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Ising ferromagnet in dimension five: Link and spin overlaps
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In the simple [hyper]cubic five-dimension, near-neighbor-interaction Ising ferromagnet, extensive simulation
measurements are made of the link overlap and the spin overlap distributions. These “two replica” measurements
are standard in the spin glass context but are not usually recorded in ferromagnet simulations. The moments and
moment ratios of these distributions (the variance, the kurtosis, and the skewness) show clear critical behaviors at
the known ordering temperature of the ferromagnet. Analogous overlap effects can be expected quite generally
in Ising ferromagnets in any dimension. The link overlap results in particular, with peaks at criticality in the
kurtosis and the skewness, also have implications for spin glasses.
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I. INTRODUCTION

As is well known, the upper critical dimension (ucd) for
Ising ferromagnets is four. Here we show results of simulations
for an Ising ferromagnet with near-neighbor interactions, on a
simple [hyper]cubic lattice with periodic boundary conditions
in dimension five, the next dimension up. The Hamiltonian is
as usual,

H=-J]) 55, (1)
ij

with spins i and j near neighbors. We will take J = 1 and will
quote inverse temperatures f = 1/T.

All the principal properties of this system are well known.
Recent consistent and precise estimates of the inverse or-
dering temperature S, are 0.11391 [1], 0.113925(12) [2],
0.1139139(5) [3] from simulations, and 0.113920(1) [4] from
high temperature series expansion (HTSE). We will use . =
0.113915(1) as a compromise estimate. The susceptibility
critical exponent and the effective correlation length exponent
take the exact mean field values y = 1 and v = 1/2, with a
leading correction to scaling exponent 6 = 1/2 [5]. In the
periodic boundary condition geometry, above the ucd the
“effective length” is L.y = AL?Y/*, where A is a nonuniversal
constant [1,6].

We analyze simulation data for the “two replica” observ-
ables link overlap and spin overlap, familiar in the Ising
spin glass (ISG) context. It might seem curious to apply
techniques developed for complex systems to the much simpler
ferromagnet, particularly above the ucd, even though the
observables can be defined in exactly the same way in a
ferromagnet as in an ISG. Properties of the spin overlap at
and beyond S. have already been studied in the 3D Ising
ferromagnet [7].

However, just because all the major parameters are well
known it is convenient to use the 5D ferromagnet as a testbed
for studying the critical behavior of various moments or
moment ratios (the variance, the kurtosis, and the skewness) of
both overlap distributions. The results should be generalizable
mutatis mutandis to all Ising ferromagnets. The final aim is to
establish the ground rules for the properties related to the link
overlap near criticality in order to apply a similar methodology
to complex systems, in particular to ISGs.
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The link overlap [8], like the more familiar spin overlap,
is an important parameter in ISG numerical simulations. In
both cases, two replicas (copies) A and B of the same physical
system, i.e., with identical sets of interactions between spins,
are first generated and equilibrated; updating is then continued
and the “overlaps” between the two replicas are recorded
over long time intervals. The spin overlap at any instant ¢
corresponds to the fraction g(¢) of spins S; in A and B having
the same orientation (57 and S both up or both down), and the
normalized overall distribution over time is written P(q). The
link overlap corresponds to the fraction g,(¢) of links (or bonds
or edges) ij between spins, which are either both satisfied or
both dissatisfied in the two replicas; the normalized overall dis-
tribution over time is written Q(q,). The explicit definitions are

1 & A B
q(t) = N ;:1 SHOS7 (1) (2
and

1
9t = ; N ONYONLONIG) 3)

where N is the number of spins in the system and N, the
number of links; spins i and j are linked, as denoted by ij.
We will indicate means taken over time by (- - -).

Equilibration and measurement runs were performed by
standard heat bath updating on sites selected at random.
The spin systems started with a random configuration,
i.e., at infinite temperature, and were gradually cooled and
equilibrated until they reached their designated temperatures,
where they received a longer equilibration. For example, for
L = 10 the systems at 8 = 0.114 saw roughly 10° sweeps
before any measurements took place and the smaller systems
at least 107 sweeps. Several sweeps were made between
measurements and with a flip rate of about 27% near ., which
means at least four sweeps between measurements. For L = 10
about 107 measurements were recorded at each temperature
near . and considerably more for the smaller systems.

