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Modeling the polydomain-monodomain transition of liquid crystal elastomers
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We study the mechanism of the polydomain-monodomain transition in liquid crystalline elastomers at the
molecular scale. A coarse-grained model is proposed in which mesogens are described as ellipsoidal particles.
Molecular dynamics simulations are used to examine the transition from a polydomain state to a monodomain
state in the presence of uniaxial strain. Our model demonstrates soft elasticity, similar to that exhibited by
side-chain elastomers in the literature. By analyzing the growth dynamics of nematic domains during uniaxial
extension, we provide direct evidence that at a molecular level the polydomain-monodomain transition proceeds
through cluster rotation and domain growth.
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Liquid crystalline elastomers (LCEs) combine the elastic
properties of conventional rubbers with the optical properties
of liquid crystals (LCs) [1]. This coupling gives rise to unusual
physical properties [2–4] that have enabled a wide spectrum of
applications, ranging from actuators [5] to artificial muscles [6]
and optical-band materials [7]. Nematogens in LCEs are either
cross-linked to an elastomeric network, resulting in side-chain
LCEs (SCLCEs), or they are actually part of the network,
resulting in main-chain LCEs [1]. Both forms often exhibit
a polydomain structure in the nematic and smectic states
[8,9], characterized by large, independently oriented domains.
The absence of a global director renders these materials
opaque. Upon application of sufficiently large uniaxial stress,
however, LCEs undergo a polydomain-to-monodomain (P–M)
transition [10,11] whereby the domains align, resulting in a
transparent material. After an initial elastic restoring force is
overcome, the stress-strain curve exhibits a distinct plateau,
where a small change to the applied stress induces a large
deformation of the sample. Such a feature is often indicative of
an underlying phase transition. In the general area of LCEs, this
behavior is known as soft elasticity [1,12,13]. Upon reaching
the monodomain state, traditional elastic response is restored.

The plateau stress σc is related to the polymer backbone
anisotropy ratio, �‖/�⊥, through the relation

σc = μ(�‖/�⊥ − 1), (1)

where μ is the bulk rubber modulus [14]. The anisotropy
ratio quantifies the polymer radius of gyration parallel (�‖)
and perpendicular (�⊥) to the local nematic director [1].
Main-chain LCEs tend to have large anisotropy ratios due to
incorporation of rigid nematogens in the polymer backbone,
giving rise to large plateau stresses. Conversely, side-chain
LCEs yield more easily. As the anisotropy ratio approaches
unity, the critical stress for the onset of soft elasticity
disappears [14]. Experimental studies of LCEs show that the
stress-strain plateau is strain-rate-dependent. The quasistatic
or equilibrium behavior exhibits no initial elastic regime,
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transitioning directly from semisoft to elastic response when
domains align [15].

Several intriguing applications for LCEs, including their
use as artificial muscles [6], rely on an underlying P–M
transition. It has been proposed that this transition occurs
due to domain reorientation toward the direction of applied
stress, rather than by domain growth [16,17]. This proposition
has emerged from a combination of optical microscopy, x-ray
scattering, and polarized light-scattering measurements [18].
However, essential details remain unexplained, including the
molecular origins of polydomain transformation, the effect of
strain on the size and orientational distribution of domains, and
how individual domains respond to the application of strain.
Understanding these details could enable the design of LCEs
with dynamic and mechanical responses tailored for specific
applications.

Theoretical studies of LCEs have been performed at the
continuum level based on anisotropic rubber elasticity theory
[1]. Fridrikh and Terentjev [14] attributed the polydomain
state of LCEs to quenched orientational disorder. In their
model, cross-links are not free to rotate and impart a quenched
direction to the material, giving rise to the polydomain
state through a coupling to the surrounding mesogens. Their
model has served to rationalize a number of experimental
observations at the level of nematic domains. However, in
order to understand the underlying mechanism involved in the
P–M transition, it is of interest to examine the system at the
molecular scale.

Domain-level studies of LCEs have relied on lattice
models and mean-field theory [19] or Monte-Carlo simulations
[20,21]. Off-lattice simulations of main-chain [22] and side-
chain [23] elastomers have also been performed, but such
studies were focused on the isotropic-nematic transition and
did not resolve the P–M transition. More specifically, there
are no reports on the P–M transition on the basis of detailed
many-particle models. In this work, therefore, we begin by
proposing a molecular model that exhibits a polydomain state.
The model is based on a representation of LC molecules
as ellipsoidal particles [24,25]. Experimentally, cross-linking
molecules in an elastomeric network may be either flexible
or rigid [26]. Rigid cross-linkers enhance the anisotropy in
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the LCE and provide stability to the elastomeric network. Our
model consists of a SCLCE with rigid cross-linkers, whose
interactions have been tuned to promote local ordering to
the easy axis of the cross-linker. We find that this model
does exhibit a polydomain-to-monodomain transition, and we
show that such a transition occurs through the reorientation of
individual domains whose size and orientational distribution
are functions of applied strain.

