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Golden spirals as phyllotactic arrangements of optical patterns
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A nonlinear optical medium with nonlocal feedback is shown to have all the necessary ingredients to simulate
a growthlike process that generates golden spirals and phyllotactic patterns. Elementary droplets of light are
generated by the optical nonlinearity whereas the combination of rotation and translation in the feedback loop
geometrically distributes them on spiraling patterns. The symmetry of the geometrical arrangements is described
with the help of a simple replication algorithm.
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Spatial self-structuration is an ubiquitous phenomenon
and nature supplies many beautiful examples of spontaneous
pattern formation [1]. Particularly, the vegetal world offers
some of the most striking examples, as the organizations of
the sunflower seeds or the pine cone scales, described by two
sets of spirals ruled by the golden number and the Fibonacci
sequence. Similar growth modes have been reproduced in
physics [2], numerically and experimentally, by considering
elementary droplets of fluids or matter [3,4]. Geometrical
and dynamical approaches have been shown to produce
phyllotactic structures [2–8], whereas phyllotacticlike modes
have also been obtained in convection cells [9] or in layers of
superconductive materials [10]. Numerical simulations based
on an elastic model have been able to reproduce a broad
spectrum of phyllotactic patterns similar to those formed by the
spines of cacti [2]. For a system of core/shell microstructures,
particular series of Fibonacci spirals have been drawn over
triangular patterns depending on the stress applied to the
shells and on the geometry of the supporting surface [11,12].
Recently, a system of magnetic cacti, consisting of magnets
along a cylindrical stem, has been studied both experimentally
and numerically [13,14]. Concerning optical systems, the
far-field properties of phase-only diffractive masks with
phyllotactic arrangements have been studied experimentally
[15,16]. However, there is, to the best of our knowledge,
no evidence of phyllotactic patterns generated in the near
field of a self-organizing optical system. Starting from this
assessment, we propose here an experimental study where
circular or spiraling modes of optical localized structures are
induced in a nonlinear optical system with nonlocal feedback.
The system is bistable and permits to locally induce localized
structures that play the role of elementary “droplets” of light,
while the nonlocal feedback acts as a forcing able to impose
the symmetry for the phyllotactic arrangements to develop.
Phyllotactic optical arrangements appear for a relatively large
range of V0 and Iin, here the control parameters that determine
the width of the region in which optical localized structures
are stable. Inside this region, localized structures can be
considered as the optical analogs of the elements of a green
plant. Then, the self-structuring of the equivalent “optical
plant” is driven by the optical feedback, which imposes a
recursive law for the disposal of adjacent elements. These
phyllotactic arrangements are produced within the larger
context of optical patterns, therefore, their study could aid

in understanding better the special conditions required for
phyllotactic patterns to appear.

Phyllotaxis describes the way the elements of a vegetal
substance organize. The global structure is produced by an
iterative process of replication of elementary material at
different sites and the growth is mainly described by two
parameters, the radial expansion �r and the angle φ between
two elements appearing consecutively. When looking at plants,
different growth modes can be identified. A convenient way to
represent them is by using a view from above, called the floral
arrangement, in which the elements that appeared earlier are
disposed on larger circles. The vegetal elements are generally
located at the intersections of two sets of spirals, with i and
j the numbers of spirals in each set. The whorled modes are
particular cases with i = j . To illustrate these notions, the
upper part of Fig. 1 reports a few examples of phyllotactic
modes. The distichous mode in Fig. 1(a), and its corresponding
floral diagram in Fig. 1(b), shows leaves organized along a
cylindrical stem, φ = 180◦. Figures 1(c) and 1(d) are the floral
diagrams of modes with i = j = 2, φ = 90◦ (decussate mode)
and i = j = 3, φ = 120◦ (tricussate mode), respectively. In
nature, modes with angles that are not commensurate to 2π

are also observed. In particular, the mode with the golden
angle φg emerges, with φg linked with the golden number
number τ = (1 + √

