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Recent advances in quantum optics and atomic physics allow for an unprecedented level of control over
light-matter interactions, which can be exploited to investigate new physical phenomena. In this work we are
interested in the role played by the topology of quantum networks describing coupled optical cavities and local
atomic degrees of freedom. In particular, using a mean-field approximation, we study the phase diagram of the
Jaynes-Cummings-Hubbard model on complex networks topologies, and we characterize the transition between
a Mott-like phase of localized polaritons and a superfluid phase. We found that, for complex topologies, the phase
diagram is nontrivial and well defined in the thermodynamic limit only if the hopping coefficient scales like the
inverse of the maximal eigenvalue of the adjacency matrix of the network. Furthermore we provide numerical
evidences that, for some complex network topologies, this scaling implies an asymptotically vanishing hopping
coefficient in the limit of large network sizes. The latter result suggests the interesting possibility of observing
quantum phase transitions of light on complex quantum networks even with very small couplings between the
optical cavities.
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I. INTRODUCTION

Quantum optics and atomic physics have reached a level of
control over light-matter interactions which not only makes it
feasible the emulation of condensed matter models [1,2], but
also inspires new architectures envisaging a future quantum
Internet with a desired topology [3,4]. Hence the potential
advantage coming from a combined optical and atomic
approach is twofold: On the one hand, being able to control
a quantum system that simulates another one is a way to
realize a special purpose quantum computer; on the other
hand, the possibility of manipulating new degrees of freedom
(not accessible in condensed matter systems) motivates the
experimental and theoretical study of new quantum systems,
with the possibility of discovering new physical phenomena. In
this respect an important outcome, coming from the combined
experimental investigations of atomic and optical systems,
is the realization of coupled cavity arrays interacting with
local atomic degrees of freedom [1]. These systems allow
for the controlled interaction between trapped atoms and
local cavity photons, and moreover photons are free to hop
between coupled cavities. Changing the details of the physical
setup different many-body models can be realized [1,5],
and one in particular is of interest in the present work:
the Jaynes-Cummings-Hubbard (JCH) model [6–12]. Part
of the interest in these systems is motivated by the possibility
to investigate new quantum critical phenomena [13], like
the quantum phase transition of light between a Mott-like
regime and a superfluid phase [6–12]. Also of interest is
the possibility to generate quantum simulators that naturally
access nonequilibrium physics [14].

In this work we are interested in an additional degree of
freedom which optical arrays can provide, i.e., the topology
of the network underlying the quantum dynamics. While
regular lattice structures with short-range interactions are the
typical framework in standard quantum emulator architectures,

fiber-coupled cavities may allow for the realization of quantum
networks with distant effective interactions between local
degrees of freedom [4,15,16]. These effective long-range
interactions are an important ingredient for the construction of
quantum networks with complex topology, which is a recent
topic of interest in the quantum information and complex
network community [17–31]. Along this line of research, in
this work we study the effect of the array topology on the phase
diagram of the JCH model. Motivations come not only from
the possible experimental realization of such systems, but also
from a number of results, especially in the classical context,
underlying the importance of networks’ topologies. Indeed,
for classical systems it is well known that the topology of the
network can significantly change the phase diagram of some
models and their critical behavior [32,33]. On the quantum
side previous results on the Bose-Hubbard model [34–38] are
particularly inspiring for the present work. In fact, for this
model, it has been shown by mean-field arguments that the
phase diagram depends of the maximal eigenvalue � of the
hopping matrix describing the topology of the network [29,38].
This result is valid both in the presence of disorder [38] and
in the presence of a complex topology [29]. Interestingly in
a complex random network topology, or in an Apollonian
network [39,40], the maximal eigenvalue of the adjacency
matrix diverges with the network size. In Ref. [29] it has
been shown, for the Bose-Hubbard model, that this divergence
implies a nontrivial scaling of the hopping coefficient, in order
to not suppress the Mott-insulator phase in the thermodynamic
limit.