An atomic-level representation of LCEs is beyond the reach
of current computational resources. Previous quasiatomic
level descriptions using bead-spring polymers and rods were
limited to ≈2400 mesogens [23]. System sizes must be
increased considerably if one is to capture the P–M transition,
thereby necessitating further coarse-graining. In experiment,
LC molecules are connected with flexible spacers to form
backbone polymer chains. These polymer chains are then
cross-linked to form the elastomeric network of LCEs. We
represent these rigid cross-linking molecules as ellipsoids of
the same size and shape as the model mesogens. Flexible
spacers between LC molecules are described by fluctuating
bonds whose length is based on the distance between the
centers of mass of the LC molecules. Note that this repre-
sentation allows the mesogens to rotate freely relative to the
elastomeric network, subject to the steric hindrance of other
particles. We therefore expect the anisotropy ratio to approach
unity (�‖/�⊥ ≈ 1).

The ideal elastomeric network considered in this paper
consists of tetrafunctional cross-links and a perfect diamond
network topology [27] in order to avoid introducing directional
bias. The network is entanglement-free, with four or eight
unit cells in all three orthogonal directions. As each unit cell
contains 16 chains and 8 cross-links, our rigid elastomers
contain up to 73 728 LC molecules and 4096 cross-linking sites
(for a total of 77 824 particles), corresponding to a cross-linker
density of 5.26%. Periodic boundaries are used to mimic bulk
conditions. The role of defects in the network topology is
considered in the supplementary information (SI) [28].

Mesogens interact through a Gay-Berne (GB) potential
energy function [24,25], with parameter values matching those
employed by Gay and Berne in their original work [24].
The ellipsoidal aspect ratio is 3, while the ratio of potential
well depths for side-to-side and end-to-end interactions is 5.
The dimensionless parameters μ and ν are set to 2 and 1,
respectively. The van der Waals diameter (σ0), interaction
strength (ε0), and mass (m) of mesogens are set to unity.
This model is used frequently to describe LC systems [29],
and its phase behavior has been reported in the literature
[30]. Expanded finitely extensible nonlinear elastic (FENE)
bonds [31] are employed for polymer chains, connecting
neighboring mesogen centers of mass. Backbone bonds having
equilibrium bond length lb = 2σ0 and maximum deviation
R = 2σ0 and strength 10ε0, while cross-linker–chain bonds
having corresponding parameters for strength 1000ε0, lb = σ0,
and R = 3σ0. These parameters are chosen to maximize
orientational pinning effects due to cross-linking particles and
promote the formation of a polydomain state while acceler-
ating the relaxation of chain-bound mesogens. Simulations
are performed at constant temperature T ∗ = kBT/ε0 = 0.7
(where starred quantities henceforth denote Lennard-Jones
reduced units [32]) using a Langevin thermostat with pressure

controlled via a Nosé-Hoover barostat. In the absence of an
elastic network, the state point (P ∗,T ∗) considered in this
work results in a smectic-B phase. Though monodomain
smectics have soft-elastic properties that are different from
those of nematics [33], the mechanical response during the
P–M transition is expected to be unaffected [9]. Details of our
sample preparation procedure are included in the SI [28].

Orientationally ordered mesogen phases are distinguished
via the scalar order parameter S, which represents the
maximum positive eigenvalue of the Q tensor,

Qαβ = 1

2N

N∑

i=1

[3uiαuiβ − δαβ]. (2)

Here uiα is the α component of the orientation ui of particle i,
N is the number of particles, and δαβ is the Kronecker delta.
The corresponding eigenvector n̂ defines domain orientation.
Systems with a global value S ≈ 0 are considered isotropic;
systems with S > 0.3 are distinguished as nematic or smectic
depending on the degree of positional order.

