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Modulated phase of liquid crystals: Covariant elasticity in the context of soft,
achiral smectic-C materials
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Ginzburg-Landau–de Gennes-type covariant theories are extensively used in connection with twist grain
boundary phases of chiral smectogens. We analyze the stability conditions for the linear, covariant elasticity
theory of smectic-C liquid crystals in the context of achiral materials, and predict an equilibrium modulated
structure with an oblique wave vector. We suggest that a previous experimental observation of stripes in smectic-C
is consistent with the predicted structure.
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Smectic liquid crystals (smectics) are one-dimensional
“solids” composed of fluid layers exhibiting quasi-long-
range periodic order along the layer normal [1,2]. de
Gennes [3] recognized the close analogy between normal
metal-superconductor and nematic-smectic-A transitions. Su-
perconductors as well as smectics are characterized by com-
plex order parameters, and rotational invariance in smectics is
the analog of gauge invariance in superconductors. Subsequent
prediction of the detailed structure of the Abrikosov phase
in type-II, chiral smectogenic materials [4], and the almost
concurrent discovery [5] of this twist grain boundary (TGB)
phase put the analogy on a firm footing. In accord with
superconductors, smectics are classified as type II (or type
I) depending on whether the Ginzburg parameter κ = λ/ξ >

1/
√

2 (or <1/
√

2), where λ is the twist penetration depth
(London penetration depth in superconductors) and ξ is the
appropriate coherence length [4]. In TGB phases, intrinsic
molecular chirality is the analog of external magnetic field in
superconductors.

The class of smectic liquid crystals incorporates structures
with diverse symmetry groups [1], such as that of smectic-C
(Sm C), which has a tilted director (Fig. 1). This allows for a
few TGBC phases which have been discovered experimentally
and studied theoretically [6]. All TGB phases have been found
in chiral, type-II smectics, and are riddled with topological
defects. For example, screw dislocations in the TGBA phase
are analogs of flux tubes in the Abrikosov lattice. Theoretical
investigations of TGB phases rely on covariant formulations of
free energy (based upon the superconductor-smectic analogy).
Molecular chirality is modeled by including a term correspond-
ing to the twist deformation of the director in the free energy.
TGB phases are not feasible in achiral materials, even if they
are type II in character.

Covariant elasticity theories of smectics are obtained
as “low-temperature” limits (in which the modulus of the
complex order parameter is fixed) of the Ginzburg-Landau–de
Gennes theory [2–4] and generalizations thereof [7]. These
have almost exclusively been used in the context of type-II
chiral smectogens. The modulated instability proposed in this
Rapid Communication is a manifestation of covariance in
the unusual setting of achiral Sm C materials. We show that
the linear, covariant elasticity theory of Sm C [8] admits a
transition to a modulated structure with an oblique wave vector
(in the xz plane) as the ground state of the smectic medium (see

Fig. 3). Tilt order, the distinctive feature of Sm C, introduces
different elastic couplings (that are absent in Sm A) in the
covariant elasticity theory. Modulated instability sets in if
the elastic constants discussed below satisfy the inequality
L2 > BD. Here B is the layer compression modulus, D is the
coefficient of the covariant term which ensures that deviations
from simultaneous, global rigid rotations of the layer normal
with the Frank director cost energy, and L is the coefficient
of the term that couples these two distortions in the elastic
free energy [see the discussion following (3)]. Tilt order is
essential for the instability; symmetry of Sm A prohibits a term
analogous to the L term in the elastic free energy. Previous
formulations of Sm C elasticity, coupling molecular tilt to
layer displacement (see, e.g., Ref. [1]), do not lead to the
instability discussed in this Rapid Communication. Our results
are summarized in Figs. 2 and 3. We point out that an earlier
observation of a periodic pattern in a Sm C material [9] is
consistent with the predicted structure (see the discussion of
results given below).

