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We study the critical behavior of the random q-state Potts model in the large-q limit on the diamond hierarchical
lattice with an effective dimensionality deff > 2. By varying the temperature and the strength of the frustration
the system has a phase transition line between the paramagnetic and the ferromagnetic phases which is controlled
by four different fixed points. According to our renormalization group study the phase boundary in the vicinity of
the multicritical point is self-similar; it is well represented by a logarithmic spiral. We expect an infinite number
of reentrances in the thermodynamic limit; consequently one cannot define standard thermodynamic phases in
this region.
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I. INTRODUCTION

Disorder is an inevitable feature of real materials and it
could result in dramatic changes in the physical properties of
the systems, in particular in the vicinity of phase-transition
points. The effect of disorder can be even more pronounced
when both random ferromagnetic and antiferromagnetic cou-
plings are present. Then the combined effect of frustration as
well as thermal and disorder fluctuations could lead to a rich
phase diagram, which contains a spin-glass (SG) phase and
different critical and multicritical points [1].

Among the models studied in this context the random
bond q-state Potts model [2–7] plays an important role. For
q = 2 we have the well-known Edwards-Anderson model [8]
of Ising SG and for q = 3 and q = 4 it is used to describe
orientational and quadropular glasses [9], respectively. For
large values of q the model is suggested to be a plausible model
of supercooled liquids. This relation seems to be correct in the
infinite-range model [10], but for a system with finite-range
interactions further studies are needed to clarify this point.
On the cubic lattice for q = 3 [11,12] and later for q = 5
and 6 [13] numerical evidence was obtained in favor of a
thermodynamic transition into a stable SG phase. For q = 10
on the cubic lattice in the first studies no SG phase has
been observed [11,12]. Repeating the calculation on a one-
dimensional chain with long-range power-law interactions,
which is equivalent to a short-ranged system below the upper
critical dimension, evidence is obtained for an SG phase at
low enough temperature [14]. Continuing this study further
for even larger q-s seems to be very difficult, in particular due
to the very narrow range of temperature where the presence of
the SG phase is expected.

In this paper, in order to gain some insight about the possible
behavior of the large-q model we use the Migdal-Kadanoff
renormalization group (RG) method [15], which provides
exact results on hierarchical lattices [16]. This method has
already been used for the Potts model (with finite value of q)
for random ferromagnetic couplings [17–20], while for
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random ferro- and antiferromagnetic couplings this method
is combined with the Gaussian approximation [21]. Studies
of the model in the large-q limit have been performed by one
of the present authors in Ref. [22] to which we will refer as
paper I. In paper I the lattice with an effective dimensionality,
deff = 2, is studied in more detail, in which case the critical
properties of the model are calculated by solving numerically
a set of integral equations.

In this paper we continue these studies when the diamond
hierarchical lattice has a larger branching number, b > 2,
which corresponds to deff > 2. In this case the RG equations
are more complicated, which are then iterated numerically.
For different values of b we determine the phase diagram in
the temperature-frustration plane, which is found to contain a
ferromagnetic and a paramagnetic phase, but there is no SG
phase. The phase transition is shown to be controlled by a
random ferromagnet (RF) fixed point when the driving force
of the transition is the temperature, whereas it is controlled
by a zero temperature (Z) fixed point when the driving force
is frustration. We calculate the critical exponents in the two
attractive fixed points for different effective dimensionalities.
The attractive regimes of the RF and Z fixed points in the phase
transition line is separated by an unstable multicritical (MC)
fixed point, the vicinity of which is studied in more detail.
Our numerical investigations predict that the phase-diagram
around MC has a singular structure.

The structure of the paper is the following. The model and
the method of investigation is described in Sec. II. Results
about the phase diagram and the critical properties of the
system are presented in Sec. III, while the vicinity of the MC
point is studied in Sec. IV. Our paper is closed by a Conclusion
in the final section.