5)/2 as φg = 360/(1 + τ ) ≈ 137.5◦. A
floral diagram for φ ∼ φg is shown in Fig. 1(e). Remarkably,
the numbers of spirals in each set are part of the Fibonacci
sequence SF = (1,1,2,3,5,8,13,21,34, . . .). The reason why
Fibonacci spirals appear so frequently and in many different
systems is not yet completely understood, nevertheless, several
phyllotactic phase diagrams exhibit a φg divergence for large
intervals of the control parameters, thus showing that golden
spirals are robust growth modes [4–6].

Our experimental setup consists of a liquid crystal light
valve (LCLV), with nonlocal feedback, as schematically
represented in Fig. 1(f). The LCLV is made of a thin nematic
liquid crystal layer placed in between a glass plate and a
mirror over which a photoconductive material is deposited.
The inner wall of the glass plate and the outer surface of
the photoconductor are covered with a transparent conductive
layer that allows applying a voltage across the cell. Liquid
crystal molecules tend on average to align along the direction
defined by the applied electric field and, in doing this, induce
a phase retardation on the incoming beam because of their
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FIG. 1. (Color online) (a) Distichous phyllotactic mode for leaves
along a stem and (b) its corresponding floral diagram; the divergence
angle is φ = 180◦. Floral diagrams for (c) decussate, φ = 90◦,
(d) tricussate, φ = 120◦, and (e) spiral, φ = φg , modes. (f) Liquid
crystal light valve, LCLV, experiment; l1 are lenses with f = 25 cm
focal length; PC: polarizing cube; BS: beam splitter; M: mirror; L:
optical free propagation length. (g) Influence of the fiber bundle
displacement (left) on the localized structures observed in the near
field (right).

birefringence. In the optical feedback setup, the incoming light
beam is reflected back by the mirror inside the LCLV, and then
it travels along the loop and goes back to the photoconductor
owing to an optical fiber bundle connected to the rear side of the
LCLV. The photoconductor behaves as a variable impedance
with respect to the intensity of the light, hence it locally
modulates the electric field applied across the liquid crystal
molecules depending on the incident light intensity. Localized
structures (LSs) form on the transverse optical wavefront when
diffraction and polarization interference are simultaneously
present in the feedback loop. In these conditions, the system
becomes bistable and elementary optical elements can be
locally excited [17]. Their typical transverse size scales as
(λ|L|)1/2, where L is the free propagation length in the
feedback loop and λ the optical wavelength.

The phyllotactic patterns are observed in the near field
(plane conjugated with the photoconductive side of the LCLV)
and recorded with a charged coupled device (CCD) camera.
They are obtained by introducing a rotation and a displacement
of the feedback beam with respect to its position at the front
side of the LCLV. This is achieved by, correspondingly, rotating
and translating the entrance plane of the fiber bundle of an
angle �φ and a translation �x, as schematically represented
in Fig. 1(g). In this way, it is possible to couple different
spatial regions of the LCLV and to induce spatial organizations
of LSs. Previous studies reporting nonlocal effects in the

LCLV experiments were presented in Refs. [18–25]. For
rotations φ = 2π/m without any effective translational effect,
the resulting pattern is made of circles with a multiple of
m LSs on each ring [23]. If a small shift δφ exists, the
circle starts to rotate in a given direction. If an effective
translation �x is introduced, the arrangements of LSs open
up to describe spirals, as observed in our case. Examples of
nonlocal feedback, respectively, a purely translational mode
(top), a circular mode (center), and a spiral mode (bottom), are
shown in Fig. 1(g).