To elucidate the molecular mechanism underlying the P–M
transition, we must characterize randomly oriented nematic
domains in the system. This is done by identifying and merging
particle clusters. Initial domains are defined as the largest
spherical regions centered at a particle with a nematic order
parameter greater than a value Sc. If two spherical domains
overlap and have a combined order parameter higher than
Sc, they are merged into a single domain. We use Sc = 0.6
to ensure that constituent particles have roughly the same
orientation across the merged domain. Particles in the overlap
region of two domains are assigned to their best fit (according
to the value of ûi · n̂) if the domains are not merged.

Figure 1(a) shows a representative configuration of an
equilibrium LCE with rigid cross-linkers in the absence of
external stress. Particles are colored according to their local
molecular orientation. One can observe distinct domains
comprising several hundreds to thousands of particles that
assume different orientations; the system is in a polydomain

FIG. 1. (Color online) Representative configuration of LCEs with
rigid cross-linkers at various points of a constant strain-rate simulation
with N = 77 824 particles. Each particle is assigned an rgb (gray
scale) value (x,y,z) equal to its orientation vector n. (a) Initial
configuration, showing a clear polydomain structure. The average
domain size is 〈N〉 ≈ 150 particles, with 11 clusters having more
than 1000 particles. (b) Under a strain ε = 1.0, domains begin to
align and join. (c) At strain ε = 2.5, only small misaligned clusters
remain. The global order parameter for the latter system is S = 0.78.
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FIG. 2. (Color online) Stress-strain behavior. Upon the applica-
tion of strain, an initial elastic regime is observed for constant-strain-
rate deformations. The strain rate γ̇ is given in units of 1/t∗. After an
initial stress overshoot, the system relaxes back to a characteristic
plateau, where the stress increases only weakly as a function of
strain. Dashed curves are for an N = 9728 system, while the solid
green curve is for an N = 77 824 system at strain rate γ̇ = 10−3. Red
symbols show the equilibrium behavior for N = 9728 (open circles)
and N = 77 824 (solid circles) systems. Inset: The nematic order
parameter increases sharply upon reaching a characteristic stress,
which is weakly dependent on strain rate.

state. It should be noted that despite the polydomain structure,
a scalar order parameter S > 0.3 is observed in many runs
due to the existence of large domains (compared to the
simulation box). As a uniaxial strain is applied, clusters
reorient and merge [cf. Fig. 1(b)]. The result is a dominant
large cluster interdispersed with a few smaller domains. Above
a threshold strain value, a single monodomain state is observed
[cf. Fig. 1(c)]. Within these images, some positional ordering
of the mesogens can be observed—to characterize that order-
ing, we compute the radial distribution function for particles
within the system [cf. Fig. 3(c)]. A distinct set of coordination
layers is evident around each mesogen, suggestive of local
smectic ordering at zero strain.

The mechanical response of the system is depicted in
Fig. 2, with stress plotted as a function of strain for five
different strain rates. Each of these is averaged over five
independent realizations of the LCE system for sizes N =
9728 (dashed lines) and N = 77 824 (solid line). After an
initial elastic regime [28], these exhibit a stress overshoot,
commonly observed in experiments on LCEs [1], which
relaxes to a plateau that is apparently independent of strain
rate. Comparison to an equilibrium curve [red circles—9728
(open) and 77 824 (solid)], obtained by allowing the stress
to relax to a constant value (determined by block averaging)
for different step strains, indicates that the response of the
model elastomers proposed here is analogous to that of the
side-chain LCEs in Ref. [15], where the threshold yield stress
decreases with strain rate. Such side-chain LCEs do not exhibit
an equilibrium plateau stress. Indeed, we observe exactly this,
as the stress-strain response is monotonic and almost linear for
ε ∈ [0.1,0.9]; beyond that strain, the equilibrium curve merges
with those obtained at a constant strain rate. The inset of Fig. 2
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FIG. 3. (Color online) Equilibrium structures within large (N =
77 824) model LCEs. (a) Probability of finding a mesogen in a cluster
of size N after equilibration at different step strains, averaged over five
independent realizations of the system. Initially, most particles are in
clusters of size 102–103. Clusters merge as the strain is increased,
shifting the size distribution. Eventually, all particles are observed to
be part of a single cluster with S � 0.6. (b) Orientation distribution
of nematic domains, normalized by an isotropic distribution [P (θ ) ∝
sin θ ]. Nematic directors rotate as step strains are applied, and align
with the direction of strain (θ = 0). (c) Radial distribution function
for mesogens within the system. Layering, indicative of smectic
ordering, is observed between mesogens attached to the polymer
backbone. Liquidlike, isotropic correlations are observed between
cross-linker particles. Solid lines (connecting solid symbols) show
the mesogen distribution under equilibrium conditions, while dashed
lines (connecting open symbols) show the mesogen distribution after
uniaxial strain at γ̇ = 0.001 to ε = 5. The spatial distribution of
particles is largely unaffected.