II. MODEL AND MIGDAL-KADANOFF
RENORMALIZATION

We consider the q-state Potts model defined by the
Hamiltonian:

H = −
∑
〈i,j〉

Jij

ln q
δsi ,sj

, (1)
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in terms of the Potts spin variables si = 1,2, . . . ,q at site i of
the lattice. Here δsi ,sj

is the Kronecker-symbol, the summation
runs over nearest-neighbor pairs and the couplings Jij are in-
dependent and identically distributed random numbers, which
can be either positive or negative. The ln q in the denominator
insures that the transition temperature stays finite when q

goes to infinity [23]. In the random cluster representation
of the model the partition function Z is dominated by one
diagram:

Z �
q→∞ qφ + subleading terms, (2)

and the free energy is given by F = −φ/β, where β = 1/T

with the convention kB = 1.
In this paper the Potts model is placed on the diamond

hierarchical lattice, which is constructed recursively from
a single link. At each step a link is replaced by a unit,
which consists of b parallel branches, each branch con-
taining two bonds in series. At generation n, the length
Ln measured by the number of bonds between the two
extreme sites A and B is Ln = 2n, and the total number of
bonds is

Bn = (2b)n = Ldeff (b)
n with deff(b) = ln(2b)

ln 2
, (3)

where deff(b) is an effective dimensionality.
In the following we consider fixed-spin boundary condi-

tions: When the two extreme sites A and B are in the same
(different) state the partition function is denoted byZ1,1

n (Z1,2
n ).

Their ratio is given by

Z1,1
n

Z1,2
n

= qIn , (4)

where In = βF inter
n and F inter

n = F 1,2
n − F 1,1

n is the interface
free energy. The scaled interface free energy In satisfies the
recursion equation [17,19]:

qIn+1 =
b∏

i=1

[
qI

(i1)
n +I

(i2)
n + (q − 2)

qI
(i1)
n + qI

(i2)
n + (q − 2)

]
, (5)

which for large q becomes q independent (see paper I):

In+1 =
b∑

i=1

�
[
I (i1)
n ,I (i2)

n

]
. (6)

Here the auxiliary function is

�[I (1),I (2)] = max(I (1) + I (2),1) − max(I (1),I (2),1). (7)

The initial condition is given by

I
(i)
0 = βJi, (8)

where Ji is the value of the ith coupling.

III. PHASE DIAGRAM AND CRITICAL PROPERTIES

A. Numerical pool method

The phase diagram of the random system is studied
numerically for different numbers of the branching number

b > 2, which corresponds to an effective dimension deff > 2.
The original distribution of the couplings is given in a boxlike
form:

P(J ) =
{

1 if p

1−p
< J < 1

1−p
,

0 otherwise,
(9)

with p � 1 as already used in paper I for b = 2. For p > 0 all
couplings are random ferromagnetic and in the limit p → 1 we
have the pure system. For p < 0 there are also negative bonds;
their fraction is increasing with decreasing p. In the numerical
calculations we have used the so-called pool method. Since we
need to perform up to 70 steps of iteration, it is not possible
to proceed to a deflation of the lattice; instead we iterate a
realization of the probability distribution. We start with a pool
of N random variables taken from the original distribution
in Eq. (9). Then we choose 2b numbers randomly from the
pool and through renormalization at a fixed temperature T ;
using Eqs. (6) and (7) we generate a new parameter. Repeating
this procedure N times we obtain the elements of the pool
at the first generation, which are then used as input for the
next renormalization step. We check the properties of the pool
at each renormalization by calculating the distribution of the
scaled interface free energy, its average, and its variance. In
practice we have used a pool of N = 5 × 106 elements and
we went up to n ∼ 70–80 iterations. We mention that in
order to study the sensitivity of the results on the form of the
initial distribution we have also used Gaussian and symmetric
bimodal distributions instead of Eq. (9), but the structure of
the phase diagram and the properties of the fixed points remain
the same.

