied
by a qualitative change of the order parameter pdf, from a
double-peaked pdf to a pdf with a single peak centered at
zero, that can be quantified by means of the Binder parameter
(for a more thorough discussion in the context of thermal
phase transitions, see Ref. [21]). In the context of scaling
theory one can further justify the scaling form bL(μ) ∼
f [(μ − μc)L1/ν], where f is a size-independent function and
ν signifies the critical exponent that describes the divergence
of the correlation length as the critical point is approached.
The magnetization is simply the sum of all spin values in
the GS spin configuration, i.e., mL = ∑

i σGSi/L
2. Using the

data collapse anticipated by the scaling assumption above we
obtained μlit

c = 1.031(2) and ν lit = 1.49(4) (for a further study
of this transition, yielding similar results using renormalization
group techniques, see Ref. [22]). Finally, we characterized the
transition using a finite-size scaling analysis for the largest
and second-largest ferromagnetic clusters of spins within the
GS spin configurations. These clusters form as one proceeds
from spin-glass-ordered to ferromagnetic ground states. The
results obtained from the related scaling analysis support the
results obtained earlier by considering the Binder parameter
and magnetization.

B. 3D random field Ising model

We further investigated GSs for the 3D RFIM on a simple
cubic lattice of side length L. The respective model consists
of N = L3 Ising spins, and the energy of a given spin
configuration is measured by the Hamiltonian

HRFIM(σ ) = −J
∑

〈i,j〉
σiσj −

∑

i

biσi, (3)

where the first sum is understood to run over all pairs of
nearest-neighbor spins on a 3D simple cubic lattice with fully
periodic BCs. In the above energy function, the bonds that
couple adjacent spins are ferromagnetic, i.e., J > 0, and the
local fields bi (i = 1, . . . ,N) introduce disorder to the model.
The values of the local fields are independently drawn from
the disorder distribution

P (bi) = exp[−(bi)
2/(2b2)]/(b

√
2π ), (4)

where the mean of the distribution is fixed to zero and the width
amounts to b. Thus, one realization of the disorder consists of
ferromagnetic spin-spin couplings with each spin coupled to a
local random field.

The RFIM is a basic model for random systems [23,24] and
also gives rise to frustration. While in order to minimize Eq. (3)
the ferromagnetic spin-spin coupling will tend to align coupled
spins in parallel, the random fields will tend to align the spins
parallel to the local field, possibly introducing a paramagnetic
effect on the GSs. For a field width that is small compared to
the ferromagnetic coupling, i.e., for b 
 J , one might expect
a dominance of the ferromagnetic spin-spin coupling in the
GS spin configurations. In contrast to this, for a comparatively
large field width, the orientation of the majority of spins in a
GS will be determined by the local random fields, suggesting
a paramagnetic GS for large values of b. As a result, at T = 0,
the RFIM exhibits a disorder-driven continuous ferromagnet
to paramagnet (PM) transition regarding the ground-state
structure at a finite value bc. Samples of GSs for the 3D
RFIM for different values of the field strength b are shown in
Fig. 1(b).

The solution of the GS problem for the general RFIM (not
only its 3D variant) is possible by means of a mapping to
an appropriate maximum-flow problem [14,25,26]. This latter
problem can be solved in polynomial time by means of exact
combinatorial optimization algorithms from computer science.
As for the 2D RBIM this offers the possibility to study large
systems, easily up to L = 64, giving very precise and reliable
estimates for the observables.

Using such optimization methods, the critical point and
critical exponents for the GS phase transition can be obtained
by analyzing the magnetic properties of the model [27–29].
For the 3D RFIM we here quote the values blit

c = 2.28(1) for
the critical point and ν lit = 1.32(7) for the critical exponent
that describes the divergence of the correlation length as the
critical point is approached.