Here we consider instead the properties of the JCH model
on complex quantum network topologies. Using mean-field
theory we characterize the phase diagram of the model at
T = 0, which presents a phase transition between a Mott-like
regime and a superfluid phase. We demonstrate analytically,
and confirm numerically, that the phase diagram is nontrivial
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and well defined only if the hopping coefficient κ scales as the
inverse of the maximal eigenvalue � of the hopping matrix,
i.e., κ ∝ 1

�
. Furthermore we characterize the scaling of the

maximal eigenvalue for a number of well-known complex
network topologies, showing that in many cases the maximal
eigenvalue � diverges with the network size N . Therefore
our results are of general interest for a number of different
complex topologies, and they imply that for complex network
arrays interesting quantum critical behaviors can be observed
even with very small couplings between different cavities.

The rest of the paper is organized as follows: In Sec. II
we introduce the Jaynes-Cummings Hamiltonian and some
of its properties; in Sec. III we characterize the Jaynes-
Cummings-Hubbard model, its mean-field solution, and we
consider the scaling behavior of the hopping coefficient for
different network topologies; Sec. IV is devoted to discussions
and conclusions. In the Appendix a detailed derivation of the
mean-field solution is provided.

II. ATOM-PHOTON INTERACTION IN A SINGLE CAVITY

The standard model describing the interaction between a
two-level atom and quantized electromagnetic modes is pro-
vided by the Jaynes-Cummings Hamiltonian. In the rotating
wave approximation, and assuming a single-cavity mode, the
Hamiltonian is given by

H JC = εσ+σ− + ωa†a + β(σ+a + σ−a†), (1)

where ε is the atomic transition frequency, ω is the field
frequency, and β is the atom-cavity coupling constant; a and
a† are the bosonic lowering and raising operators, while σ±
are the atomic lowering and raising operators of the two-level
system. The eigenstate of this Hamiltonian are polaritons, or
dressed states, given by a combination of atom and field states.
In the base {|0,↓〉,|0,↑〉,|1,↓〉,|1,↑〉 . . .}, the atom states are
represented in the basis of the eigenstates |↓〉,|↑〉 of the Pauli
σz operator, while the field states are denoted with the number
operator’s eigenstates |n〉. The Jaynes-Cummings Hamiltonian
eigenstates are given by

|n,−〉 = cos θn|n,↓〉 − sin θn|n − 1,↑〉,
(2)

|n,+〉 = sin θn|n,↓〉 + cos θn|n − 1,↑〉,
for every n � 1, where the angle θn is expressed in terms of
the detuning parameter 	 = ε − ω and is given by

θn = 1

2
arctan

(
2β

√
n

	

)
. (3)

The eigenvalues associated to these eigenstates are given by

E(n,±) = ωn + 	

2
±

√
nβ2 + 	2

4
. (4)

In addition to the above dressed state, another eigenstate of
the system is |0〉 ≡ |0,↓〉, when n = 0, with the associated
eigenvalue E0 = 0. The fundamental state of the system should
be determined for every fixed value of the parameters. If we
proceed in this calculation we can observe first of all that the
ground state will be either the state with zero polations |n = 0〉
and energy E0 = 0, or one of the states |n−〉 associated to the
eigenvalues En,−. Indeed, for every fixed number of polaritons
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FIG. 1. The energy nonlinear dependence of the spectrum
E(n,±) − nω as a function of the detuning 	 for β = 1. The
nonlinearity effects are stronger for low values of n.

n � 1 we have En,+ > En,−. If we consider the spectrum in
the limit ω � |	|,β the state with zero polaritons |n = 0〉
will be the ground state. As we decrease ω we will find a
point in the parameter space where E0 = E1,−, precisely at
ω = 	/2 −

√
(	/2)2 + β2. Lowering the value of ω further

we will find a full set of degeneracy points given by (for n � 1)

ω

β
=

√
n + 1 +

(
	

2β

)2

−
√

n +
(

	

2β

)2

. (5)

The energy spectrum of the atom-cavity system, given by
Eq. (4), has a nonlinear dependence on n (see the energy
spectrum in Fig. 1). This anharmonicity in the splitting of the
energy eigenstates gives rise to nonlinear phenomena at the
single-photon level. One of the most relevant of these is photon
blockade, where the presence of one photon stops further
absorption of photons from a coherent light source [41–43].