Sm C is a biaxial phase (Fig. 1) in which the molecular
director n0 is tilted with respect to the layer normal N0 so that
n0 · N0 = cos A0 ≡ α. The projection of the Frank director
onto the layers is denoted by c0. The plane spanned by n0 and
N0 is a mirror plane with a center of inversion, and the structure
is invariant under the simultaneous transformation N0 →
−N0, c0 → −c0. In the distorted Sm C the director n = n0 +
δn = c + √

1 − c2N, where c = (c0 + δc)(cos φ, sin φ,0), δc

is the change in the magnitude of c, and φ is the azimuthal
angle. To the lowest order, the distortion in the director field
is

δn � (
δc,c0δφ,−c0δc/

√
1 − c2

0

)
, (1)

and the distorted layer normal is given by

N � (−∂xu,−∂yu,1), (2)

where the field u(x) = u(x,y,z) measures the displacement
of layers along the z direction. The broken symmetry elastic
variables are u(x), δc(x), and δφ(x). The covariant, harmonic
elastic free energy density is [8]

f = (1/2)[B(∂zu)2 + D(δc + α∂xu)2 − 2L(δc + α∂xu)(∂zu)

+Ku(∇2u)2 + Kc(∇δc)2 + Kφ(∇δφ)2], (3)

with the elastic free energy functional given by
F [u(x),δc(x),δφ(x)] = ∫

f d3x. The terms with coefficients
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FIG. 1. Schematic of Sm C. The xz plane is a mirror plane and O

is a point of inversion. n0 ≡ −n0 is the unit Frank director, and the
unit layer normal N0 is along the z axis. The polar vector c0 = (c0,0,0)
is the projection of n0 onto the plane of the layers. The equilibrium
layer spacing is d . In Sm A, ∠A0 = 0 and the layered structure is
uniaxial.

B and Ku account for layer-compression and layer-bend
energies, respectively. In principle, the symmetry of Sm C
allows for anisotropy in the bend modulus. In (3) above,
the anisotropy in the effective bend modulus is taken into
account indirectly via the coupling to the δc field (see
Ref. [8] for a detailed discussion). The Frank free energy for
distortions in the director field is represented via terms with
coefficients Kc and Kφ in the one-constant approximation [1].
The D and L terms involve the form (δc + α∂xu) which
measures the deviation δ(n · N) = n0 · δN + δn · N0 from its
equilibrium value α. For simultaneous, rigid rotations of the
Frank director and the layer normal, δ(n · N) = 0. The term
with the coefficient L is allowed by the symmetry of Sm C, and
couples δ(n · N) to changes in the equilibrium layer spacing.
This term is crucial for the proposed instability, and has no
counterpart in the covariant elasticity theory of Sm A [2]. The
elastic constants B, D, Ku, Kc, and Kφ have to be positive
for stability. Stability conditions do not restrict the sign of
L. Notice that the B, D, and L terms involve only x and
z gradients of the broken symmetry variables. Furthermore,
the δφ field is not coupled to the u and δc fields. The term
with coefficient Kφ plays no role in the modulated instability
presented in this Rapid Communication [see the discussion
following (13)], and will be ignored in the following analysis.

We now recast the elastic free energy in a form which is
suited for the analysis of the proposed instability. In Fourier
space the elastic free energy can be expressed as

F = 1

2

∫
d3q

(2π )3

∗

a(q)G−1
ab (q)
b(q), (4)

where repeated indices are summed over, 
1(q) = u(q),

2(q) = δc(q), and

G−1
11 (q) = Bq2

z + α2Dq2
x − 2αLqxqz + Kuq

4,

G−1
12 (q) = −G−1

21 (q) = i(Lqz − αDqx), (5)

G−1
22 (q) = D + Kcq

2.

The Euler-Lagrange equations are

δF

δφ∗
a (q)

= G−1
ab (q)φb(q) = 0; (6)

in particular, setting δF/δc(−q) = 0 gives

δc(q) = i
(Lqz − αDqx)

D + Kcq2
u(q). (7)

Using (7) to eliminate the δc field from the free energy (4)
leads to the effective free energy as a functional of the u field
alone,

Feff[u] = 1

2

B

ξ 5

∫
d3p

(2π )3

g(p)

1 + κ2
c p2

u(p)u(−p), (8)

where the dimensionless wave vector p ≡ qξ , and the
anisotropic function g(p) is described in Eqs. (9) and (10)
below. In order to simplify the discussion of stability condi-
tions we have introduced the rescaled dimensionless parame-
ters lB = αL/B, dB =