B. Phases

At a given point of the phase diagram (p,T ), the renor-
malized parameters display two different behaviors, which are
governed by two trivial fixed points.

(i) In the paramagnetic phase the scaled interface free
energy renormalizes to zero, thus its average is I = 0 and
its variance is �I = 0.

(ii) In the ferromagnetic phase the scaled interface free
energy goes to infinity. Its average behaves at a length, L as
I ∼ Lds , with ds = deff − 1 being the effective dimension of
the interface. Also the variance of I is divergent: �I ∼ Lθ ,
with a droplet exponent θ > 0. The length L has been defined
by Eq. (3).

We note that in the large-q limit there is no spin-glass
phase, even at zero temperature, contrary to the known results
for q = 2 and q = 3 [24,25].

The two phases are separated by a phase transition line
Tc(p) which can be calculated accurately for a given pool
and its true value can be obtained by averaging over different
pools and taking the N → ∞ limit. The phase diagrams are
shown in Fig. 1 for different values of the branching number
in the plane τ = (1 + p)T/J versus p. (In the vertical axis
we used a nonsingular scaling combination, since the average
coupling: J = p+1

2 is zero at p = −1.) For the case b → ∞,
the exact expressions of the transition lines can be obtained
and these are given in the appendix. Interestingly the phase
diagram shows several reentrances in the regime p < 0 (see
also Fig. 5). This behavior is different from that observed
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FIG. 1. (Color online) Phase diagrams for different branching
numbers: b = 2,3,4,8, and in the b → ∞ limit. The system is in the
paramagnetic phase for high temperature (large T and τ ) and/or for
large frustration (small p); otherwise it is in the ferromagnetic phase.
The phase transition lines are indicated by red (thick) and green (thin)
lines, along which the transition is controlled by the RF and the Z
fixed points, respectively. The red and green lines meet at the MC
points where there are several reentrances for b > 2. For b = 2 the
phase diagram is equivalent to that in Ref. [22].

at b = 2 (in which case only one reentrance is present)
and we are going to study its properties in more detail in
Sec. IV.

C. Fixed points

For all values of b the phase-transition line is found to be
controlled by four different fixed points.

(i) The fixed point of the pure system (P) is located at p = 1
and τ = 2(2b − 1)/b and it describes a first-order transition.
This fixed point is unstable for any small amount of disorder;
see paper I.

(ii) Along the transition line for p < 1 between P and the
multicritical point MC (indicated by a red line in Fig. 1) the
transition is controlled by the RF fixed point. Here I = O(1)
and �I = O(1) and the distribution P (I ) at the fixed point
is given in Fig. 2 for b = 2,3,4, and 8. At this fixed point
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FIG. 2. (Color online) Probability distribution of the scaled
interface free energy at the RF fixed point for b = 2, b = 3, b = 4,
and b = 8. At I = 0 there is an extra δ peak with respective strength
0.12808, 0.25052, 0.31889, and 0.43609.

the distribution contains no negative I values, but there is a δ

peak at I = 0, the strength of which is increasing with b; see
the caption of Fig. 2. In the vicinity of the transition line at a
distance �T = Tc − T in the ferromagnetic phase the average
value and the variance of I behave as

I (�T,L) =
[

L

ξav(�T )

]ds

+ · · · ,
(10)

�I (�T,L) =
[

L

ξvar(�T )

]θ

+ · · · .

Here the correlation lengths are divergent as ξav(�T ) ∼
(�T )−νav and ξvar(�T ) ∼ (�T )−νvar , respectively.