II. LINK OVERLAP

For any standard near-neighbor Ising ferromagnet with all
interactions identical and with periodic boundary conditions,
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FIG. 1. (Color online) The Q variance [Eq. (6)] as a function of
size and inverse temperature for the 5D near-neighbor ferromagnet.
In this and all the following figures, the convention for indicating size
is L = 4, blue triangles; L = 6, red circles; L = 8, black squares;
L =10, pink inverted triangles. In this and the following figures,
errors are smaller than the size of the points unless stated otherwise.
The red vertical line indicates the inverse ordering temperature
B. =0.113915.

there is a simple rule for the mean link overlap in equilibrium
(qe(B,L)).If ps(B,L)1is the probability averaged over time that
any given bond is satisfied, then by definition the mean energy
per bond is

UB,L)I =1—=2ps(B,L). “4)

Because all bonds are equivalent

(@e)(B,L) = p? + (1 — py)* —2ps(1 — py) = U(B,L)*.
(5)

This rule is exact at all temperatures (we have checked
this numerically), so it would appear at first glance that
link overlap measurements present no interest in a simple
ferromagnet as they contain no more information than the
energy. However, the moments of the link overlap distribution
reflect the structure of the temporary spin clusters, which
build up in the paramagnetic state before ., and the domain
structure in the ferromagnetic state beyond .. Thus, if at
some instant ¢ a cluster of parallel spins exists in replica
A and a similar cluster in the same part of space exists in
replica B, then the instantaneous g,(t) will be significantly
higher than the time average (g,(¢)). The width of the overall
distribution Q(q,) increases rapidly on the approach to S,
and we find phenomenologically that, as a consequence of the
repeated occurrence of the cluster situation, around the critical
temperature the distributions do not remain simple Gaussians
but develop excess kurtosis and skewness, even though to the
naked eye these deviations from pure Gaussian distributions
are not obvious; for instance, no secondary peaks appear in the
distributions.

We exhibit in Figs. 1-4 data at sizes L =4, 6, 8, and 10
for the Q variance

Ovaur(B,L) = ((qe — (qe))?), (6)
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FIG. 2. (Color online) The Q variance as described in the legend
of Fig. 1, in the region of the inverse ordering temperature §.. Sizes
coded as described in the legend of Fig. 1.

the Q kurtosis

{(ge = (ge))h)

L) = ——, 7
OB = g =t @
and the Q skewness
_ 3
0.(B.L) = ((qe — {ge))’) ®)

((qe = (g

The three QO moments and moment ratios follow the
standard definitions for the moments of a distribution. For
the Q variance we plot log[ Qvar(B8,L) — 1] so as to display
the entire range of data. Figure 1 shows the behavior of the O
variance from high temperature through . to 8 = 0.13, well
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FIG. 3. (Color online) The Q kurtosis [Eq. (7)] for the 5D near-
neighbor ferromagnet as a function of size and inverse temperature.
Sizes coded as described in the legend of Fig. 1.
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FIG. 4. (Color online) The Q skewness [Eq. (8)] for the 5D near
neighbor ferromagnet as a function of size and inverse temperature.
Sizes coded as described in the legend of Fig. 1.

into the ordered state. Figure 2 shows the same data in the
region near f,.

It can be seen that the Q variance has clear critical behavior.
Just as for standard “phenomenological couplings”, such as the
Binder cumulant or the correlation length ratio £(8,L)/L>*
(in the 5D case [1]), it is size independent at B, to within a
finite-size correction. As the Q variance is a phenomenological
coupling in this particular system, it can be expected to have a
similar form as a function of temperature in any ferromagnet,
with the appropriate finite-size correction exponent. This
makes the Q variance a supplementary phenomenological
coupling for ferromagnets in general. As g, is a near-neighbor
measurement like the energy, the distribution Q(g,) tends to
equilibrate faster on annealing than a parameter such as the
correlation length .

The Q kurtosis has a more unusual form (Fig. 3). At
temperatures well above or well below the critical temperature,
it takes up the Gaussian value Q;(8) = 3, but near criticality
there is an excess Q kurtosis peak corresponding to a “fat
tailed” form of the link overlap distribution. With increasing
L, the width and strength of the peak decrease and the
peak position B (Qr) approaches B.. In the present 5D
ferromagnet case, the form of the temperature dependence
evolves with L; with increasing L from a simple peak it tends
to peak plus dip.

The Q skewness (Fig. 4) resembles the Q-kurtosis plot.
The Q skewness starts at 0 (a symmetric distribution) at 8 = 0
and then develops a strong positive peak as a function of 8 in
the region of B, [so a distribution Q(q,) tilts toward high g,].
Again, the width and the strength of the peak decrease with
increasing L. There is a weak indication of the beginning of a
dip beyond the peak. The Q kurtosis and Q skewness can be
expected to show qualitatively the same critical peak form in
any ferromagnet.

For the moment, these observations are essentially phe-
nomenological; it would be of interest to go beyond the
argument given above in terms of correlated clusters of spins so
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FIG. 5. (Color online) The P variance [Eq. (10)] for the 5D near-
neighbor ferromagnet as a function of size and inverse temperature.
Sizes coded as described in the legend of Fig. 1.

as to obtain a full quantitative explanation for the details of the
critical behavior of the Q(g,) distribution and its moments in
finite L samples. Link overlap moment peaks in ISGs resemble
these ferromagnet results [10], implying that the peak structure
is a very general qualitative form of the behavior of link overlap
distributions at an Ising magnet critical point.