√
α2D/B, κu = λu/ξ , κc = λc/ξ , and

the lengths λu = √
Ku/B, λc = √

Kc/D. In terms of these
parameters

g(p) = g2(p) + g4(p) + g6(p), (9)

where

g2(p) = [1 − (lB/dB)2]p2
z ,

g4(p) = [
κ2

up2 + κ2
c {(pz − dBpx)2 + 2(dB − lB)pxpz}

]
p2,

g6(p) = κ2
uκ2

c p6. (10)

Thus any equilibrium configuration has to satisfy the
condition δFeff/δu(−p) = 0, which gives

g(p)

1 + κ2
c p2

u(p) = 0. (11)

The denominator of the Euler-Lagrange equation (11) is
positive. Therefore it is sufficient to consider the algebraic
equation g(p)u(p) = 0 in analyzing the stability of the Sm C
phase. Notice that for the terms constituting g(p) the inequali-
ties (i) g2(p) > 0 if l2

B < d2
B , that is, L2 < BD, (ii) g4(p) > 0

if l2
B < [d2

B + (κu/κc)2][1 + (κu/κc)2], and (iii) g6(p) > 0 hold
for all p.

The above inequalities ensure that that the Euler-Lagrange
equation (11) is satisfied only for p = 0, which corresponds to
the Sm C ground state. Condition (ii) is always satisfied if the
inequality for the elastic coefficients in (i) holds. If condition (i)
does not hold, i.e., if L2 > BD, and if g4(p) > 0, the equation
for stability (11) has solutions u(p) with nonzero p. Thus the
range of parameters over which the modulated phase occurs
is d2

B < l2
B < [d2

B + (κu/κc)2][1 + (κu/κc)2]. We note that in
the elastic free energy density (3) we have not taken into
consideration certain symmetry-allowed terms fourth order in
p and second order in fields [e.g., (∇2δc)2]. Inclusion of such
terms broadens the stability range of the modulated phase.

To analyze the modulated phase we use the single-wave-
vector ansatz

u(x) = a cos(qxx + qyy + qzz), (12)

where a is the modulation amplitude. The δc field correspond-
ing to this ansatz is given via (7). The average free energy of
the modulated phase obtained by using the ansatz (12) and the
corresponding δc field, in the free energy [given via (3), with
the Kφ term neglected], and integrating over one spatial period
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is

〈feff〉 = A2B

4

g(p)

1 + κ2
c p2

, (13)

with the rescaled modulation amplitude A = a/ξ . Introducing
any additional and independent periodic variation in the
decoupled field δφ in the ansatz for the modulated phase
increases the average free energy over one period, and is
therefore ruled out.

Minimization of the averaged effective free energy (13)
[neglecting the sixth order term in g(p)] with respect to p
yields the square of the wave number

p2 � (lB/dB )2 − 1

κ2
u + (lB/dB )2κ2

c

, (14)

and the direction of the wave vector via

tan 2θ � 2lBκ2
c

κ2
u + (lB/dB)2κ2

c

, (15)

where tan θ = px/pz. The modulation wave vector lies in the
xz plane. This is expected, since the L term couples distortions
in the xz plane alone. Taking Ku and Kc to be of the order of
the Frank elastic constants (∼10−7 dyn), the layer compression
modulus B ∼ 107 dyn cm−2 [1], and using the fact that the
correlation length ξ is of the order of the smectic layer spacing
d ∼ 10−7 cm [2], we get κcdB = αd−1√Kc/B ∼ 1 and κu ∼
1. Numerical minimization of the full, averaged effective free
energy (13) [retaining the sixth order term in g(p)] with these
parameter values gives us the dependence of the components
of the dimensionless wave vector on μ ≡ (l2

B/d2
B − 1) (see

Fig. 2).
Note that the amplitude of modulation A is governed by

higher order (nonlinear) terms in the fields δc and u in the free
energy, and cannot be obtained within the linear theory consid-
ered here. However, as an illustrative example, we estimate the
amplitude of modulation by including a typical quartic term
such as C(∂zu)4 in the elastic free energy density (3). Retaining
the ansatz (12), and the approximate wave vector given via (14)
and (15), minimization of the effective free energy averaged
over a period gives A � [1/(ηp2

z )]
√−g(p)/(1 + κ2

c p2), where
η = √

C/B, and we have ignored numerical factors of order
unity.