(iii) The other part of the transition line between MC and
Z (indicated by the green line in Fig. 1) is controlled by the Z
fixed point, which is located at T = τ = 0. Here the interface
free energy grows with the size as I (L) = LθZuI , where the uI

are O(1) random numbers and the droplet exponent is θZ > 0.
Here we use the scaled variable, in ≡ In/In, which obeys the
renormalization group equation from Eq. (6):

In+1

I n

= in+1αn+1 =
b∑

i=1

φ
[
i(i1)
n ,i(i2)

n

]
, (11)

with αn+1 = I n+1/In and

φ[i(1),i(2)] = max(i(1) + i(2),0) − max(i(1),i(2),0). (12)

The T = τ = 0 line is an irrelevant subspace of the trans-
formation, in which the ferromagnetic (respectively, para-
magnetic) phase is located at p > pZ (respectively, p <

pZ) where αn → b (respectively, αn → 0). In between there
is the nontrivial fixed point at p = pZ , in which αn →
αZ: αZ is related to the droplet exponent as θZ = log αZ/

log 2.
The distribution of the scaled variable i is shown in Fig. 3

for various values of b. In the vicinity of the transition line
at a distance �T = T

′
c − T

′
in the ferromagnetic phase the

average value and the variance of the interface free energy
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FIG. 3. (Color online) Probability distribution of the scaled
interface free energy at the Z fixed point. At i = 0 there is a delta
peak with strength 0.1728 10−3 for b = 2, 0.492810−4 for b = 3, and
0.940010−5 for b = 4. For b = 8 and with a pool of size 5 × 106 we
have found no zero value.
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FIG. 4. (Color online) Probability distribution of the scaled
interface free energy at the MC fixed point for b = 2,3,4, and 8.
For b > 2 there is a discontinuity at I = 0 (a step representation
of the probability distribution has been used to stress this feature).
In addition there is a delta peak at I = 0 with respective weight
0.0057, 0.012854, 0.014713, and 0.016626 for b = 3, b = 4, and
b = 8.

scales as

I (�T,L) = Lds

[ξav(�T )]ds−θZ
+ · · · ,

(13)

�I (�T,L) = Lθ

[ξvar(�T )]θ−θZ
+ · · · ,

respectively. Here the correlation lengths, ξav(�T ) and
ξvar(�T ) are divergent at �T = 0, with the critical exponents
νZ

av and νZ
var, respectively.

(iv) The attractive regions of the RF and Z fixed points are
separated by the unstable MC fixed point. Here the interface
free energy behaves as I = O(1) and �I = O(1), similarly to
the RF fixed point. The distribution P (I ) at the MC fixed point
is shown in Fig. 4 for various values of b. This distribution
has a finite jump at I = 0 for b > 2, which has interesting
consequences about the structure of the phase diagram at MC,
what we are going to analyze in Sec. IV.

D. Critical exponents

The critical exponents for b > 2 are calculated numerically
by the pool method. In the calculation of the RF exponents
we have first fixed the parameter of the disorder distribution
p, then calculated the location of the critical point Tc(p).
For a given pool Tc(p) has been calculated accurately, with
a precision of 10−12. Then estimates for the critical exponents
are calculated from the relations in Eq. (10). At the Z fixed
point the temperature is T = 0, therefore we have to calculate
its position pZ . Then the critical exponents are calculated
from (13). Repeating the procedures for different parameters
and for different pools we have obtained estimates of the
set of critical exponents with a relative precision of about
10−3. We have observed that the correlation length critical
exponents calculated from the average and from the variance
are identical for a given fixed point, i.e., νav = νvar = ν and
similarly νZ

av = νZ
var = νZ . This relation is found to be exact

before for b = 2 (see paper I) and now it is demonstrated
numerically for other values of the branching number. We

TABLE I. Critical exponents of the disordered Potts model in
the large-q limit on the diamond hierarchical lattice. Results for
branching number b = 2 are from paper I.

b 2 3 4 8 16 32

θ 0.299 0.563 0.760 1.245 1.736 2.233
ν 1.307 1.051 0.949 0.808 0.730 0.684
θZ 0.146 0.325 0.478 0.894 1.348 1.822
νZ 1.729 1.258 1.051 0.738 0.555 0.440

note that for a finite value of q the two correlation length
exponents are generally different, at least on the same diamond
hierarchical lattice [20]. The set of numerically calculated
critical exponents are collected in Table I for different values
of the branching number. For completeness we also present
here the numerically exact results obtained for b = 2 in
paper I.

