
PHYSICAL REVIEW E 87, 022101 (2013)

Coupling-parameter expansion in thermodynamic perturbation theory

A. Sai Venkata Ramana
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

S. V. G. Menon*

304, Building 31-B, Mumbai 400 089, India
(Received 26 September 2012; revised manuscript received 15 December 2012; published 1 February 2013)

An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by
combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme
avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any
arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method
also gives the radial distribution function and the direct correlation function of the perturbed system. The theory
is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of
perturbation series and the overall performance of the theory is good, improvements are needed for potentials with
shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.
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I. INTRODUCTION

In thermodynamic perturbation theory (TPT) for simple
fluids, the interparticle pair potential is split into a reference
part uref(r) and a perturbation part upert(r). All the thermody-
namic and structural properties of the reference system, with
interparticle potential uref(r), are assumed to be known. In
earlier approaches [1] to TPT, the properties of the system
of interest are obtained in terms of the known properties of
the reference system. Thus, the Helmholtz free energy of the
system is expressed as an infinite power series involving either
β = 1/kBT (where kB is the Boltzmann constant and T is the
temperature) or the coupling parameter ζ , which characterizes
the strength of the perturbation. In this expansion, known as
high temperature series expansion (HTSE), the first order
correction terms depends only on the radial distribution
function (RDF) of the reference system. The second order
term depends on three particle and four particle distribution
functions. An approximation to the second order term is
obtained by Barker and Henderson [2]. Higher order correction
terms are practically inaccessible as they require still higher
order correlation functions. This method gives satisfactory
results for long-ranged potentials; however, it becomes quite
inaccurate as the range of the potential becomes shorter.
For specific potentials (for example, square-well potential)
because of their simple forms, methods have been developed
which perform better for shorter ranges [3,4]. However,
a general theory which accurately predicts thermodynamic
properties for short-ranged potentials is lacking.

Zhou [5] developed a new version of TPT to improve its
accuracy for short-range potentials. This version, called the
coupling-parameter expansion (CPE), relaxes the assumption
that the properties of the actual system have to be determined
solely in terms of the reference system. As a result, Zhou
obtains a new power series expansion for Helmholtz free
energy in terms of the coupling parameter ζ . The first term
of this expansion coincides with that of HTSE. However, the
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higher order terms depend upon the derivatives of the RDF with
respect to ζ at ζ = 0. The nth order term in the series depends
on the nth derivative of g(ζ,r), i.e., ∂ng(ζ,r)/∂ζ n|ζ=0. Zhou
proceeds by calculating the derivatives (at ζ = 0) numerically
by a finite difference method. Considering an imaginary fluid
interacting with potential uref(r) + ζupert(r), the RDF’s is
computed for some discrete values of ζ close to zero using
an integral equation theory (IET) [1]. Zhou has developed this
approach including up to fifth order term in the perturbation
series [6]. However, the finite difference method is inadequate
to obtain higher order derivatives. In fact, to get derivatives
higher than third order, numerical procedures are required to
smoothen the data sets. Thus, in practice, it is difficult to get
derivatives greater than third order and the accuracy of higher
order derivatives cannot be ascertained a priori.

The present paper is a different approach to the CPE. We
assume that the RDF g(ζ,r) and the direct correlation function
(DCF) c(ζ,r) of the perturbed system can be expressed as a
Taylor series in ζ around ζ = 0. Then we derive a system
of linear equations connecting the derivatives of c(ζ,r) in
real space and g(ζ,r) in Fourier space, by using a general
closure relation obtained from diagrammatic analysis and the
Ornstein-Zernike equation [1]. This coupled sets of equations
is easily solved in a self-consistent way to obtain all the
required derivatives. Thus, the new method avoids using the
finite difference method for obtaining the derivatives of g(ζ,r).
The numerical scheme is simplified and accurate derivatives
up to any order can be easily obtained without requiring any
smoothing procedures. Another important advantage of the
present theory is that it gives both g(r) and c(r) of the actual
system, apart from the Helmholtz free energy.