Further, the 3D RFIM also exhibits a particular percolation
transition. That is, regarding the simultaneous spanning of up-
and down-spin domains as a function of the field strength b,
Ref. [30] reports on the percolation critical point blit

p = 2.32(1)
and the value ν lit

p = 1.00(5) (note that for random percolation
in three dimensions one has νp = 0.88; see Ref. [31]). How-
ever, the results appeared to depend on the particular spanning
criterion. In this regard, in the limit of the spanning probability
approaching to zero (indicating the onset of percolation) the
scaling analysis extrapolated to ν lit

p = 1.3(1).

III. INFORMATION-THEORETIC OBSERVABLES IN ONE
DIMENSION AND EXTENSION TO d = 2 AND 3

In the current section we introduce basic notations from
information theory, needed to define the entropy rate, excess
entropy, and multi-information that might be associated to a
(1D) sequence of symbols. In this regard, for the definition
of the entropy rate and excess entropy we follow the notation
of Refs. [6,32,33]. For the definition of the multi-information
we follow Ref. [9]. In the above references, a more elaborate
discussion of the individual information-theoretic observables
can be found.
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A prerequisite for the definition of these observables is
the M-block Shannon entropy H [SM ] for a block of M

consecutive random variables SM = S1 . . . SM . Each random
variable Si might assume values σi ∈ A, where the set A
denotes a finite alphabet (subsequently, the random variables
will be identified with Ising spins, in which case A will denote
the binary alphabet {−1, + 1}). For σM = σ1 . . . σM denoting
a particular symbol block of length M > 0, the M-block
Shannon entropy reads

H [SM ] ≡ −
∑

σM∈AM

Pr(σM ) log2[Pr(σM )], (5)

where Pr(σM ) signifies the joint probability for blocks of
M consecutive symbols (i.e., spin orientations in the present
context). In the above formula, the sum runs over all possible
blocks, i.e., combinations of M consecutive symbols from A.

A. Entropy density, excess entropy, and multi-information for
one-dimensional symbol sequences

Using the M-block Shannon entropy, the asymptotic en-
tropy density for a 1D system is given by

h = lim
M→∞

H [SM ]/M . (6)

A sequence of finite-M approximations h(M) to the
asymptotic entropy density that typically converges faster than
the expression above is provided by the conditional entropies

h(M) = H [SM |SM−1] = H [SM ] − H [SM−1]. (7)

As given above, h(M) denotes the entropy of a single variable
(spin) conditioned on a block of M − 1 adjacent variables
(spins). Thus, h is the randomness that still remains, even after
correlations over blocks of infinite length are accounted for.
Viewed as a function of block size, the finite-M conditional
entropies converge to the asymptotic value h from above.
Hence, at small length scales the system tends to look more
random than it is in the limit M → ∞.

For one-dimensional systems, there are three different but
equivalent expressions for the excess entropy. These are based
on the convergence properties of the entropy density, the
subextensive part of the block entropy in the limit of large block
sizes, and the mutual information between two semi-infinite
blocks of variables, see Refs. [5,6]. Here, we focus on the
definition of excess entropy E that relates to the convergence
properties of the entropy density in the form

E =
∞∑

M=1

[h(M) − h]. (8)

The conditional entropies h(M) constitute upper bounds on
the entropy rate, allowing for an improving estimate of h for
increasing M . Thus, the individual terms in the sum comprise
the entropy density overestimates on the level of blocks of
finite length M . In total, the excess entropy measures the area
between h(m) and the horizontal line at h. As such, E accounts
for the randomness that is present at small lengths and that
vanishes in the limit of large block sizes.

In one dimension and in the limit of large block sizes, the
multi-information is given by the first summand in Eq. (8), i.e.,

I = h(1) − h. (9)

Albeit I is closely related to E (this holds only in the limit
of large block sizes M; see Ref. [9] for a more general
discussion of the multi information), it captures somewhat
different characteristics regarding the convergence of the
entropy density. In this regard it measures the decrease
of average uncertainty in the description of the system by
switching from the level of single variables (spins) statistics to
the statistics attained as M → ∞.