IV. MULTICRITICAL POINT

The phase diagram in the vicinity of the MC point is
different for b = 2 and for b > 2; see in Fig. 1. In the former
case there is just one reentrance of the phase boundary and at
the MC fixed point there is traditional multicritical behavior
(see in paper I). On the contrary for b > 2 the phase diagram
around MC has more than one reentrance. We have explored
the phase diagram around MC by using larger and larger
magnifications and the results for b = 8 are presented in
Fig. 5. Interestingly the phase diagram shows a self-similar
structure: The reentrances are repeated in different scales.
Let us denote the location of the MC point by τ ∗ and p∗
and then use relative positions of the phase boundary, which
are given by �p = pc − p∗ and �τ = τc − τ ∗. According
to the results in Fig. 5 by enlarging the scale by roughly
a factor of 10 the phase diagram has approximately the
same reentrant structure. With the pool method, having a
large, but finite number of realizations we could go up to a
magnification of ρ0 ≈ 2 × 10−7 in the phase diagram, up to
which scale one could observe at least seven similar reentrant
structures.

It is instructive to use polar coordinates, ρ and φ, and plot
the phase diagram in a semilogarithmic scale as a function
of ln(ρ/ρ0) and φ, which is presented in Fig. 6. In this
figure the paramagnetic and the ferromagnetic phases are
represented by two almost-perfect spirals, which means that
the phase boundary around the MC point is approximately
given by a logarithmic spiral. We note that for other values of
the branching number (b = 3 and b = 4) we have observed
a similar structure of the phase diagram around the MC
point.

We expect that the size of the elementary magnification
step ρ0 is decreasing when the size of the pool is in-
creasing and in the thermodynamic limit the magnification
step goes to zero. In this case the phase diagram at the
MC point becomes singular. Passing through the MC point
the phase diagram has an infinite number of reentrances
and sufficiently close to MC one cannot define a stable
thermodynamic phase, since its stability range measured
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FIG. 5. (Color online) Phase diagram in the vicinity of the MP point: The framed regions are enlarged in the next figure. Note the (self-)
similarity of the phase boundary in different scales. The green (bright) region represents the paramagnetic phase; the red (dark) region is the
ferromagnetic phase.

either in temperature or in concentration of couplings goes to
zero.

V. CONCLUSION

In this paper we considered the q-state Potts model for large
q with randomly mixed ferro- and antiferromagnetic couplings
and studied its critical properties on the diamond hierarchical
lattice with an effective dimensionality, deff > 2. By using

the Migdal-Kadanoff renormalization scheme, which is exact
for this lattice, the phase diagram is explored numerically
using the pool method. As for deff = 2 the phase diagram
contains a ferromagnetic and a paramagnetic phase, but there
is no spin-glass phase, even at zero temperature. The phase
transition in the random system is controlled either by a
random ferromagnet fixed point, in which the driving force
is the temperature, or by a zero temperature fixed point, in
which the transition is due to frustration. The two regimes are
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FIG. 6. (Color online) Phase diagram in the vicinity of the MP
point in logarithmic polar coordinates (see text).

separated by a multicritical point in the vicinity of which the
system shows unusual properties.

Both in the RF and the Z fixed points the transition is
continuous and we have calculated numerically the critical
exponents, which are collected in Table I. The correlation
length exponents calculated from the scaling of the average
or the variance are found to be equal. At the MC point
the distribution of the reduced interface free energy is a
discontinuous function, having a finite jump at I = 0. At the
same time the phase diagram close to MC has a self-similar,
logarithmic spiral-like structure. Consequently the phase
boundary itself has a singularity and in the traditional sense
one cannot define a stable thermodynamic phase here. The
presence of infinitely many phase transitions at the MC point
is somewhat analogous to the low-temperature phase structure
of the three-dimensional axial next-nearest neighbor Ising
(ANNNI) model, in which case infinitely many commensurate
phases are present in the vicinity of the zero-temperature
multicritical point [27]. Here one might ask the question, if
the self-similar structure of the phase diagram at the MC point
is related to the hierarchical nature of the lattice. Indeed, for
the nonrandom Potts model the distribution of the zeros of the
partition function on the same lattice are known to have also a
fractal (self-similar) structure for finite values of q [28].