To better illustrate that the setup realizes a geometrical
distribution of LSs, we introduce a simple model consisting of
a replication algorithm that places small disks, referred to as
particles, on successive spatial sites. The radial position of the
first particle is called R. A rotation φ and a radial expansion
�r are introduced between two successive sites. The position
of the kth added particle is defined by (xk,yk), xk = xc + (R +
k �r) cos(kφ), yk = yc + (R + k �r) sin(kφ), where (xc,yc)
are the coordinates of the center. The size of the particles
is noted d, their number n, and N is the size of the square
system. For comparison with the geometrical model, the
experimental value of φ is estimated by measuring with a
graduate stage the rotation from a reference situation. Figure 2
shows three examples of observed phyllotactic patterns and
their corresponding geometrical arrangements. In this figure
and the following ones, all the experimental pictures are
presented with inverted grayscale. In Fig. 2(a), φ � 10◦–20◦
and the LSs are organizing along a single spiral. Near the
center, the distance between the adjacent LSs becomes smaller
than their characteristic size (� ∼ 140 μm), hence they attach
one after the other, forming lines, an effect already observed
in the presence of drift [25]. When traveling along the spiral
to the periphery, the distance between LSs increases and they
detach one from the other, becoming independent. Figure 2(b)
corresponds to φ � 120◦. Here, the LSs organize on three
spirals. Figure 2(c) is for φ � 180◦, and the LSs are distributed
on two spirals. Geometrical distributions obtained with the

FIG. 2. Spiraling phyllotactic arrangements of optical localized
structures: (a)–(c) Experimental snapshots; (d)–(f) corresponding
geometrical distributions, R = 100, dr = 2, N = 1000. (a) φ �
10◦–20◦, V0 = 5.355 V, Iin = 590 μW/cm2; (b) φ � 120◦, V0 =
5.086 V, Iin = 475 μW/cm2; (c) φ � 180◦, V0 = 5.345 V, Iin =
1.03 mW/cm2; (d) φ = 10◦, n = 150; (e) φ = 118◦, n = 200;
(f) φ = 178◦, n = 400.
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FIG. 3. (Color online) Golden spiral organizations obtained for
φ ∼ φg . (a), (c), (d) Experimental snapshots; Iin = 180 μW/cm2,
localized structures (LSs) of 140 μm size. (a) V0 = 6.706 V; (c),
(d) V0 = 6.752 V; (b) numerical profile; d = 10, n = 150, N = 1000,
R = 100, dr = 2. In (a)–(c) the lines show the two sets of spirals at
the intersection of which the LSs are positioned; in (d) the positioning
of LSs is evidenced by concentric circles; on each circle the number
of LSs is a term of the Fibonacci sequence. (e), (f) Organizations
observed for LSs of 110 μm size; (e) sunlike arrangement with 21
spiraling rays, V0 = 4.947 V; (f) flowerlike structure with the number
of petals on concentric circles following the Fibonacci sequence,
V0 = 4.957 V.

replication algorithm and with angles close to the experimental
ones are displayed in Figs. 2(d)–2(f), showing a quite good
agreement with the experimental patterns.

Let us now examine the situation when φ is close to the
golden angle. In a first set of observations the characteristic
size of the LSs is � ∼ 140 μm (L = −5 cm in the feedback
loop). An example of the pattern observed in this case is
shown in Fig. 3(a). For comparison, a numerical pattern
obtained numerically for φ = φg is displayed in Fig. 3(b).
Both in the experimental and geometrical pattern the elements
are organized in two sets of spirals (i,j ), with i = 13 in
the clockwise direction and j = 21 in the counterclockwise
direction. It is worth noting that (i,j ) are two terms of the
Fibonacci sequence. Another phyllotactic pattern obtained
for φ ∼ φg and with similar experimental parameters but a

FIG. 4. (Color online) Optical organizations observed for φ ∼
99◦; the snapshots are part of the same temporal sequence, V0 =
5.048 V, Iin = 490 μW/cm2.

