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Scale-invariant growth processes in expanding space
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Many growth processes lead to intriguing stochastic patterns and complex fractal structures which exhibit
local scale invariance properties. Such structures can often be described effectively by space-time trajectories
of interacting particles, and their large scale behavior depends on the overall growth geometry. We establish an
exact relation between statistical properties of structures in uniformly expanding and fixed geometries, which
preserves the local scale invariance and is independent of other properties such as the dimensionality. This
relation generalizes standard conformal transformations as the natural symmetry of self-affine growth processes.
We illustrate our main result numerically for various structures of coalescing Lévy flights and fractional Brownian
motions, including also branching and finite particle sizes. One of the main benefits of this approach is a full,
explicit description of the asymptotic statistics in expanding domains, which are often nontrivial and random due
to amplification of initial fluctuations.
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Scale-invariant structures resulting from fractal growth
processes are abundant across nature [1,2]. Examples include
diffusion-limited aggregation [3], river basins [4], and self-
affine domain boundaries forming behind growing fronts for
spatial competition models [5,6]. While first results appeared
already 30 years ago, the field continues to be of interest
[7] with recent applications in microbial growth [8,9]. In
many cases these structures can be modeled as trajectories
of locally interacting particles—a picture that we adopt in
this Rapid Communication. The overall geometry has a strong
impact on growth processes. A dramatic example is viscous
fingering, where in constant width channel geometry a stable
Saffman-Taylor finger of fixed shape propagates [10], while in
radial geometry a continuously tip splitting branched structure
emerges [11,12]. In biological growth spatial range expansion
is often coupled to drift and competition in the genetic pool
[13], and is recognized to have major influence on the gene
pool of natural populations [14].

In this Rapid Communication we show how the effect of
the overall geometry in many directed growth processes can
be captured elegantly in terms of a time-dependent metric. We
view growing domain boundaries as space-time trajectories of
particles moving on the growth front, which is expanding in
many interesting cases. A natural example within the scope
of this Rapid Communication is isoradial growth in two di-
mensions, such as domain boundaries of competing microbial
species in a petri dish [8]. While cosmology is an obvious
example, there has been recent interest in nonconstant metric
also in thin sheets [15–17]. Our results are applicable to the
formation of stochastic patterns and structures in a very general
setting, including diffusion processes with time-dependent
diffusion rate (i.e., temperature) [18–21], in cosmologically
expanding space [22], or on a biologically growing substrate.

In particular, we consider self-affine space-time trajectories
of particles under spatially homogeneous but time-dependent

*Present address: Wigner RCP SZFI, P.O. Box 49, H-1525
Budapest, Hungary.

metric, and map those into more easily tractable systems with
constant metric. The mapping depends only on the local scale
invariance exponent of the trajectories, and works directly for
local interactions which do not involve a length scale, such
as annihilation or coagulation of point particles. Branching,
exclusion and reflection of finite size particles can also be
treated after mapping the interaction length scales appropri-
ately. This provides a natural extension of conformal maps to
generalized self-affine growth processes, and we show how
this leads to an exact description of the nontrivial asymptotic
statistics of growth structures in expanding domains, which is
one particularly striking consequence of this approach.

To describe our results in the most illustrative setting, we
consider the growth of self-affine structures (e.g., domain
boundaries) in isoradial geometry in two dimensions. These
structures consist of directed “arms,” which can be interpreted
as locally scale-invariant space-time trajectories of point
particles moving in an expanding one-dimensional space with
periodic boundary conditions.

Consider an isotropic radial structure growing from an
initial disk with radius r0, shown in Fig. 1(a) for an exam-
ple of radial coalescing Brownian motions, where also the
following notation is illustrated. We describe each arm by the
displacement along the perimeter of the growing circle

Yr ∈ [0,2πr) with r � r0 (1)

as a function of the radial distance r; directed radial growth
means that this is possible. In the increment

dYr = Yr dr/r + dỸr (2)

the first term is due to the stretching of space, and the second
corresponds to the inherent fluctuations encoding the local
scale invariance of the arms. Instead of radial coordinates
(Y,r), the arms can also be represented in modified polar
coordinates (X,h): The polar angle is multiplied by r0 and
denoted by Xh, which is in a fixed periodic domain,

Xh ∈ [0,L) with h � 0, (3)
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FIG. 1. (Color online) Expanding radial growth structure and the
same structure on a fixed domain with periodic boundary conditions,
illustrated for the case of coalescing random walks (γ = 1/2). The
displacements Yr [Eq. (1)] and Xh [Eq. (3)] are shown as blue (dark
gray) curves. The distribution of the rescaled radial structure at radius
r is identical to the distribution of the fixed domain structure at
height h(r) as given by Eq. (8), indicated by dashed red (gray) lines.
This mapping (plotted in Fig. 2) has a finite limit hγ (∞) for γ <