The paper is organized as follows. In Sec. II we discuss
the method in detail. In Sec. III we give results of different
calculations for square-well fluids and the paper is concluded
in Sec. IV.

II. THEORY

We consider a simple classical fluid of particles, at a
temperature T , interacting with a spherically symmetric pair
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potential u(r), where r is the interparticle distance. The
potential is split into uref(r), the reference system potential,
and upert(r) the perturbation part. It is assumed that the
structure (RDF and DCF) and thermodynamic properties of
the reference system are known. We denote the RDF, DCF,
and the Helmholtz free energy density of the reference fluid
as g0(r),c0(r), and f0(ρ), where ρ is the macroscopic density
of the homogeneous fluid. A fictitious system with interaction
potential defined as

u(ζ,r) = uref(r) + ζupert(r) (1)

is considered for the CPE, where ζ is the coupling parameter.
The effect of increasing ζ from zero to unity is to gradually
switch on the perturbation. We postulate that the RDF and
DCF of the system with potential u(ζ,r) can be written as a
MacLaurin series in ζ , that is,

c(ζ,r) = c0(r) + ζ

(
∂c

∂ζ

)
ζ=0

+ ζ 2

2!

(
∂2c

∂ζ 2

)
ζ=0

+ · · · , (2)

g(ζ,r) = g0(r) + ζ

(
∂g

∂ζ

)
ζ=0

+ ζ 2

2!

(
∂2g

∂ζ 2

)
ζ=0

+ · · · . (3)

It is assumed that the series converge for all ζ in [0,1] and
the DCF and RDF of the actual system can be obtained by
putting ζ = 1. Hereafter, we denote nth partial derivative of
any function X(ζ,r) with respect to ζ as X(n)(ζ,r).

A general closure relation for the DCF c(ζ,r) provided by
liquid state theory is [1,7]

c(ζ,r) = exp(−βu(ζ,r) + y(ζ,r) + B(ζ,r)) − y(ζ,r) − 1

(4)

where y(ζ,r) is the indirect correlation function defined as
h(ζ,r) − c(ζ,r) and h(ζ,r) = g(ζ,r) − 1 is the total correla-
tion function of the fictitious fluid. The bridge function B(ζ,r)
is a sum of an infinite series of the “bridge diagrams” [7].
Since g(ζ,r), and hence h(ζ,r), as well as c(ζ,r) are expanded
in a series in ζ , the correlation function y(ζ,r) is also a
series in ζ . The nth order coefficient in its series is given
by y(n)(ζ,r) = h(n)(ζ,r) − c(n)(ζ,r).

In a similar manner, the bridge function B(ζ,r) also should
be considered as a series in ζ . Several approximations to
B(ζ,r) in terms of y(ζ,r) and certain empirical parameters are
available [7]. However, to simplify the present formulation,
we assume that B(ζ,r) is independent of ζ . Thus, the bridge
function of the perturbed system, close to ζ = 0, is assumed to
be the same as that of the reference system. This approximation
has been used by Zhou [5] as all the derivatives of g(ζ,r),
needed in the theory, are to be computed only at ζ = 0.
Adequacy of this assumption, except for very short-range
potentials, has also been established by Zhou by comparing its
results with simulation data [6].

A. Third order theory

First of all, we elaborate the method for third order TPT
wherein the series in Eqs. (2) and (3) are truncated after the
first three terms. As B(r) is assumed to be independent of ζ ,
differentiating Eq. (4) with respect to ζ we get

c(1)(ζ,r) = (−βupert(r) + y(1)(ζ,r))g(ζ,r) − y(1)(ζ,r), (5)

where we have used the definition of the pair distribution
function g(ζ,r) given by [1,7]:

g(ζ,r) = exp(−βu(ζ,r) + y(ζ,r) + B(r)). (6)

In a similar manner the second derivative is obtained as

c(2)(ζ,r) = (−βupert(r) + y(1)(ζ,r))2g(ζ,r)

+ y(2)(ζ,r)(g(ζ,r) − 1). (7)

To get another set of relations between c(n)(ζ,r) and y(n)(ζ,r),
we consider the Ornstein Zernike equation (OZE) in Fourier
space:

h(ζ,k) = c(ζ,k)