0.0005 0.0015
µ

0.005

0.01

q

FIG. 2. The components of modulation wave vector (measured
in units of ξ−1), qx (continuous) and qz (dashed), as functions of μ ≡
(l2

B/d2
B − 1), for κc = 3, κu = 1, and dB = 1/3. For these parameter

values, the stability range of the modulated phase is 0.1 � l2
B � 0.25.

The condition L2 > BD suggests that the modulated phase
can be expected only in materials which are very soft (in
that D is small). The modulated instability is primarily driven
by a competition between the elastic constants L, D, and B.
However, for small values of D the penetration depth λc is
likely to be large. It is therefore quite natural that the modulated
phase is favored in type-II materials.

Before discussing possible candidate materials for the
proposed phase, we point out the following: (i) In a previous
study Johnson and Saupe [10] found that a material undergoing
a Sm A-Sm C transition exhibited a rectangular grid pattern
upon step-by-step cooling across the transition temperature.
The Johnson-Saupe instability has two orthogonal wave
vectors in the plane of the layers and occurs in cells treated
such that the smectic layering is parallel to the cell walls. It
is a metastable undulation instability which falls in the class
of other well known field-induced instabilities such as the
Helfrich instability (see, e.g., Ref. [1]). These are analyzed
using nonlinear elasticity-smectic layers undulate to fill up
space as the molecules tilt and the layer spacing reduces. (ii)
In a sample geometry similar to the one we describe below,
modulated structures have been observed in chiral SmC∗
materials. The origin of these have been traced to chiral
(and hence polarization) terms in the free energy [11,12].
(iii) Modulated equilibrium structures (ripple phases) are
observed in lamellar lyotropic systems on lowering the tem-
perature across the chain-melting transition [13]. Theoretical
models for ripple phases are, in essence, based upon Ginzburg-
Landau theories exhibiting a Lifshitz point [14]. In these
models the instability is driven by an elastic coupling between
membrane curvature and molecular tilt. The modulated phase
proposed in this Rapid Communication is based upon a differ-
ent driving mechanism and gives rise to a thermodynamically
stable structure with an oblique wave vector in the N0-c0 plane.

In what follows, we discuss a previous experiment in
which stripe patterns consistent with the proposed structure
were observed. We first examine properties of the material
used in this experiment. Some dopants are known to enhance
the type-II character of mixtures of mesogens. For exam-
ple, 2-cyano-4-heptylphenyl-4′-pentyl-4-biphenyl carboxylate

(a) Layer structure. (b) Director field n.

FIG. 3. Schematic (exaggerated) of the modulated phase. The
bold segment in (b) shows director orientation in undistorted Sm C.
In the experiment discussed (see the text), the polarizer was placed
along this direction, and the analyzer orthogonal to it. Although there
is no translational order within the layers, line segments are placed
periodically to emphasize the stripe structure.
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(7CN5) exhibits the nematic phase with Sm C-like (also called
skew cybotactic) short-range order over a wide range of
temperatures. Adding 7CN5 to a chiral compound exhibiting
the Sm C∗ phase induces the TGBA phase, and at a higher
concentration, a second, three-dimensionally modulated TGB
phase [15]. Electroclinic measurements clearly show a rapid
decrease in the elastic constant D with concentration of
7CN5 [16]. Indeed, freeze-fracture electron microscopic stud-
ies on the three-dimensionally modulated phase demonstrate
that the mixture has an extreme type-II character, with
Ginzburg parameter ∼100, two orders of magnitude larger
than that needed for the type-II label [17].

Interestingly, experimental studies have also been made
on mixtures of an achiral compound exhibiting the Sm C

phase with 7CN5 [9]. When the mixture is taken in a cell
with walls treated for planar alignment of the Frank director
n, the transmitted intensity is crossed out in the nematic
phase between appropriately placed crossed polarizers. As the
sample is slowly cooled across the two-phase region to the
Sm C phase, it develops a stripe pattern oriented along n.
The cell has to be reoriented by ±1.5◦ to get a dark field of view
in adjacent stripes, which have a width of about 40 μm [9,18].
This observation can be understood if the director pattern of
the mixture, which is expected to have a very low value of
D, is as shown schematically in Fig. 3(b). The wavelength
of the observed modulation is ∼80 μm, and the amplitude
of tilt-angle modulation is ∼1.5◦. This would imply that the
deviations from a planar layer structure are quite small.
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