III. JAYNES-CUMMINGS-HUBBARD MODEL

Optical cavities, with trapped atoms, can be arranged in
arrays where the overlap between different cavities’ wave
functions allows photons to hop from one site to another.
The Hamiltonian describing this new physical scenario is
now known as the Jaynes-Cummings-Hubbard model. The
inclusion of optical fibers, or other optical devices, can be
used to realize more complex geometries, where the hopping
is not restricted to nearest neighbor cavities on a regular
lattice [4,15,16]. This is precisely the kind of situation that
we want to investigate in this paper.

To tune the number of polaritons in each cavity a chemical
potential μ might be used; hence the full JCH model will be
described by the following Hamiltonian:

H JCH =
∑

i

[
HJC

i − μNi

] + H hop, (6)

where

H JC
i = εσ+

i σ−
i + ωa

†
i ai + β(σ+

i ai + σ−
i a

†
i ) (7)

is the Jaynes-Cummings Hamiltonian for a single cavity,
and Ni indicates the number of polaritons in each cavity
(Ni = σ+

i σ−
i + a

†
i ai); while H hop is the hopping term. Note
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that the chemical potential μ is not an experimentally tunable
parameter for this system. In real experiments appropriate
preparation schemes have to be devised in order to obtain
states with different polariton number. Recently, using the Rabi
model, it has been shown that the inclusion of counter-rotating
terms can stabilize finite-density quantum phases of correlated
photons without the use of a chemical potential [5]. The last
hopping term in Eq. (6) is characterized by a the strength κ

and the adjacency matrix of the underlying quantum network
τ , and is given by

H hop = −κ
1

2

∑
i,j

τij (a†
i aj + a

†
j ai). (8)

Let us consider first two extreme cases: one in which the
hopping strength is very small, and the other where the atom-
photon interaction is negligible. In the atomic limit κ/β 	 1,
the Hamiltonian H JCH becomes, to first order approximation,
the sum of single-cavity Hamiltonians H = ∑

i Hi , with Hi

given by

Hi = H JC
i − μNi. (9)

The eigenstates of the single cavity Hamiltonian are given
by Eqs. (2) for n � 1, and |0,↓〉 = |0〉 for n = 0. The
corresponding eigenvalues are

E
μ
n± = (ω − μ)n + 	

2
±

√
nβ2 + 	2

4
, (10)

for n � 1, and E0 = 0 for n = 0. The ground state of the
system can be calculated similarly to the case of a single
cavity. Indeed, for every cavity we will found that the ground
state is constituted either by the eigenstate |n,−〉 or by the
eigenstate |0〉.

In the hopping-dominated limit κ/β � 1 we can treat
perturbatively the atom-photon interaction. H JCH reduces, to
first-order approximation, to a tight-binding hamiltonian Htb

given by

Htb =
∑

i

(ω − μ)a†
i ai − κ

1

2

∑
i,j

τij (a†
i aj + a

†
j ai). (11)

The eigenvalues of Htb depends in a simple way from
the eigenvalues λn of the adjacency matrix of the quantum
network:

En = N (ω − μ − κλn). (12)

The above equation reveals an instability of the system for

κ� > ω − μ, (13)

where � is the maximal eigenvalue of the adjacency matrix
τ . From this result we can already conclude that the maximal
eigenvalue of the adjacency matrix set an important scale for
the strength of the hopping coefficient κ .