1 − ρc(ζ,k)
, (8)

where h(ζ,k) and c(ζ,k) are the Fourier transforms of h(ζ,r)
and c(ζ,r), respectively. For instance, the transform of h(ζ,r)
and its inverse are defined as

h(ζ,k) = 4π

∫ ∞

0

sin(kr)

kr
h(ζ,r)r2dr, (9)

h(ζ,r) = 1

2π2

∫ ∞

0

sin(kr)

kr
h(ζ,k)k2dk. (10)

Differentiating Eq. (8) with respect to ζ we obtain

h(1)(ζ,k) = c(1)(ζ,k)s2(ζ,k), (11)

where the structure factor s(ζ,k) is defined as

s(ζ,k) = 1

1 − ρc(ζ,k)
. (12)

In a similar way, the second derivative h(2)(ζ,k) is
obtained as

h(2)(ζ,k) = c(2)(ζ,k)s2(ζ,k) + 2ρ(c(1)(ζ,k))2s3(ζ,k). (13)

Equations (11) and (13) now provide y(1)(ζ,k) and y(2)(ζ,k). As
the RDF g(0,r) and the structure factor s(0,k) of the reference
system are known, Eqs. (5) and (7) can be evaluated at ζ = 0.
Thus, the closed set of four linear equations, defining the third
order theory, are given by

c(1)(0,r) = (−βupert(r) + y(1)(0,r))g(0,r) − y(1)(0,r), (14)

c(2)(0,r) = (−βupert(r) + y(1)(0,r))2g(0,r)

+ y(2)(0,r)(g(0,r) − 1), (15)

y(1)(0,k) = c(1)(0,k)(s2(0,k) − 1), (16)

y(2)(0,k) = c(2)(0,k)(s2(0,k) − 1) + 2ρ(c(1)(0,k))2s3(0,k).

(17)

We solve this system of equations using a simple itera-
tive method. Starting with guess solutions for y(1)(0,r) and
y(2)(0,r), which are usually taken as zero, we determine
c(1)(0,r) and c(2)(0,r). Then their Fourier transforms are ob-
tained using an FFT algorithm, thereby obtaining y(1)(0,k) and
y(2)(0,k). Inverse Fourier transforms of these functions provide
y(1)(0,r) and y(2)(0,r) for the next iteration, and the procedure
is continued until convergence is obtained. More details of the
numerical procedure are discussed in the next section.
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The correlation functions c(1,r) and g(1,r) of the actual
system are obtained from Eqs. (2) and (3), respectively, by
putting ζ = 1. The CPE for Helmholtz free energy density
f (ρ) of a homogeneous fluid is given by [1]

f (ρ) = fref(ρ) + ρ2

2

∫ 1

0
dζ

∫
d�r upert(r)g(ζ,r), (18)

where fref(ρ) is the free energy density of the reference system.
Substituting Eq. (3) in Eq. (18) and integrating over ζ , we get

f (ρ) = fref(ρ) + ρ2

2

∫
d�r upert(r)

×
(

g0(r) + 1

2!
g(1)(0,r) + 1

3!
g(2)(0,r)

)
. (19)

Here we have used the shortened notation for the derivatives
(∂ng(r)/∂ζ n)ζ=0, which is readily obtained as y(n)(0,r) +
c(n)(0,r). Thus, the method provides the DCF, RDF as well
as the free energy density.

B. General order theory

The method outlined above can be generalized to any
arbitrary order. Writing g(ζ,r) in the short form

g(ζ,r) = exp(f (ζ,r)), (20)

f (ζ,r) = −β(uref(r) + ζupert(r)) + y(ζ,r) + B(r), (21)

the general expression for its nth order derivative is found
to be

g(n)(ζ,r) =
(n−1)∑
m=0

[
C(n−1)

m

]
f (n−m)(ζ,r) g(m)(ζ,r), n � 1,

(22)

where [C(n−1)
m ] is the binomial coefficient. The derivatives

f (n)(ζ,r) are given by

f (n)(ζ,r) = −βupert(r) δn,1 + y(n)(ζ,r), n � 1, (23)

where δn,1 is the Kronecker δ. The derivatives g(n)(ζ,r) can
be computed using Eq. (22) in a recursive manner, using
f (n)(ζ,r) either from initial guess or previous iteration. Now,
using Eq. (6), we rewrite the closure in Eq. (4) as

c(ζ,r) = g(ζ,r) − y(ζ,r) − 1, (24)

which readily provides its nth order derivative,

c(n)(ζ,r) = g(n)(ζ,r) − y(n)(ζ,r), n � 1. (25)