B. Extension to d = 2 and 3

Following Ref. [5], the most general approach designed to
write the 2D entropy density as the entropy of a particular
variable conditioned on a block of neighboring variables
(similar to the 1D case), uses so-called neighborhood templates
of a given size. In general, for a neighborhood template only
spins in the same row left of a “target spin” and the spins in all
rows below the target spin are considered. Figure 2(a) shows
such a finite-size template for a 2D system, covering an overall
number of 25 spins. Similar to Ref. [5] we use the parameter M

in the conditional entropy [Eq. (7)], to account for a successive
addition of single sites from the neighborhood template shown
in Fig. 2(a). Therein, the numbers within the cells indicate
the order in which the lattice sites are added to the 2D
neighborhood template (from initial numerical experiments
we found that it is not necessary to exceed M = 10 (M = 6)
for the 2D RBIM (3D RFIM)). In this regard, let the subscript
(�x,�y) denote the relative position of a variable S in the
neighborhood template, specifying its distance to the target
variable in terms of site-to-site hops (in particular the target
variable is labeled S(0,0)). Then, the order in which the sites
are picked from the template reflects the increasing Euclidean
distance of the particular lattice site to the target site. Thereby,
we follow the convention that if there is a draw regarding
the distance of two or more lattice sites, we add them to
the neighborhood template from the top left to the bottom
right, increasing the value of �y before �x [see the order
of spins 7 through 10 in Fig. 2(a)]. As an example note that
h(6) = H [S(0,0)|S(0,−1)S(1,0)S(1,−1)S(1,1)S(0,−2)]. We followed a
similar approach in three dimensions, where the corresponding
neighborhood template is shown in Fig. 2(b), and where, e.g.,
h(4) = H [S(0,0,0)|S(0,0,−1)S(0,1,0)S(−1,0,0)].

Note that by the procedure discussed above, we disregarded
the practice that if the interactions between the variables are
of finite range, the neighborhood template only needs to be as

(b)
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(a)

FIG. 2. Neighborhood templates for the definition of the con-
ditional entropies [see Eq. (7)] for (a) the 2D RBIM, and (b) the
3D RFIM. The target variable is represented by a shaded cell and the
numbers within the cells reflect the order in which the sites are picked
in order to compute the conditional entropies (see text).
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“thick” as the interaction range [5,7]. Instead, regarding the 2D
RBIM and 3D RFIM (disordered model systems that exhibit
competing interactions resulting in nontrivial correlations
between the spin degrees of freedom), and from a naive point
of view, we considered it more adequate to include more than
just the nearest neighbors for the construction of a neighbor
template.

Subsequently, 2D and 3D configurations of spins are
analyzed by parsing them into one-dimensional sequences
using the order of the spins as illustrated in Fig. 2. The resulting
sequences can then be analyzed using Eqs. (7) and (8), above.
However, as a practical issue it will be necessary to truncate the
sums in Eqs. (7) and (8) to a maximally feasible neighborhood
size Mmax. Empirically we find that the entropy rate converges
quickly as M is increased (see discussion in Secs. IV A and
IV B below). Hence, extending the template size M beyond,
say, Mmax = 10, has no significant influence on the results
reported below.

IV. RESULTS

Here, our approach is somewhat different than that reported
in Ref. [8]. In that study, one particular realization of disorder
for the Kaya-Berker model was put under scrutiny at a
particular value of the dilution parameter and for different
temperatures (above as well as below the freezing temperature
of the system). For that particular disorder instance and for a
given temperature, a single spin-flip Metropolis dynamics was
used to generate independent spin configurations. These spin
configurations were then used to accumulate statistics for spin
blocks (specified by the utilized neighborhood template) that
provide means to estimate conditional entropies on either local
(i.e., lattice site dependent) or global scale, where the latter is
a spatial average of the local conditional entropies. As pointed
out by the authors of Ref. [8], it is important to accumulate
spin-block statistics in a lattice site dependent manner so as
to not overestimate the entropy of the system. A later average
over the local observables yield the correct thermodynamic
entropy, as verified by the authors.

