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Scaling theory of heat transport in quasi-one-dimensional disordered harmonic chains
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We introduce a variant of the banded random matrix ensemble and show, using detailed numerical analysis
and theoretical arguments, that the phonon heat current in disordered quasi-one-dimensional lattices obeys a
one-parameter scaling law. The resulting β function indicates that an anomalous Fourier law is applicable in the
diffusive regime, while in the localization regime the heat current decays exponentially with the sample size. Our
approach opens a new way to investigate the effects of Anderson localization in heat conduction based on the
powerful ideas of scaling theory.
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Introduction. Anderson localization, i.e., the complete halt
of propagation in disordered media due to wave interference
effects, is an interdisciplinary field of research that addresses
systems as diverse as classical, quantum, and atomic-matter
waves. This phenomenon was predicted 50 years ago in the
framework of quantum (electronic) waves by Anderson [1],
and its existence has been confirmed in recent years by
experiments with classical [2–10] and matter waves [11,12].

Recently, localization phenomena due to randomness have
attracted considerable interest in the context of heat conduction
by phonons [13–15]. A central issue of these investigations is
the determination of the dependence of the heat current J on
the system size N . It has been commonly believed that disorder
scatters normal modes and induces a diffusive energy transport
that leads to a normal heat conduction described by Fourier’s
law, which states that J ∼ N−1. However, many recent studies
[14–21] suggest that in low-dimensional disordered harmonic
chains this may not always be true. Instead, one finds that J ∼
N−α , where α is usually different from 1. Although this conclu-
sion is generally accepted for one-dimensional systems, where
theoretical methods of investigation are available, the validity
(or not) of Fourier’s law in higher dimensions is totally unclear
since the majority of the available results are based on numer-
ical simulations, which are limited to small systems sizes.

In fact, recent experiments on heat conduction in nanotubes
and graphene flakes have reported observations which indicate
such anomalous behavior with the system size [22–24].
Therefore, not only is it a fundamental demand for the
development of statistical physics to understand normal and
anomalous heat conduction in low-dimensional systems, but
it is also of great interest from the technological point of view
since the achievement of modern nanofabrication technology
allows one to access and utilize such structures with sizes in
the range of a few nanometers up to a few hundred nanometers.

In this Rapid Communication, we approach thermal trans-
port in the presence of disorder from a different perspective;
namely, we develop a scaling theory for quasi-one-dimensional
(quasi-1D) random lattices described by a modified banded
random matrix ensemble (BRM). Random matrix models
played a major role in understanding various properties of
disordered quantum systems, including the structure and
statistical properties of their eigenstates [25,26] and eigen-
values [27], the conductance [28], delay times [29], etc. Here

we introduce a BRM ensemble with bandwidth 2b + 1 that
describes an array of coupled oscillators with long range (bth-
neighbor) random couplings, in the presence of on-site random
pinning which is coupled at the left and right edges to a pair of
Langevin heat reservoirs. We find that the averaged (rescaled)
steady-state heat current J̃N (ξ∞) of the phononic excitations
for an array of size N obeys a one-parameter scaling, i.e.,

∂ ln J̃N (ξ∞)

∂ ln N
= β(J̃N (ξ∞)), (1)

where β is a universal function of J̃N (ξ∞) alone and takes the
following asymptotic forms:

β(J̃N ) =
{

1.28 + 0.94 ln J̃N for J̃N � 1,

−ν for J̃N � 1,
(2)

with ν ≈ 0.25. The asymptotic (i.e., N → ∞) participation
number ξ∞ measures the degree of localization of the normal
modes which dominate the transport. For any finite sample of
size N the number of these modes I scales as I ∼ N−γ , with
γ ≈ 0.1. The scaling exponent of the (actual) heat current
JN ≡ N−γ J̃N ∼ N−α is found to be α = ν + γ ≈ 0.35,
indicating a violation of the Fourier law. Equations (1) and
(2) are confirmed in the following via detailed numerical
simulations, supported by theoretical arguments.