A. Mean-field theory

In order to explore the phase diagram of the Jaynes-
Cummings-Hubbard model we make use of the mean-field
treatment of the hopping term, which reduces to the following

approximation:

aia
†
j 
 〈ai〉a†

j + ai〈a†
j 〉 − 〈ai〉〈a†

j 〉. (14)

Therefore the hopping term becomes

H MF
hop = −κ

∑
i,j

τij (a†
i + ai)ψj + κ

∑
i,j

τijψiψj , (15)

where we have indicated by ψi the local order parameter
ψi ≡ 〈ai〉 (also equal to 〈a†

i 〉, due to the gauge symmetry
of the model). This Hamiltonian displays a phase transition
between a Mott-Insulator phase, where ψi = 0 ∀i, and a
superfluid phase. In order to study the phase diagram of this
model, within the mean-field approximation we treat H hop as
a perturbation and we calculate ψi self-consistently, to first
order in κ , obtaining (see the Appendix for more details)

ψi = κ
∑

j

τijψjRn, (16)

with Rn given by

R0 =
[

cos2 θ1

E
μ

1−
+ sin2 θ1

E
μ

1+

]
,

Rn�1 = −
[ |√n + 1 cos θn cos θn+1 + √

n sin θn sin θn+1|2
E

μ
n− − E

μ

(n+1)−

+ |√n + 1 cos θn sin θn+1 − √
n sin θn cos θn+1|2

E
μ
n− − E

μ

(n+1)+

+ |√n cos θn cos θn−1 + √
n − 1 sin θn sin θn−1|2

E
μ
n− − E

μ

(n−1)−

+ |√n cos θn sin θn−1 − √
n − 1 sin θn cos θn−1|2

E
μ
n− − E

μ

(n−1)+

]
,

(17)

where the integer n � 0 depends on the system parameters
and it is chosen minimizing the on site energy E

μ
n− given by

Eq. (10). If we diagonalize Eq. (16), along with the eigenvalues
of the adjacency matrix τ , we get that the critical line for the
transition between the Mott-insulator phase and the superfluid
phase is given by

κ�Rn = 1, (18)

where � is the maximal eigenvalue of the adjacency matrix
τ . This clearly shows that the phase diagram of the model
depends on the product κ�. On regular graphs we have ψi = ψ

∀i, and � = z, where z is the connectivity of the lattice. On
the other hand, for complex topology the maximal eigenvalue
of the hopping matrix � can be significantly different from
the average connectivity of the networks. In particular, for
a large variety of networks the maximal eigenvalue of the
adjacency matrix � diverges with the network size. This
suggests that, in order to have a nontrivial phase diagram for the
Jaynes-Cummings-Hubbard model, the hopping strength κ

must scale as

κ ∝ 1

�
. (19)

In the following section we will investigate for different
network topologies the respective scaling, with the network
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size, of the maximal eigenvalue of the adjacency matrix
[44,45]. We note here that at the mean-filed level the phase
boundary is given by Eq. (18). With respect to the phase
diagram on regular lattices, the effect of the complex topology
is the substitution of the average degree z of the lattice with
the maximal eigenvalue � of the network. Therefore the
dependence of the phase boundary on the detuning parameter
	 is similar to the one observed in regular lattices [12]. In fact,
as soon as the detuning is different from zero, the Mott lobes
with mean polariton number greater than one are reduced in
size and shifted to smaller value of the chemical potential. This
effect is independent of the sign of the detuning parameter.
We remark that on a complex network as in regular lattices
the thermal fluctuations destroy the Mott insulator phase.
Therefore at finite temperature the phase diagram should be
composed by a superfluid regime and a normal fluid.

B. Regular networks

For regular networks and regular lattices with connectivity
z the maximal eigenvalue of the adjacency matrix � is
independent on the network size. In particular, we have

� = z. (20)

In this case the critical line [Eq. (18)] coincides with the one
found in the literature using the mean-field approximation
[7–9].