However, note that here we work at T = 0, aiming to
characterize ground-state phase transitions for disordered
model systems in two and three dimensions. That is, for
each realization of the disorder (and due to the particular
disorder distributions used in the presented study), there is
one particular spin configuration that qualifies as a ground
state (aside from a trivial degeneracy stemming from the global
spin-flip symmetry of the energy function Eq. (1). As a remedy,
in order to collect statistics for blocks of spins we sweep the
neighborhood template over the full lattice (as one would do
for pure systems, see Ref. [6]), thus averaging over different
local configurations of the disorder. For one ground state and
for a chosen block size M , this yields one spatially averaged
estimate for the conditional entropy on the level of M spin
blocks. The results are then averaged over many realizations
of the disorder. In doing so, we were interested whether one
can observe a change in the structure of the ground states by
using the above information-theory-inspired observables, and
how this compares to phase transitions, which were previously
observed when using standard statistical-physics observables.
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2
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FIG. 3. Results for the entropy density of the 2D RBIM with side
length L = 384. (a) illustrates the convergence of the average entropy
density 〈h(M)〉 as a function of the neighborhood size M for three
values of the disorder parameter μ. (b) shows the average entropy
density for different neighborhood sizes as a function of the disorder
parameter μ.

Furthermore, it is of interest to quantify the scaling behavior
of these observables in the vicinity of the phase transition.
Note that we also performed additional simulations using
the definition of 2D and 3D neighbor templates as used in
Ref. [7] and found no qualitative difference to the results
reported below.

A. Results for the 2D RBIM

1. Entropy density

As evident from Fig. 3(a), the entropy density for the
2D RBIM for L = 384 exhibits a rapid convergence. In
this regard, for a neighborhood size of M = 5 the average
entropy density appears to take its asymptotic value for the full
range of considered parameters μ. However, for the numerical
simulations at L = 384 we considered the maximally feasible
neighborhood size Mmax = 10. For smaller system sizes,
Mmax had to be adjusted to somewhat smaller values to
assure that for a given system size L the measurement of
the conditional entropies at a given level h(M) are based
on sufficient statistics for the underlying M-block Shannon
entropies. In this regard, at L = 64 we used Mmax = 6. The
average entropy densities, restricted to neighborhood sizes
M = 1 through 10, are shown in Fig. 3(b). It can be seen that
for small (large) values of μ the entropy density converges to a
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comparatively large (small) value representing the disordered
(i.e., SG ordered) and ordered (i.e., ferromagnetic) phase,
respectively. Especially, the curve corresponding to M = 1
exhibits a steep decrease in the interval μ ∈ [1,1.1]. Moreover,
the fluctuations var(h(μ)) ≡ 〈h(μ)2〉 − 〈h(μ)〉2 of the entropy
density are peaked at μ ≈ 1.025 (not shown). As it appears,
this parameter value is close to the asymptotic critical point
μlit

c = 1.030(2) that indicates the T = 0 SG to FM transition
for the RBIM [20,22] in the limit of large system sizes.

2. Excess entropy

A finite-size scaling analysis of the system-size-dependent
peak position of the average excess entropy 〈E〉 [see Fig. 4(a)]
was performed in the following way: polynomials of order
5 were fitted to the data curves at different system sizes L

in order to obtain an estimate μc,i(L) of the peak position.
Thereby, the index i labels independent estimates of the peak
positions as obtained by bootstrap resampling [34]. For the
analysis, we considered 40 bootstrap data sets, e.g., resulting
in the final estimate μc(L = 256) = 0.975(1). Anticipating the
scaling form

μc(L) = μc − aL−b, (10)

see inset of Fig. 4(a), and considering the fit interval L ∈
[64,512] yields the fit parameters μc = 0.995(5), b = 1.0(1),
and a = O(1) for a reduced χ square χ2/dof = 1.19 (dof =
4). Note that as L → ∞, the location of the peak disagrees with

the location μlit
c = 1.031(2) of the T = 0 SG to FM transition.