The studies presented in this paper can be extended in
different directions. First, it would be interesting to study
by analytical methods the behavior of the system in the
vicinity of the MC point for b > 2. (i) To prove or disprove
that the elementary magnification step at the MC point ρ0

approaches zero in the thermodynamic limit. (ii) To show
rigorously that the distribution function, P (I ), in the MC point
is strictly discontinuous, as shown in Fig. 4. (iii) Also would
be interesting to clarify the possible relation between these
two expected properties.

Another extension of the present study is to investigate, if
the singular behavior at the MC point could exist in another
systems, too. As far as the random Potts model on hypercubic
lattices is concerned it has the same fixed point structure for
a finite value of q, thus generally there is an MC point in
these models [24,26]. Probably in sufficiently large dimension
(d = 3 could be enough), and for large q, the MC singularity
could exist. Numerically, however, it would be very difficult to

explore the details of the process, as already seen in the prob-
lem of detection of the SG phase [13,14]. A discontinuous dis-
tribution of some observables at this point, such as the reduced
interface free energy, could be the sign of such singularity.
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APPENDIX: THE PHASE DIAGRAM FOR b → ∞
The phase diagram for b → ∞ can be analytically treated;

here we consider the initial distribution in Eq. (9). First we
note that in this limit in the recursion equation [Eq. (6)] there
is a sum of a large number of random variables and the renor-
malized value of the interface free energy depends on the sign
of the average value of the auxiliary function: 〈�(I (1)

0 ,I
(2)
0 )〉 ≡

〈�〉. Here we can differentiate between three cases.
(i) If 〈�〉 > 0 then all the renormalized parameters are

I1 � 1; consequently we are at the F fixed point and due to
the central limit theorem the droplet exponent is θ = ds/2.

(ii) If 〈�〉 = 0, then all the I1 values are equal to zero, thus
the P fixed point has been reached.

(iii) Finally, if 〈�〉 < 0, then all the renormalized parameters
are I1  0, thus in the next renormalization step we have
I2 = 0 and again the P fixed point has been reached.

In the next step we compute the sign of 〈�〉 in the different
parts of the phase diagram in Fig. 1. Let us denote the end
points of the box distribution in Eq. (9) by x = 2p

τ
and y = 2

τ
.

In the region y < 1 one has 〈�〉 = 0 and only for x < 0 and
y > 1 we can have 〈�〉 < 0. A direct calculation gives in this
region 〈�〉 as the ratio of a third degree polynomial in x and y

by (y − x)2 and the numerator has two different expressions
according to the sign of (x + y + 1). Then expressing x and
y with p and τ , one gets the transition lines shown in Fig. 1.
The upper boundary is a horizontal line with τ = 4. The lower
boundary is given by two expressions:

−3τ 3 + 12τ 2 − 24τ + 32 + 12pτ 2 − 48pτ + 48p = 0

−16p3 − 48p2 + 24p2τ − τ 3 + 16 = 0,

which are valid for p < p̃ and p > p̃, respectively. The two
lines join at

p̃ = 1

3
(1 − 4 cos θ ) , τ̃ = 8

3
(1 − cos θ ) ,

θ = arctan(3
√

7) − π

3
,

and the extremities of the lower boundary line are at p = −∞,
τ = 2, and p = 2 cos( 4

9π ) − 1, τ = 0.
We note that in the limit b → ∞ the ferromagnetic phase

between 2 < τ < 4 extends to all values of p. For a large, but
finite value of b, however, there is a paramagnetic phase for
p � −√

b.
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