slightly higher V0 is shown in Figs. 3(c) and 3(d). The same
experimental profile is presented in Fig. 3(c) with evidence of
the two sets of 34 spirals at the intersections of which the LSs
are located and in Fig. 3(d) with evidence of the concentric
circles onto which the LSs are organized. Starting from the
center of the pattern, the number of LSs on each circle is a
term of the Fibonacci sequence SF , ranging from 8 to 34.
For a smaller size of the LS, � ∼ 110 μm (L = −3 cm),
we observe peculiar organizations, as the ones illustrated in
Figs. 3(e) and 3(f). In Fig. 3(e) the LSs dispose themselves in
a sunlike arrangement with a single spiral of 21 arms, while
in Fig. 3(f), for the same light intensity but a slightly higher
voltage, the LSs form a flowerlike structure with petals. It is
interesting to note the way in which the petals are following
the Fibonacci sequence on the pattern, with eight petals on the
first circle, then 13 and 21 on the next levels.

Finally, Figs. 4 and 5 present examples of phyllotactic
patterns obtained for different rotation angles, related to
other divergences, and hence to other sequences ruling the
geometrical arrangements of LSs. Indeed, the expression for

FIG. 5. (Color online) Phyllotactic patterns observed for (a),
(b) φ ∼ 78◦, V0 = 5.087 V, Iin = 260 μW/cm2 and (c), (d) φ ∼
160◦, V0 = 6.745 V, Iin = 180 μW/cm2. The localized structures
distributions are highlighted either by concentric circles (left panels)
or by two sets of spirals (right panels).
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the divergence angle can be generalized to φg = 360◦/(p + τ ),
which for p �= 1 gives values different from the golden
angle. One of the most known examples is for p = 2,
which gives φ ∼ 99◦ and to which the Lucas sequence
is associated, SL = (1,3,4,7,11,18,29, . . .). For p = 3, the
divergence angle is close to 78◦ and the associated sequence
is (1,4,5,9,14,23, . . .). The cases p = 2 and 3 are sometimes
referred to as the second and third phyllotaxis. In Figs. 4(a)–
4(c), we show three representative experimental snapshots
obtained for φ ≈ 99◦ and belonging to the same temporal
sequence. We highlight the positions of the LSs by concentric
circles. The number of LSs appearing on the first circles is 1,
4, or 7 and then 11 on the next circles, which are consecutive
terms of the Lucas sequence.

The patterns obtained for a divergence angle φ ∼ 78◦ are
shown in Fig. 5, with the circles and the spirals highlighted
in Figs. 5(a) and 5(b), respectively. One can notice the
presence of one structure in the center, five on the next
three circles, and 14 on the following one, a sequence that
is a part of the expected series (1,4,5,9,14,23, . . .). More at
the periphery of the pattern, the LSs rearrange themselves
in two sets of spirals with i = j = 24, with a shift of one
in the number of spirals when compared to the expected term
of the sequence. Finally, Figs. 5(c) and 5(d) display the patterns
obtained for φ ∼ 160◦, with the circles and the spirals drawn

in Figs. 5(c) and 5(d), respectively. For φ ∼ 160◦ a pattern
with nine structures on the first circle, 16 on the second circle,
and 25 on the following ones is expected, realizing part of
a sequence with 2 as a first term and 7 as the second one,
(2,7,9,16,25, . . .). Parts of the predicted occupation numbers
are observed at the center of the pattern, whereas in the outer
regions the LSs dispose themselves on two sets of spirals with
i = j = 25, a number belonging to the expected sequence.

In conclusion, we have reported self-organizations of
optical structures that present strong analogies with the growth
modes observed in the vegetal world. The experiment, consist-
ing of a LCLV with nonlocal feedback, allows the excitation
of single optical elements thanks to the bistable features that
characterize the light-matter interaction. The growth modes are
selected by imposing a suitable amount of angular divergence
and translation in the feedback loop. For divergences close
to the golden angle, the optical elements dispose themselves
on arrangements ruled by terms of the Fibonacci sequence.
For other divergences, optical organizations with different
symmetries are obtained.
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