C. Random graphs

For random Erdös-Renyi graphs with finite connectivity
and Poisson degree distribution, it has been proven [45] that

� ∝
√

kmax, (21)

where kmax is the maximal degree of the system. For ran-
dom networks with a finite connectivity we have kmax =
ln N/ ln ln N ; therefore

�(N ) ∝
√

ln N

ln ln N
. (22)

Considering the scaling given by Eq. (19), we have that the
hopping strength has to satisfy the following relation in order
to have a nontrivial phase diagram:

κ(N ) ∝
√

ln ln N

ln N
. (23)

D. Random scale-free networks

Scale-free networks provide one of the most interesting
and most studied topology for the analysis of phase transitions
occurring on them. Indeed, classically, on scale-free networks
with degree distribution P (k) ∝ k−γ and power-law exponent
γ ∈ (2,3], the phase diagram of the Ising model [46–49] and
the percolation transition [50,51] change drastically due to
the diverging second moment of the average degree 〈k2〉.
A similar observation can be also made for the epidemic
spreading model on annealed complex networks [52], i.e.,
complex networks in which the links are dynamically rewired.
Moreover, the spectral properties of the complex networks
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FIG. 2. (Color online) Mean-field phase diagram of the Jaynes-
Cummings-Hubbard model with 	 = 0 on a random scale-free
network with power-law exponent γ = 2.2 for different values of N :
N = 100 (top panel), N = 1000 (middle panel), N = 10 000 (bottom
panel). The phase diagram scales with the maximal eigenvalue
that is given by � = 5.98 (top panel), � = 11.07 (middle panel),
and � = 23.42 (bottom panel). The solid lines denote the analytic
perturbative solution in mean field of the model.

determine the critical behavior of the epidemic spreading on
complex quenched networks [53,54] for the O(N ) model
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[55,56] and the stability of the synchronization dynamics
[57,58].

In random scale-free networks, with power-law degree
distribution P (k) ∝ k−γ it has been proven [44] that the
maximal eigenvalue scales like

� ∝
{√

kmax for γ > 2.5
〈k2〉
〈k〉 for γ < 2.5.

Moreover, the maximal degree of the network satisfy kmax =
min[N1/2,N1/(γ−1)], where we have considered the structural
cutoff of the degrees of the network for λ � 3. Therefore,
the maximal eigenvalue of the network � follows a different
scaling with the network size, depending on the power-law
exponent γ :

�(N ) ∝

⎧⎪⎨
⎪⎩

N1/[2(γ−1)] for γ > 3

N1/4 for 2.5 < γ � 3

N (3−γ )/2 for γ < 2.5.

Finally, the hopping coefficient κ that ensures a nontrivial
phase diagram [see Eq. (19)] scales with the network size N

according to the following rules:

κ(N ) ∝
⎧⎨
⎩

N−1/[2(γ−1)] for γ > 3
N−1/4 for 2.5 < γ � 3
N−(3−γ )/2 for γ < 2.5

.

Figure 2 shows both the analytic perturbative solution in a
mean field of the JCH model and the numerical nonpertur-
bative mean-field evaluation of the phase diagram. As can
be seen, there is substantial agreement between the two,
and furthermore one can observe the dependence on the
size of the network of the detailed location of the critical
lines.

E. Apollonian networks

We consider here Apollonian networks [39] which are
constructed through a 2D Apollonian packing model in
which the space between three tangent circles placed on
the vertices of an equilateral triangle is filled by a maximal
circle. The space-filling procedure is repeated for every space
bounded by three of the previously drawn tangent circles.
The corresponding Apollonian network is constructed by
connecting the centers of all the touching circles [Fig. 3 (left)].
The resulting network is scale-free with power-law degree

FIG. 3. (Color online) Left panel: The first three generations of
the Apollonian graph. The nodes and links added to construct the
first, second, and third generations are shown. Right panel: The fifth
generation Apollonian network.