1, indicated by a dashed black line. Parameters are L = 100 with
r0 = L/2π , unit diffusion coefficient, and initially 100 arms.

and the relation between r and h will be determined shortly.
The choice L = 2πr0 enables matching the initial conditions
between Xh=0 and Yr=r0 . This implies

Xh = r0

r
Yr, (4)

which using Eq. (2) yields for the increments

dXh = r0

r
dỸr . (5)

We impose that the mapping between expanding and fixed
geometry preserves the relevant local structure of the object
(analogously to conformal invariance), which in our case is
given by local scale invariance of the arms

dXh ∼ (dh)γ and dỸr ∼ (dr)γ , (6)

with γ > 0. For example, diffusive fluctuations correspond to
γ = 1/2 (see Ref. [23] for related results), and for ballistic
displacements of the arms γ = 1. Other values are related to
sub- or superdiffusive behavior, such as γ = 2/3 for domain
boundaries driven by a surface in the Kardar-Parisi-Zhang
(KPZ) universality class [6,24,25].

This leads to a relationship between h � 0 and r � r0 via

dh

dr
=

(
dXh

dỸr

)1/γ

=
(

r0

r

)1/γ

, (7)

where multiplicative prefactors, which are equal in Eq. (6)
although not indicated, drop out. Integrating yields

h(r) =
{

r0
γ

1−γ
[1 − (r0/r)

1−γ

γ ], γ �= 1,

r0 ln(r/r0), γ = 1,
(8)

for all r � r0. For a single arm the matching initial condition

Yr0 = X0 leads to identical distributions r0
r

Yr
dist.= Xh(r) for all

r � r0. Our main result is now that the same holds for the
entire growth structures, which are characterized as collections
of arms {Yr} and {Xh}, with the independent variables linked

through h = h(r):

{
r0

r
Yr

}
dist.= {Xh(r)} for all r � r0, (9)

provided that the arms interact only locally. Examples of
such interactions include coagulation or annihilation, and
we discuss how this can be generalized in more detail
below. Figure 1 illustrates this correspondence for coalescing
Brownian trajectories.

Properties of the mapping. To leading order h(r) ≈ r − r0

for r close to r0, since locally the fixed domain and the radial
models are equivalent. The effect of the different geometries
enters in the nonlinear behavior of h(r) for larger values of r ,
in particular, for 0 < γ < 1 we have

hγ (∞) = lim
r→∞ h(r) = γ

1 − γ
r0 < ∞. (10)

This observation is particularly interesting for coalescing
or annihilating structures, which exhibit an absorbing state
in a fixed geometry with one or no arms remaining as
h → ∞. Such structures often occur in neutral models for
competition in spatial populations [6,8], and the absorbing
state corresponds to fixation of the model in one of the initial
types. By standard arguments the time to fixation scales as
L1/γ ∼ r

1/γ

0 , which is much larger than h(∞) ∼ r0 for large
systems. For γ < 1 we not only confirm the previous (intuitive)
result that there is no fixation in expanding populations in the
neutral case, but also give explicitly the spatial distribution
of the surviving types at large radii r → ∞ as {Xh(∞)}. The
process Xh is much easier to simulate than Yr , and in many
cases there also exist theoretical predictions [26]. A similar
approach has recently been used independently in Ref. [27]
to study the heterozygosity in a radial Domany-Kinzel type
model for the case γ = 1/2.
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FIG. 2. (Color online) The mapping h(r) between an expanding
radial growth structure and the same structure on a fixed domain as
given in Eq. (8) in units of r0 [see (11)]. Due to local equivalence of
the two processes, h(r) ≈ r − r0 for r ≈ r0. The different geometries
affect the behavior at large r , in particular, h(r) has a finite limit hγ (∞)
for γ < 1 (10) and diverges for γ � 1. The asymptotic behavior is
indicated by dotted lines, except for γ = 2/3, which is off the figure.
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In Fig. 2 we plot the mapping in convenient dimensionless
variables r ′ = r/r0 and h′ = h/r0, so that

h′(r ′) =
{

γ

1−γ
(1 − (1/r ′)

1−γ

γ ), γ �= 1,

log(r ′), γ = 1,
(11)

for all r ′ � 1. For γ = 1 we recover the generic conformal map
from the exterior of the unit circle to a strip, whereas for γ �= 1
the mapping provides a natural generalization to self-affine
processes. Note that for general γ , h′(r ′) = logq(r ′) is the q

logarithm with q = 1/γ known from nonextensive statistical
mechanics [28], which can therefore also be interpreted as a
generalization of conformal transformations.