The latter estimate was obtained from an analysis of the binder
parameter for the GS magnetization [20]. Earlier simulations,
using a transfer-matrix approach at finite temperature and
extrapolated to T = 0, report on μ′lit

c = 1/rc = 1.04(1) [22].
A similar scaling analysis for the location of the peaks

related to the finite-size susceptibilities χE(L) ≡ L2var(E) by
means of Gaussian fit functions results in the estimate μc =
1.029(1). Further, the width of the Gaussian fit function obeys
the scaling

σ (L) = aL−b, (11)

where a = O(1) and b = 0.65(2) (χ2/dof = 0.45, dof = 5).
Note that the inverse of the latter fit parameter reads 1/b =
1.54(5) and is thus strikingly close to the critical exponent
ν lit = 1.49(7) [20] (ν ′lit = 1.42(8) [22]) that characterizes the
T = 0 SG to FM transition.

3. Multi-information

A scaling analysis of the system-size-dependent peak
position displayed by the average multi-information 〈I 〉 [see
Fig. 4(c)] according to the scaling assumption Eq. (10) in the
range L ∈ [64,512] yields the fit parameters μc = 1.026(3),
a = O(1), and b = 0.63(4), i.e., 1/b = 1.6(1) (χ2/dof =
0.20, dof = 4). Neglecting the smallest system size, i.e.,
restricting the fit interval to L ∈ [96,512], leads to the estimate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8  0.9  1 μc
lit  1.1  1.2

〈E
〉

μ

(a)
L=96

128
192
256
384
512

 0.01

 0.04

 0.16

 64  128  256 L

μc-μc(L)

101

102

103

104

 0.8  0.9  1 μc
lit  1.1  1.2

L2 va
r(

E
)

μ

(b)
L=96

128
192
256
384
512

0.01

0.02

0.04

 64  128  256 L

σ(L)

 0

 0.2

 0.4

 0.6

 0.8  0.9  1 μc
lit  1.1  1.2

〈I
〉

μ

(c)
L=96
128
192
256
384
512

 0.04

 0.08

 0.16

 64  128  256 L

μc-μc(L)

100

101

102

103

104

 0.8  0.9  1 μc
lit  1.1  1.2

L2 va
r(

I)

μ

(d)
L=96
128
192
256
384
512

0.01

0.02

0.04

 64  128  256 L

σ(L)

FIG. 4. Results for the 2D RBIM for different square lattices with side length up to L = 512. (a) The main plot shows the average excess
entropy 〈E〉 as a function of the mean μ of the bond disorder distribution (lines are guides to the eyes only). The inset illustrates the finite-size
scaling of the peak position, the line shows the result of a fit to Eq. (10). For all data-points error bars are obtained via bootstrap resampling.
(b) The main plot shows the finite-size susceptibilities χE(L) = L2var(E) associated to the excess entropy (lines are guides to the eyes only).
The inset signifies the finite-size scaling of the peak width obtained from a fit of the data points close to the peak to a Gaussian function, the
line shows the result of a fit to Eq. (11). (c), (d) are the same as (a), (b), respectively, but for the multi-information I .
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μc = 1.031(6), which is even closer to the known critical
point.

Further, an analysis of the position and width of the peaks
related to the finite-size fluctuations χI ≡ L2var(I ) by means
of Gaussian fit functions results in the additional estimate
μc = 1.032(5) [see Fig. 4(d)]. As above, the widths σ (L) obey
the scaling form of Eq. (11), where a fit yields a = O(1)
and b = 0.65(2), i.e., 1/b = 1.54(5) [χ2/dof = 0.32, dof =
5; inset of Fig. 4(d)].

Note that here, both estimates of μc and both estimates of
the exponent 1/b are reasonably close to those found earlier for
the 2D RBIM. Hence, this might indicate that in comparison to
the full excess entropy, the multi-information is more sensitive
to structural changes at the T = 0 order-to-disorder transition
in the 2D RBIM.