The structure factor introduced in Eq. (12) is rewritten as

s(ζ,k) = 1 + ρc(ζ,k) s(ζ,k). (26)

This equation can be differentiated using Lebniz rule to
obtain

s(n)(ζ,k) = ρ

n∑
m=0

[
Cn

m

]
c(n−m)(ζ,k) s(m)(ζ,k), n � 1. (27)

Transferring the last term in the sum to the left-hand side
and using Eq. (12) we get

s(n)(ζ,k) = [s(0)(ζ,k)] ρ

(n−1)∑
m=0

[
Cn

m

]
c(n−m)(ζ,k)

× s(m)(ζ,k), n � 1. (28)

Using the values of c(m)(ζ,k) from the current iteration,
Eq. (28) can be evaluated recursively. Finally, using s(ζ,k) =
1 + ρh(ζ,k), the derivatives of y(ζ,k) = h(ζ,k) − c(ζ,k) are
expressed as

y(n)(ζ,k) = ρ−1 s(n)(ζ,k) − c(n)(ζ,k), n � 1. (29)

Equations (25) and (29) provide the general equations for
the derivatives. These can be readily solved using the same
iteration method outlined for third order theory.

III. APPLICATION TO SQUARE WELL FLUIDS

We applied the theory described above to square-well (SW)
fluids as ample amount of simulation data, for different SW
widths, are available for comparison. RDF for ranges 1.3 and
1.5 and phase diagrams for ranges 1.25 to 2.3 are considered
to test the accuracy of the present theory. First order theory
is known to be highly inaccurate for these cases. Results of
calculations using third, fifth, and seventh order versions of the
present theory are compared with those of first order theory
and simulations. Reduced units (ε/kB = σ = 1, where ε is the
well depth and σ is hard sphere diameter) are used throughout
the paper.

A. Numerical procedure

The numerical procedure used to solve the coupled set of
linear equations for the derivatives c(n)(0,r) and g(n)(0,r) is
as follows. It is assumed that c(0)(0,r) = c0(r) and g(0)(0,r) =
g0(r) are known. If only g0(r) is known, c0(r) can be calculated
using the OZE and a proper numerical procedure [8,9]. To
compute the derivatives, say, in nth order theory, Eq. (25)
in real space and Eq. (29) in Fourier space are solved
employing an iterative procedure. First of all, we choose
guess solutions for y(m)(0,r), for all m in the range 1 �
m � n, and compute g(m)(0,r), recursively, using Eq. (22).
In practice, we take null solutions as the starting guesses.
Then, c(m)(0,r) are obtained using Eq. (25). Next, their Fourier
transforms c(m)(0,k) are computed using an FFT algorithm.
Mesh widths in the range 0.01 to 0.001 are found to be
adequate. These are employed in Eq. (28) to obtain s(m)(0,k)
recursively. These functions, when used in Eq. (29), provide
y(m)(0,k). Inverse Fourier transformation give y(m)(0,r). This
completes the first iteration. However, before starting the next
iteration, we employ a linear mixing of the initial and new
solutions: αy(m)(0,r) + (1 − α)y(m)(0,r) → y(m)(0,r). They
are then used in Eq. (25) for the second iteration. The procedure
is repeated until the root mean square differences between
successive iterates of y(m)(0,r), for all m, are less than a
prescribed tolerance. We find that α = 0.5 and tolerance of
10−8 are adequate to get accurate solutions.
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FIG. 1. (Color online) Panels (a) and (b) are derivatives of g(r) up to fourth order for SW fluid of range 1.25 at reduced temperature T = 0.2
and reduced density ρ = 0.75, respectively. Panels (c) and (d) are derivatives of g(r) up to fourth order for SW fluid of range 1.25 at reduced
temperature T = 1.0 and reduced density ρ = 0.75, respectively. Solid line and dash-dotted lines, present theory; dashed lines, Zhou’s results [6].