It is instructive to consider the mapping also for inward
growing radial structures, where r � r0 (i.e., r ′ � 1), which
formally leads to negative heights h < 0, corresponding to
a fixed domain structure growing downward. Observing the
general relation

h′(1/r ′) = −(r ′)
1−γ

γ h′(r ′) for all γ > 0, (12)

all phenomena for such structures can be entirely understood
by studying outward growing ones. Note that in contrast to
the expanding case now all sub-ballistic structures lead to
fixation since |h′(r ′)| → ∞ as r ′ → 0, whereas superballistic
structures will have a nontrivial limit. First results on inward
growing radial structures have been obtained in Ref. [29] and

our approach provides a framework for a better understanding
of those which is explained in detail in future work [26].

Validity and locality. The mapping is based purely on
a conservation of local scale invariance of the structure.
Therefore it is not surprising that the mapping can be shown
to hold rigorously for processes which are fully determined
by their local structure, namely, processes with independent
increments such as Brownian motion and self-similar Lévy
processes [30]. On the other hand, there are other self-
similar processes with the same local scale invariance but
more complicated temporal correlations, such as fractional
Brownian motion (fBm) [31]. The correlations will influence
the mapping and it does not hold in general for such processes.
Using fractional stochastic calculus, one can derive a similar
mapping for the particular model of fBm, which leads to a
more complex expression which is numerically very close to
Eq. (8). This derivation is beyond the scope of this Rapid
Communication and is discussed in detail in Ref. [26].

In Fig. 3 we illustrate the validity of the mapping for
self similar Lévy flights, which are defined via independent
stationary increments with an α-stable jump size distribution

P (Xh+ − Xh = x) ∼ C|x|−(1+α) (α > 0), (13)

as well as fBm, which can be characterized as a Gaussian
process with covariances

〈Xh+�hXh〉 ∼ (h + �h)2γ + h2γ − (�h)2γ . (14)
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FIG. 3. (Color online) Numerical demonstration of the mapping (8) between radial geometry (◦ on all panels) and fixed domain (×): (a),
(b) Number of surviving arms 〈N〉 and their root mean square distance 〈D2〉 (15) for Lévy flights (13) with γ = max{1/α,1/2}; (c), (d) the
same observables for fractional Brownian motion (14); (e) number of surviving arms for Brownian motion (γ = 1/2) with finite particle size
d , + symbols indicate uncorrected, × corrected particle radii (see text); (f) radial density of arms 〈N〉/r for branching-coalescing Brownian
motion with fixed branching rate RR (16) in the radial geometry. For (a)–(e) the horizontal axis is h or h(r), with h(∞) indicated, while for (f)
the horizontal axis is r or r(h). The asymptotic scaling laws [black dashed lines on (a)–(d)] break down when 〈N〉 ≈ 1. (a)–(d) and (f) are in
1 + 1 dimensions, initially 100 arms, L = 100 with r0 = L/2π , while (e) is in 2 + 1 dimensions with r0 = 20.
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Lévy flights have a local scale invariance parameter γ =
max{1/α,1/2}. They are superdiffusive and have noncontinu-
ous paths for α < 2, and scale diffusively for α > 2 where the
jump size has finite variance. fBm can be super- or subdiffusive
and is not Markovian, but still the mapping (8) works very
well also in that case. In Fig. 3 we compare two statistics for
coalescing interaction: the average number of arms 〈N〉, and
the total mean squared distance between neighboring arms, as
a measure for their spatial distribution. For fixed geometry

DF (h)2 =
N(h)∑
i=1

(
X

(i+1)
h − X

(i)
h

)2
, (15)

with an analogous DR(r) for radial geometry. Plotting the fixed
and circular data against h and h(r), respectively, we obtain a
data collapse. The power-law predictions for the fixed system
in Figs. 3(a)–3(d) can be derived easily by standard mean-field
arguments [32,33].

A natural step to include nonlocal interactions is to
introduce a particle size. For simplicity we consider isotropic
shapes with diameter d, i.e., particles coagulate or annihilate
already at a nonzero distance d. As long as the diameter
is much smaller than the macroscopic length scale in the
system, d � r0, the corrections introduced are small. Still
they can be taken into account exactly by comparing the
radial system with the fixed domain one, where the particle
diameter decreases as r0

r(h)d. In Fig. 3(e) we show both cases,
with and without this correction, for coalescing Brownian
motions. We see that for small d the mapping still works
very well even without corrections. Unlike all other numerical
data presented in this Rapid Communication, this one is
for an expanding sphere in 2 + 1 dimensions. Finite range
interactions are particularly important in higher dimensions,
where coalescence or annihilation of point particles does not
strictly occur, they only get arbitrarily close to each other. The
mapping is independent of the dimension, as discussed below.