4. Geometric properties of the GSs

Upon increasing the value of the disorder parameter from
μ = 0 to μ > μc, it is possible to identify ferromagnetic
clusters of spins with increasing size. A finite-size scaling
analysis of the relative size of the largest and second largest
ferromagnetic clusters of spins for the independent GSs can
be utilized to characterize the T = 0 SG to FM transition
in the 2D RBIM. For example, as reported in Ref. [20],
the relative size of the largest ferromagnetic cluster scales
as 〈M1〉 ∝ L−β/νf [(μ − μc)L1/ν], where a data collapse (for
system sizes L = 24 . . . 64) yields the scaling parameters
μfc

c = 1.032(2), νfc = 1.49(4), and βfc = 0.039(4). Note that
the results obtained for the multi-information is also in
excellent agreement with those obtained from an analysis of
the largest cluster size, which constitutes an observable that
links to the geometric properties of the GS spin configurations.

B. Results for the 3D RFIM

1. Entropy density

As can be seen from Fig. 5(a), the entropy density for the
3D RFIM (the figure shows the data for L = 64) convergence
rapidly. That is, for a neighborhood size of M = 6 the average
entropy density appears to take its asymptotic value for the full
range of considered field strengths b. During the numerical
simulations, carried out on cubic systems of side length
L = 8 through 64, we thus considered the maximally feasible
neighborhood size Mmax = 6. The average entropy densities
for M = 1, . . . ,6 are shown in Fig. 5(b). For the 3D RFIM
the ordered, i.e., ferromagnetic (FM), and disordered, i.e.,
paramagnetic (PM), phases are located at small and large
values of the disorder parameter b, respectively. As discussed
above, the curve corresponding to n = 1 exhibits a steep
decrease in the interval b ∈ [2.2,2.5], which already allows
us to shed some light on where the characteristics of the
model at T = 0 change from ferromagnetic to paramagnetic.
In a previous study, using the finite-size scaling of standard
physical quantities, the critical strength of the random field at
which the T = 0 FM to PM transition takes place was found
to be blit

c = 2.28(1) [29].
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FIG. 5. Results for the entropy density of the 3D RFIM with side
length L = 64. (a) illustrates the convergence of the average entropy
density 〈h(M)〉 as a function of the neighborhood size M for three
values of the field strength b. (b) shows the average entropy density
for different neighborhood sizes as a function of the field strength b.

2. Excess entropy

The scaling analysis of the system size dependent peak
position of the average excess entropy 〈E〉 [see Fig. 6(a)] was
performed similar to the 2D RBIM above. Assuming that the
system-size-dependent peak locations bc(L) exhibit a scaling
of the form

bc(L) = bc − aL−c, (12)

see inset of Fig. 6(a), yields the fit parameters bc = 2.38(1),
c = 0.81(2), and a = O(1) (χ2/dof = 0.05, dof = 4). Note
that as L → ∞, the location of the peak extrapolates to a value
that is close by the critical point blit

p = 2.32(1), describing the
transition of the probability for a simultaneous spanning of up-
and down-spin domains from 1 to 0, see Ref. [30]. A similar
scaling analysis for the location of the peaks related to the
finite-size susceptibilities χE(L) ≡ L3var(E), again by means
of polynomials of order 5, results in the estimate bc = 2.23(1),
see inset of Fig. 6(b). As it appears, the estimates of bc obtained
from the excess entropy and its fluctuation do not match up
well.