shows the order parameter as a function of strain. The initial
polydomain state exhibits a steep jump in order parameter as
a threshold stress is crossed. The value of this stress is only
weakly dependent on the strain rate over the range considered
here. Further, this threshold stress σ ∗ ≈ 0.5 corresponds to the
onset of a linear restoring force after the soft-elastic region.
This is consistent with the theoretical prediction of Ref. [14],
where a sharp increase in orientational ordering was predicted
upon the advent of the P–M transition.

Figure 3(a) shows the distribution of domain sizes in
equilibrium as a function of step strain. At equilibrium,
most particles form clusters of 100–1000 particles. This
distribution is strongly altered by the application of a step
strain, with small domains disappearing as clusters merge
to form larger domains. Figure 3(b) shows the distribution
of domain orientations relative to the axis of extension. We
observe that, at equilibrium, domains are oriented randomly.
Upon application of strain, however, these reorient in a manner
that better accommodates the local strain. As a result, domains
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FIG. 4. (Color online) Domain dynamics at constant strain rate
for a representative system. Depicted are the largest cluster (solid
red line), the cluster best aligned with the direction of strain (dashed
green line), and the cluster most perpendicular to the direction of
strain (dash-dotted blue line). (a) The component of the nematic
director along the strain axis. (b) The order parameter of each cluster.
(c) The size of each cluster. The strain rate is γ̇ = 10−3t∗−1.

begin aligning with the stretching direction, evidenced by the
enhancement in probability for small θ . Taken together, these
observations suggest the P–M transition of SCLCEs proceeds
through a combination of domain rotation and subsequent
growth, rather than the pure domain reorientation mechanism
proposed from experiments on main-chain LCEs [18]. Note
that spatial structure is largely unchanged by strain. Figure 3(c)
shows that the radial distribution of mesogens (of both chain
and cross-link varieties) varies only near contact, with contact
probability decreasing for chain mesogens and marginally
increasing for cross-links.

The dynamics of individual clusters within a sample is
examined as a function of time at a constant strain rate γ̇ =
10−3t∗−1. Figure 4 shows the evolution of several domains.
For clarity, only three domains are shown: one with a
director parallel to the strain direction (x̂), one with a director

perpendicular to x̂, and a third corresponding to the largest
domain in the system. We observe fluctuations in the individual
domain sizes as the simulation progresses, with most particles
aggregating into a single large cluster after 1000t∗ (ε = 2.0).
Interestingly, each domain begins with a high degree of
local order, S � 0.8, which decays as misaligned particles
become incorporated. Further, large domains which are nearly
perpendicular to the nematic director persist until ε ≈ 0.15,
which coincides with the onset of soft elasticity (or the stress
plateau), after which they gradually rotate and merge with the
largest domain. This result further validates our conclusion
that the P–M transition in our model system occurs via domain
reorientation and growth.

In conclusion, a coarse-grained molecular model of LC
elastomers has been proposed and has been shown to reproduce
the experimentally observed soft elasticity behavior, upon
which a small applied stress can lead to a large deformation.
The observed soft elasticity is shown to correspond to a
polydomain-to-monodomain transition of the LCE material,
and is accompanied by a sudden increase of the nematic scalar
order parameter. Our model and simulations reproducibly
produce well-defined polydomain states at zero stress and,
more importantly, provide direct evidence that when stress
is applied to a polydomain material, the domains rotate and
merge, thereby leading to a stress plateau and a macroscopic
deformation. Past experimental reports [16] had proposed that
domain rotation is responsible for the stress plateau in LCEs;
our computational results support such a view and indicate
that nucleation of large domains from the initial polydomain
state is also an important mechanism in the transition. While
the results presented here have been generated on the basis
of a simple coarse-grained model, they serve to provide a
molecular-level demonstration of a polydomain-monodomain
transition, and they offer a starting point for the investigation
of the influence of molecular details on the stress response of
LCEs.
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Energy, Basic Energy Sciences, Biomaterials Program under
grant DE-SC0004025. The authors gratefully acknowledge
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[21] P. Pasini, G. Skačej, and C. Zannoni, Chem. Phys. Lett. 413, 463

(2005).
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