The link overlap can be defined for vector spins [11] by

1
o DN (CRCAICC)) NENO
ij

qe
which is invariant under global symmetry operations; the same
link overlap critical properties as seen in Ising systems may
well exist in XY and Heisenberg magnets also.

III. SPIN OVERLAP

As for the link overlap, one can also define various moments
and moment ratios of the spin overlap distribution such as the
P variance,

Peur(B,L) = (g%, (10)
and the P kurtosis,

P(B,L) = (g*)/(q*)?, (11)

which is simply related to the Binder-like P cumulant
Py(B,L) = [3 — Pu(B,L)] /2.

The P variance in the ferromagnet has the phenomeno-
logical coupling form (Fig. 5); at ., the P variance tends to
an L-independent value with a finite-size correction. As the
temperature goes to zero the P variance will tend to L. The
P kurtosis has a different phenomenological coupling form
(Fig. 6), a peak before a sharp drop to 1, corresponding to the
P(q) distribution becoming “fat tailed” before and at 8, before
taking on a two-peak structure in the ordered state [7]. This is
in contrast to the magnetization M kurtosis (usually expressed
as the Binder cumulant) in ferromagnets or the standard P
kurtosis in ISGs, which both drop regularly from the Gaussian
value 3 toward the two peak value 1 with increasing order.
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FIG. 6. (Color online) The P kurtosis [Eq. (11)] for the 5D near-
neighbor ferromagnet as a function of size and inverse temperature.
Sizes coded as described in the legend of Fig. 1.

However, it can be noted that the temperature variation of
the kurtosis for the chiral order parameter in Heisenberg spin
glasses has the same general form as the present ferromagnetic
P Kkurtosis, the distribution becoming fat tailed above the
ordering temperature [9].

As the distributions P(g) in equilibrium are by definition
symmetrical about ¢ = 0, the P skewness is always zero.
However, for the one-sided distribution of the absolute value of
|q|, other parameters can be defined, in particular, the absolute
P kurtosis,

(gl = (g

Pyx(B,L) = T
kB L) = 2 e

12)

absolute Pkurtosis
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FIG. 7. (Color online) The absolute P kurtosis, Py« [Eq. (12)],
for the 5D near-neighbor ferromagnet as a function of size and inverse
temperature. Sizes coded as described in the legend of Fig. 1.
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FIG. 8. (Color online) The absolute P skewness, P, [Eq. (13)],
for the 5D near-neighbor ferromagnet as a function of size and inverse
temperature. Sizes coded as described in the legend of Fig. 1.

and the absolute P skewness,

{(ql = {1g1)*)

—_—_— 13
((ql —(lq)H*)*> 1

qu\,s(ﬂvL) =

The absolute P kurtosis and the absolute P skewness in the
ferromagnet have rather complex phenomenological coupling
temperature-dependence patterns, with very weak finite size
corrections at B, (Figs. 7 and 8). If the weak finite-size
correction is a general property for these parameters, it could
be usefully exploited so as to obtain high-precision estimates
of ordering temperatures in systems where these temperatures
are not well known.

The spin overlap properties do not transport from the
ferromagnet into ISG systems in the same manner as the
link overlap properties do because the P variance takes on
a different status: in an ISG, q2 becomes the order parameter.

IV. CONCLUSION

The standard near-neighbor interaction Ising ferromagnet
on a simple [hyper]cubic lattice in dimension five has been
used as a test case in order to demonstrate the critical form
of the temperature variations of observables related to the link
overlap and the spin overlap, parameters developed in the ISG
context and not generally recorded in ferromagnet simulations.
The moments of the link and spin overlap distributions, Q(g,)
and P(q), show a rich variety of temperature variations, with
specific critical behaviors. The temperature dependence of the
link overlap kurtosis and the link overlap skewness show peaks
at criticality that are “‘evanescent” in the sense that they will
disappear in the large-size thermodynamic limit. The present
results validate the assumption that these observables show
true critical temperature dependencies. A temporary cluster
phenomenon is proposed as determining the evolution of the
link overlap distributions. If correct, this mechanism is quite
general, so we expect the critical peaks in the Q kurtosis
and the Q skewness to be present in the entire class of Ising
ferromagnets, not only those in dimensions above the ucd, and
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plausibly in vector spin ferromagnets also. Beyond the class
of ferromagnets, it can be noted that link overlap Q kurtosis
and Q skewness critical peaks have also been observed [10] in
Ising spin glasses.
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