3. Multi-information

A finite-size scaling analysis of the system-size-dependent
peak position shown by the average multi-information
〈I 〉 [see Fig. 6(c)] according to the scaling assumption
Eq. (12) in the range L ∈ [12,64] yields the fit parameters

022107-7



O. MELCHERT AND A. K. HARTMANN PHYSICAL REVIEW E 87, 022107 (2013)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.1 bc
lit  2.4  2.6  2.8  3  3.2  3.4

〈 E
〉

b

(a)
L=16

24
32
48
56
64

 0.2

 0.4

 0.8

 16  32  64 L

bc(L)-bc

100

101

102

103

104

105

 2  2.1 bc
lit  2.4  2.6  2.8  3  3.2

L3 va
r(

E
)

b

(b)
L=16

24
32
48
56
64 0.1

0.2

0.4

 16  32  64 L

bc(L)-bc

 0

 0.2

 0.4

 0.6

 2.1 bc
lit  2.4  2.6  2.8  3  3.2  3.4

〈I
〉

b

(c)
L=16

24
32
48
56
64

 0.2

 0.4

 0.8

 16  32  64 L

bc(L)-bc

100

101

102

103

104

105

 2  2.1 bc
lit  2.4  2.6  2.8  3  3.2

L3 va
r(

I)

b

(d)
L=16

24
32
48
56
64 0.1

0.2

0.4

 16  32  64 L

bc(L)-bc

FIG. 6. Finite-size scaling analysis for the 3D RFIM on cubic lattices with side length up to L = 64. (a) the main plot shows the average
excess entropy 〈E〉 as a function of the field strength b. (For this and the other main plots, lines are guides to the eyes only). The inset illustrates
the finite-size scaling of the peak position, the line, as for the other insets, shows the result of a fit to Eq. (12). For all data-points error
bars are obtained via bootstrap resampling, (b) the main plot shows the finite-size susceptibilities χE(L) = L3var(E) associated to the excess
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bc = 2.34(1), a = O(1), and c = 0.79(3) (χ2/dof = 0.22,
dof = 4). Further, an analysis of the peak location for the
related finite-size fluctuations χI ≡ L3var(I ) results in the es-
timates bc = 2.30(1), a = O(1), and c = 0.80(7) (χ2/dof =
0.26, dof = 5); see Fig. 6(d).

Note that here, both estimates of bc and both estimates of
the exponent c match up well. Also, the numerical estimates
bc agree with the numerical value of blit

p within error bars and
the numerical value of 1/c = 1/0.80(7) = 1.3(1) (obtained by
means of the above analyses) is in good agreement with the
correlation length exponent ν lit = 1.3(1) reported in Ref. [29].
Further, they are in good agreement with the numerical values
to which the scaling analysis for the percolation criterion in
Ref. [30] extrapolates to. Again, these results indicate that the
multi-information is very sensitive to structural changes in GS
spin configurations at the T = 0 order-to-disorder transition.

C. The T = 0 phase transition in purely
information-theoretic coordinates

In the above analyses the information-theoretic coordinates
entropy density h and excess entropy E, giving measures of
randomness and complexity, respectively, were studied as a
function of a model specific parameter. So as to facilitate a
comparison of different models complexity-entropy diagrams
are of great use [35]. A survey of complexity-entropy diagrams
for different model systems can be found in Ref. [6]. The
complexity-entropy relationship for the 2D RBIM and 3D

RFIM for different system sizes are shown in Fig. 7. As evident
from the figure, the curves for both models exhibit similar
features. That is, they have an isolated peak at a particular
value of h. This is similar to the complexity-entropy curve for
the 2D Ising FM, where the corresponding peak is located at
entropy density 〈h〉 ≈ 0.57 with a peak height of 〈E〉 ≈ 0.4,
see Ref. [6]. In order to illustrate finite-size effects for the
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FIG. 7. Complexity-entropy diagram for the 2D RBIM and 3D
RFIM for different system sizes L. Note that for the complexity-
entropy curve for the 2D Ising FM, the corresponding peak is located
at entropy density 〈h〉 ≈ 0.57 with a peak height of 〈E〉 ≈ 0.4, see
Ref. [6].
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complexity-entropy diagram, three different system sizes for
both models are shown. A scaling analysis of the finite-size
peak locations indicates that for the 2D RBIM (3D RFIM)
the peak shifts to the entropy density value hc = 0.26(1)
[hc = 0.107(1)] as L → ∞. Comparing with the result of the
FM mentioned before, one can say that for the 2D RBIM and
the 3D RFIM, the order-disorder transition appears at smaller
entropy but is connected with a higher complexity. Note, for the
considered models, the complexity-entropy diagram contains
the FM phase in the parameter range h ∈ [0,hc]. The SG phase
for the 2D RBIM (PM phase for the 3D RFIM) is found for
h ∈ [hc,1].