Another natural interaction included in growing structures
is branching. This is not a purely geometric interaction but
has its own characteristic rate R, which introduces a time
scale in the system. For the mapped processes to have the
same statistics we require that the number of branching events
�F (dh) in the fixed domain model during a time interval dh is
the same as �R(dr) for the corresponding radial system. This
implies a relation between the branching rates

RR

RF

= �R(dr)/dr

�F (dh)/dh
= dh

dr
, (16)

which is (r0/r)1/γ . Thus to understand the density of branches
NR(r)/r in a radially growing system with fixed branching
rate RR , one has to compare to a fixed domain system with
increasing branching rate RF (h) = RR r(h)2/r2

0 , where r(h)
is the inverse of Eq. (8). Note that this rate diverges as r →
∞ or h → h(∞). The density of branches for three different
branching rates is shown in Fig. 3(f) for Brownian motions
with γ = 1/2.

Generalized geometries. Our results can be directly gener-
alized to an arbitrary time-dependent domain of size L(t) with
homogeneous metric. We obtain

h(t) =
∫ t

0

[
L(0)

L(s)

]1/γ

ds, (17)

analogously to Eq. (8). For example, one can study exponen-
tially increasing domains, which is analogous to structures
with exponentially decreasing diffusivity. These have been
studied in detail for single random walks [18–21] and are used
in simulated annealing [34].

In n + 1 dimensions, where n is the spatial dimensionality,
our method applies directly if the scale invariance holds in all
spatial directions i = 1, . . . ,n,

dXi ∼ (dh)γ and dỸi ∼ (dr)γ . (18)

It is possible to have anisotropy (possible i dependence of the
multiplicative factors which are not indicated), but γ should be
identical in all directions. Then the mapping (17) stays exactly
the same.

Summary. We have demonstrated that a large class of
locally scale-invariant, directed complex structures growing
in radial or general increasing geometries can be mapped to
structures in fixed domains, which are simpler and for which
exact results are often available. This approach provides an
elegant and remarkably simple way to understand various
phenomena related to time-dependent metric, such as the
effect of range expansions in competitive biological growth.
A particularly striking example is a full description of the
limiting statistics of radial competition interfaces. Further
examples and technical aspects are discussed in more detail
in Ref. [26].
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[30] Lévy Flights and Related Topics in Physics, edited by M. F.

Shlesinger, G. M. Zaslavsky, and U. Frisch (Springer, Berlin,
1995).

[31] F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic
Calculus for Fractional Brownian Motion and Applications
(Springer, Berlin, 2010).

[32] P. A. Alemany and D. ben Avraham, Phys. Lett. A 206, 18
(1995).

[33] R. Munasinghe, R. Rajesh, R. Tribe, and O. Zaboronski,
Commun. Math. Phys 268, 717 (2006).

[34] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science 220,
671 (1983).

020102-5

http://dx.doi.org/10.1063/1.857493
http://dx.doi.org/10.1063/1.857493
http://dx.doi.org/10.1111/j.1558-5646.2009.00809.x
http://dx.doi.org/10.1371/journal.pcbi.1002447
http://dx.doi.org/10.1371/journal.pcbi.1002447
http://dx.doi.org/10.1126/science.1135994
http://dx.doi.org/10.1126/science.1135994
http://dx.doi.org/10.1126/science.1215309
http://dx.doi.org/10.1103/PhysRevLett.108.214304
http://dx.doi.org/10.1103/PhysRevLett.108.214304
http://dx.doi.org/10.1103/PhysRevE.62.7748
http://dx.doi.org/10.1119/1.1632487
http://dx.doi.org/10.1103/PhysRevE.74.051105
http://dx.doi.org/10.1088/1742-5468/2010/01/P01006
http://dx.doi.org/10.1103/PhysRevD.82.024026
http://dx.doi.org/10.1142/S0219525910002578
http://dx.doi.org/10.1142/S0219525910002578
http://dx.doi.org/10.1103/PhysRevE.73.031602
http://dx.doi.org/10.1103/PhysRevE.73.031602
http://dx.doi.org/10.1103/PhysRevE.85.021923
http://dx.doi.org/10.1103/PhysRevE.85.021923
http://dx.doi.org/10.1103/PhysRevE.87.012103
http://dx.doi.org/10.1103/PhysRevE.87.012103
http://dx.doi.org/10.1088/0305-4470/31/46/010
http://dx.doi.org/10.1088/0305-4470/31/46/010
http://dx.doi.org/10.1016/0375-9601(95)00625-D
http://dx.doi.org/10.1016/0375-9601(95)00625-D
http://dx.doi.org/10.1007/s00220-006-0110-5
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671