B. Structural properties

For application to SW fluids, the hard sphere (HS) fluid is
the natural reference system. Even though any bridge function
can be used in Eq. (4) to determine the properties of the
HS system, we have used B(r) provided by Malijevsky and
Labik [10], as used by Zhou [6]. The OZE is then solved
for the HS system using the standard iterative method [11].
With the properties HS so determined, the derivatives up to

fourth order [g(n)(0,r), n = 1,4] from the present theory can
be directly compared with those of Zhou. Figure 1 shows this
comparison and we find that the derivatives obtained from the
present method and the finite difference method used by Zhou
match with negligible deviations. However, our numerical
scheme is much simpler and even higher order derivatives
can be easily calculated without resorting to any smoothing
procedures. RDF of SW fluids obtained using fifth order and
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FIG. 2. (Color online) g(r) for SW fluid of range 1.5 at reduced temperature T = 1.5. Panels (a), (b), and (c) are for reduced density
ρ = 0.2, 0.4, and 0.8, respectively. Soild lines, fifth order TPT; dashed lines, seventh order TPT; stars, simulation results [15].

seventh order version of present theory are plotted in Figs. 2,
3, and 4. For the case of range 1.5 (see Fig. 2), g(r) obtained
using our theory is in excellent agreement with simulation
results except for a very small deviation in the SW region
for ρ = 0.2. Similar convergence of TPT series are found

for range 1.3 (see Fig. 3), even though important differences
with simulation data are noticeable at ρ = 0.4 also. In Fig. 4
we show g(r) obtained using third, fifth, and seventh order
versions of the theory for SW fluid of range 1.25 at temperature
T = 0.56 and density ρ = 0.2 and for SW fluid of range 1.2
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FIG. 3. (Color online) g(r) for SW fluid of range 1.3 at reduced temperature T = 1.0. Panels (a), (b), and (c) are for reduced density
ρ = 0.2, 0.4, and 0.8, respectively. Soild lines, fifth order TPT; dashed lines, seventh order TPT; stars, simulation results [15].
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FIG. 4. (Color online) (a) g(r) for SW fluid of range 1.25 at
temperature T = 0.56 and density ρ = 0.2 in reduced units. (b)
g(r) for SW fluid of range 1.2 at temperature T = 0.45 and density
ρ = 0.4 in reduced units. Dashed lines, third order TPT; soild lines,
fifth order TPT; dotted lines, seventh order TPT.

at temperature T = 0.45 and density ρ = 0.4. These cases
clearly show that the convergence of the series is slow for
short-ranged potentials at very low temperatures and densities.
Thus, for extremely short-ranged potentials, contribution from
terms higher than sixth order in Taylor series expansion of
g(r) become very much important. In Fig. 5, c(r) obtained
using the seventh order version of our theory is compared
with the simulation results of [12] for two cases: SW fluid of
range 1.25 at T = 2.0, ρ = 0.75 and SW fluid of range 1.2 at
T = 2.0, ρ = 0.75. The agreement with experiment is good in
the former case, whereas slight deviation is found in the latter
case. Comparison for smaller widths was not possible because
of lack of simulation data for c(r).

We also observed that the present approach does not have
any numerical convergence problems either in the two-phase
region or close to the critical region, whereas the IETs
generally fail to have a solution in the two phase region and
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FIG. 5. (Color online) (a) c(r) for SW fluid of range 2.5, tem-
perature T = 2.0, density ρ = 0.75 in reduced units. (b) c(r) for SW
fluid of range 2.1, temperature T = 2.0, density ρ = 0.75 in reduced
units. Solid lines, seventh order TPT results; pluses, simulations [12].