V. DISCUSSION

Regarding the excess entropy, conceptually similar analyses
carried out on spin configurations for the 2D Ising FM are
reported in Ref. [6]. The respective study concluded that the
excess entropy is peaked at a temperature T ≈ 2.42 in the
paramagnetic (i.e., disordered) phase above the true critical
temperature Tc = 2.269. Qualitatively similar results on the
mutual information for the 2D Ising FM (and more general
classical 2D spin models) were recently presented in Ref.
[36]. There, the authors conclude that the mutual information
(equivalent to the excess entropy for 1D systems; see Ref. [33])
reaches a peak value in the paramagnetic phase close to the
system parameter K = J/kBT ≈ 0.41 (for J = kB = 1 this
corresponds to T ≈ 2.44), again in disagreement with the
critical point of the underlying model. Further, the authors
note that the true critical point appears to coincide with the
inflection point where the first derivative of the excess entropy
tends to minus infinity in the thermodynamic limit (however,
the authors present no systematic analysis of this observation).
Hence, it is not too surprising that a finite-size scaling analysis
for the peaks of the bare excess entropy does not directly
allow us to identify the critical point of the model considered
here. Similar to the previous studies for the Ising FM, we
here find that the excess entropy assumes an isolated peak at a
parameter value located slightly below the true critical point in
the disordered phase. However, a scaling analysis reveals that
in the thermodynamic limit, the peak of the related finite-size
fluctuations is located right at the critical point.

The multi-information was introduced by Erb and Ay in
Ref. [9], where the authors considered the multi-information
to characterize spin configuration for the 2D Ising FM in the
thermodynamic limit by analytic means. Among other things,
the authors conclude that the multi-information exhibits an
isolated global maximum right at the critical temperature (see
Theorem 3.3 of Ref. [9]). Here, we find that in contrast to

the excess entropy and in qualitative agreement with analytic
results for the 2D Ising FM, the peak of the multi-information
tends towards the critical points reported in the literature as
L → ∞. However, the critical point to which the effective
system-size-dependent critical points related to the peaks of
the excess entropy for the 3D RFIM converges is in good
agreement with the precise location that corresponds to a
particular percolation transition for the respective spin model.
Nevertheless, given the so far achieved numerical accuracy,
it is still not clear to us whether these two transition points
are really distinct. Anyway, both observables studied in this
work basically turned out to be useful information-theoretic
measures that might be used to distinguish the ordered and
disordered phase of frustrated model systems, as, e.g., the 2D
RBIM and 3D RFIM. Further, the finite-size scaling of these
observables allows to estimate critical points and exponents
that are in good agreement with the critical properties reported
in the literature.

Given these promising results for systems exhibiting
quenched disorder, it would be of particular interest to apply
these methods to structural glasses [37], where simple ways
of analyzing snapshots of configurations are sought for [38].
In this regard, a measure of order for glass forming systems
based on mutual information was recently studied in Ref. [39].
Therein, it was found that a length scale derived from the
multi-information grows with other intrinsic glass lengths
and is hence sensitive to crystalline and amorphous order.
Also, phase transitions shown by complex computational
problems were studied in Refs. [40–42]. Therein, the authors
considered, e.g., the community detection problem, Potts
spin-glass systems, and structural glasses, wherein certain
observables were expressed in terms of a normalized mutual
information and where a computational susceptibility was
utilized to monitor the onset of high complexity. It would be
tempting to further explore the use of information-theoretic
measures in the analysis of such systems by using the
observables considered in the presented study.
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