FIG. 4. (Color online) Scaling of the maximal eigenvalue � of
the Apollonian network as a function of the size N of the network.

distribution p(k) = N k−λ and λ = 1 + ln(3)/ ln(2) 
 2.585.
Also these networks are known to have a diverging maximal
eigenvalue � of their adjacency matrix [40]. In Fig. 4 we
plot the maximal eigenvalue � of the Apollonian network as
a function of the network size N . We can fit the numerical
results with the function

�(N ) ∝ N0.23. (24)

Therefore the hopping coefficient κ [that needs to scale
according Eq. (19)] scales for large N as

κ(N ) ∝ N−0.23. (25)

F. Small-world networks

Small-world networks structures characterize a system that
has at the same time a small diameter, like random networks,
but also has a high clustering coefficient, similarly to regular
networks [59]. In particular, we can follow the construction
proposed in Ref. [59]: We start from a regular chain in which
each node is linked to the nearest neighbors and to the next-

FIG. 5. (Color online) The maximal eigenvalue of the small-
world network as a function of p for different network sizes N .
In the limit p → 0 the small world model is a regular chain with
average connectivity z = 4; therefore in this limit � = 4. The data
are averaged over 100 network realizations.
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nearest neighbors; then every link is rewired with probability
p to another random node of the network. For p = 0 the small-
world network is a regular lattice in one dimension; for p = 1
the small-world network becomes one instance of a random
graph network; finally, for every intermediate value of p we
observe the small-world network with small average diameter
and a high clustering coefficient. The maximal eigenvalue of
this network for p = 1 will increase with N , as in the random
graph case [Eq. (22)], while for the case p = 0 it will be
independent on N , as in regular networks. In Fig. 5 we see
how the maximal eigenvalue of the network changes with N

for intermediate values of the probability p when the network
is small-world.

IV. CONCLUSIONS

In conclusion we have studied the Jaynes-Cummings-
Hubbard (JCH) model on complex quantum networks. We
have shown that the phase diagram derived in the mean-field
approximation depends crucially on the maximal eigenvalue
� of the hopping matrix. In particular the phase diagram
depends on the product κ�. This implies that in order to have
a well-defined phase diagram in the large network limit, the
hopping coefficient κ should scales proportionally to 1/�.
The eigenvalue � is equal to the connectivity of the network,
for regular networks and lattices, but for complex random
networks it generally increases with the network size. In
this paper we have listed for a large class of networks the
scaling of the maximal eigenvalue � with the network size N .
For complex networks that have a diverging �, the hopping
coefficient should be a decreasing function of N in order to
observe the phase transition from the Mott-like regime to
the superfluid phase. This result implies the possibility of
observing quantum critical behaviors in arrays whose cavities
are weakly coupled, assuming the effective realization of the
proper complex quantum network topology.

APPENDIX: MEAN-FIELD SOLUTION OF
THE JCH MODEL

The Jaynes-Cummings Hamiltonian (we set h̄ = 1)

H JC = εσ+σ− + ωa†a + β(σ+a + σ−a†) (A1)

is obtained in the rotating wave approximation and in the
limit β 	 ε,ω. The total number of excitations is a conserved
quantity, and it is given by the sum of electromagnetic and
atomic excitations N = a†a + σ+σ−. The interacting part of
the Hamiltonian connects n sectors which differs only by one-
photon excitation:

|n − 1〉|↑〉 ←→ |n〉|↓〉. (A2)

The JC Hamiltonian can then be block-diagonalized in
different sectors, each labeled by n, and each sector spanned
by {|n − 1〉|↑〉,|n〉|↓〉}. Choosing this set as the basis for the
nth sector, Eq. (2) and Eq. (4) in the main text provide the
expressions for the eigenvectors and eigenvalues of the JC
Hamiltonian.