the numerical algorithms have slow convergence in the critical
region. This is an interesting feature of the present theory and
requires detailed investigation with different bridge functions
and interatomic potentials. Further, the DCF c(r) = c(1,r) ob-
tained using the present method can find applications in density
functional theories of inhomogeneous fluids. For example, in
the square-gradient functional for inhomogeneous systems, the
coefficient of the gradient term, called influence parameter,
depends explicitly on c(r) of the homogeneous system. As the
IETs do not have solutions in the binodal region, interpolation
techniques are required to obtain the influence parameter [13].
The DCF c(1,r) of the actual system obtained from our method
can be directly used to obtain the influence parameter. Finally,
the present theory has the advantage of accommodating any
bridge function for computing the derivatives, though we have
used only the simple HS version for this paper.

C. Liquid-vapor phase diagrams

We compare the liquid-vapor phase diagrams (LVPDs) for
SW fluids of ranges 1.25, 1.375, 1.5, and 2.3 using first order,
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FIG. 6. (Color online) (a) Liquid-vapor coexistence curves in
reduced temperature and density of SW fluids of widths 1.5, 1.375,
and 1.25 in reduced units (from top to bottom). (b) Liquid-vapor
coexistence curve in reduced temperature and density of SW fluid of
width 2.3 in reduced units. Solid lines, first order TPT; dotted lines,
third order TPT; dashed lines, fifth order TPT; dash-dotted lines,
seventh order TPT; stars, squares, pluses, simulation results [16–19].

022101-6



COUPLING-PARAMETER EXPANSION IN THERMODYNAMIC . . . PHYSICAL REVIEW E 87, 022101 (2013)

third order, fifth order, and seventh order versions of the present
TPT. These are shown in Fig. 6 together with simulation data
for the different ranges. It is clear that there is an enormous
improvement in the results over first order TPT, which is quite
apparent for smaller ranges, i.e., 1.5 and smaller. For range
2.3, the difference between fifth order and seventh order TPT
is small even in the critical region and we can conclude that
the perturbation series of Helmholtz free energy has practically
converged. However, they differ from the first order TPT and
simulation data in the critical region. Similar results are noted
even for the cases of range 1.5 even though the error in first
order TPT is much larger. For ranges 1.375 and 1.25, the
differences between the fifth and seventh order TPT are quite
small, but noticeable in certain parts of the phase plane. Thus,
for the cases presented, convergence of the perturbation series
of Helmholtz free energy is satisfactory and faster than that of
the series of g(r), which is expected. However, there is still
significant deviation from the simulation results for the three
cases, i.e., for SW fluids of ranges 1.25, 1.375,and 1.5. We
also note that neglecting the ζ dependence of bridge function
B(ζ,r) has brought in some asymmetry in the phase diagram
and slight shift of the critical point towards the liquid side.
Now that the perturbation series has converged, we can clearly
conclude that the deviation is caused because of two reasons:
First is the bridge function used in the calculation and second
is long-range fluctuations. Improving the results using a better
bridge function is within the scope of the theory, whereas meth-

ods of renormalization group theory need to be used to bring
in better agreement in the critical region [14]. Work to include
this feature and exact treatment of non-HS potentials, which
is quite straightforward within our formalism, is in progress.

IV. CONCLUSIONS

In this paper we have presented an approach to the CPE in
liquid state theory of simple fluids. The method combines ideas
of TPT and integral equation theories. This hybrid scheme
avoids the problems of IETs in the two phase region. A
simple way to calculate the terms in the perturbation series
expansion to any arbitrary order is illustrated. Apart from
the Helmholtz free energy, the present approach also gives the
RDF g(r) and DCF c(r) of the actual perturbed system. We
have obtained thermodynamic and structural properties of the
SW fluids of various ranges using up to seventh order version
of our theory. We have seen that the Helmholtz free energy
series has practically converged by seventh order. However,
the convergence of g(r) and c(r) series are slower at low
temperatures and low densities for narrow SWs. The results
let us conclude that the accuracy of the theory is limited only
by the bridge function used as the perturbation series can be
calculated to any order easily until the convergence is reached.
However, for very narrow potentials there is scope for further
improvements in the theory by accelerating the convergence
of the series.
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