Considering the situation of a network of cavities, whose
coupling is effectively described by an hopping term, we

have the Jaynes-Cummings-Hubbard Hamiltonian described
in Eq. (6). As explained in the main text, the mean-field
treatment of the hopping term allows us to approximate the
JCH Hamiltonian as follows:

H MF =
∑

i

εσ+
i σ−

i + ωa
†
i ai + β(σ+

i ai + σ−
i a

†
i )

− κ
∑
i,j

τij (a†
i + ai)ψj + κ

∑
i,j

τijψiψj .

Considering the hopping term as a perturbation to the atomic
limit, the order parameter of the model is provided by
ψi ≡ 〈ai〉gs , where the expectation value is calculated with
respect to the ground state of the Jaynes-Cummings-Hubbard
model to first order in perturbation theory. Note that the order
parameter can be assumed real due to the gauge symmetries of
the Hamiltonian [9]. The self-consistent equation for the order
parameter can then be written as

ψi ≡ 〈n1|ai |n1〉, (A3)

where |n1〉 ≡ |n,−〉0 + |n〉1 is the approximation of the ground
state to first-order in the perturbation, while |n,−〉0 is the
ground state of the unperturbed Hamiltonian [see Eq. (2) in
the main text], and

|n〉1 =
∑

k,α=±

0〈k,α|H MF
hop |n,−〉0

E
μ
n,− − E

μ

k,α

|k,α〉0.

From Eq. (A3) we have

〈n1|ai |n1〉 = 0〈n,−|ai |n,−〉0 + 1〈n|ai |n〉1

+ 0〈n,−|ai |n〉1 + 1〈n|ai |n,−〉0.

Keeping only nonzero terms to first order in κ we are left
only with the last two terms in the above equation. First, we
explicitly calculate

0〈n,−|ai |n〉1 =
∑

k,α=±

0〈k,α|H MF
hop |n,−〉0

E
μ
n,− − E

μ

k,α

0〈n,−|ai |k,α〉0.

It is easy to check that the only nonzero terms in the sum
are given by k = (n + 1), and α = +,−. It follows that the
nonzero contribution to the expectation value of H MF

hop is

provided only by −κ
∑

j τij â
†
i ψj . From the explicit form for

the ground states of the unperturbed Hamiltonian [see Eq. (2)
in the main text] we obtain

0〈n,−|ai |(n + 1),−〉0 = √
n + 1 cos θn cos θn+1

+√
n sin θn sin θn+1,

0〈n,−|ai |(n + 1),+〉0 = √
n + 1 cos θn sin θn+1

−√
n sin θn cos θn+1.
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We can proceed similarly for the calculation of
1〈n|ai |n,−〉0, obtaining

0〈(n − 1),−|ai |n,−〉0 = √
n cos θn cos θn−1

+√
n − 1 sin θn sin θn−1,

0〈(n − 1), + |ai |n,−〉0 = √
n cos θn sin θn−1

−√
n − 1 sin θn cos θn−1.

Now let us define

Rn ≡ −
∑
α=±

[ |0〈n,−|ai |(n + 1),α〉0|2
E

μ
n,− − E

μ

(n+1),α

+ |0〈(n − 1),α|ai |n,−〉0|2
E

μ
n,− − E

μ

n−1,α

]
.

Putting everything together we have the following self-
consistent equation to first order in perturbation theory (for
n > 0):

ψi = κRn

∑
j

τijψj .

The case n = 0 can be calculated in the same way, and one
has

ψi = κR0

∑
j

τijψj ,

where

R0 = −
∑
α=±

|〈0,↓ |ai |1,α〉|2
E

μ

0,↓ − E
μ

1,α

with 〈0,↓ |ai |1,−〉 = cos θ1, and 〈0, ↓ |ai |1,+〉 = sin θ1.
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033838 (2010).
[11] S. Schmidt and G. Blatter, Phys. Rev. Lett. 104, 216402 (2010).
[12] C. Nietner and A. Pelster, Phys. Rev. A 85, 043831 (2012).
[13] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, 2000).
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