Banded harmonic chain model. We consider a thermally
isolated quasi-one-dimensional harmonic oscillator chain with
bth-nearest-neighbor coupling. It consists of N equal masses
(m = 1) described by the Hamiltonian

H =
N∑

n=1

Hn =
N∑

n=1

(
p2

n

2
+ εnq

2
n

2
+ 1

4

n+b∑
j=n−b

knj (qn − qj )2

)

(3)

The corresponding equations of motion are q̇n =
∂H/∂pn, ṗn = −∂H/∂qn, where qn,pn are respectively the
individual oscillator displacements and momenta. The last
term in Eq. (3) is the harmonic coupling between the nth mass
and its b neighbors on the left and right. The random spring
constants knj are chosen to be symmetric (knj = kjn) and
uniformly distributed according to knj ∈ [−W

2 + 1,W
2 + 1]

if 0 < |n − j | � b and knj = 0 otherwise. W is a coupling
strength parameter that has to be smaller than 2 and is
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henceforth set to unity. The second term in the Hamiltonian
is an on-site “pinning” potential with a spring constant εn,
random and uniformly distributed in [−W

2 + 1,W
2 + 1]. The

offset in these random distributions ensures a positive-definite
spectrum of the eigenfrequencies, i.e., bounded motion of the
oscillators. The boundary conditions used are q0 = qN+1 = 0.

Next, we want to study the nonequilibrium steady states
(NESS) of this chain driven by a pair of Langevin (Ornstein-
Uhlenbeck) reservoirs set at temperatures TL and TR , re-
spectively, and coupled to the first (last) Nb masses with
a constant coupling strength λ. In all numerical exam-
ples we will set Nb = 15 and λ = 1. The coupling to
the bath is described by modifying the equation of mo-
tion for the momentum ṗn = −∂H/∂qn + ∑

τ=L,R(−λpn +√
2λTτ ζn)θτ

n , where θL
n = {1 if n � Nb; 0 otherwise}, θR

n =
{1 if n � N − Nb; 0 otherwise}, and ζn(t) is δ-correlated
white noise 〈ζn(t)ζn′(t ′)〉 = δnn′δ(t − t ′).

The two thermal quantities, local temperature and the
heat current, can be expressed in terms of elements
of the covariance matrix C(t) = 〈�x(t) ⊗ �x(t)〉, where �x =
(q1, . . . ,qN ,p1, . . . ,pN )T is the state vector. Using stochastic
Ito calculus [13,30] for the system of Eq. (3), we find

dC
dt

= ZC + CZT + Y, (4)

with the 2N × 2N matrices

Z =
(

0 1

K 1

)
−

∑
τ=L,R

Yτ , Y =
∑

τ

Tτ Yτ , (5)

where Yτ = λ
∑N

n=1 θτ
n PN+n and Pj = �ej ⊗ �ej is a diagonal

rank 1 projector for basis vectors ( �ej )n = δnj . The banded N ×
N matrix K with bandwidth 2b + 1 encodes all the interactions
within the harmonic lattice, as described by Eq. (3):

Knm =
{

knm n �= m,

−εn − ∑
j knj n = m.

The NESS covariance matrix C∞ can be obtained by setting
the left hand side of Eq. (4) to zero, resulting in the Sylvester
equation ZC∞ + C∞ZT = −Y.

The local temperature is simply given by Tn = 〈p2
n〉 =

C∞
n+N,n+N . To find the expression for the heat current J we use

the continuity relation ∂t 〈Hn〉 + Jn − Jn−1 = 0, where 〈Hn〉
is the thermal fluctuation average of

∂Hn

∂t
= 1

2

b∑
j>0

kn+j,n(qn+j − qn)(pn + pn+j )

− kn−j,n(qn − qn−j )(pn + pn−j ), (6)

ensuring that at any given cross section of the chain, all
connections are included [31]. In terms of the covariance
matrix this yields the expression

Jn = 1

2

n∑
i=n−b+1

i+b∑
j=n+1

ki−n+b,j−n

× (
C∞

i,i+N − C∞
j,i+N + C∞

i,j+N − C∞
j,j+N

)
. (7)

In the central section of the chain (Nb < n < N − Nb), which
is not directly coupled to the bath, the NESS heat current
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FIG. 1. (Color online) (top) Temperature and (bottom) heat
current profiles for bandwidths of b = 6 (black) and b = 30 [red
(gray)] in a system of size N = 1000. The flatness of the heat current
profile indicates a nonequilibrium steady state.

has to be independent of n due to continuity, i.e., J = Jn. In
our proceeding numerics, the bath temperatures are fixed [32]
at TL = 2, TR = 1. Additionally, all thermal calculations are
averaged over 102 realizations of disorder. An example of the
local profiles is displayed in Fig. 1; in particular, the flat profile
seen in Jn confirms that continuity is fulfilled.

Localization properties. We consider the isolated case
(λ = 0). Substituting qν

n (t) = An,ν exp(iωνt) results in an
eigenvalue problem −ω2

ν
�Aν = K �Aν . Again, note that the

choice of the random distributions in the banded random
matrix K ensures positive definite eigenvalues, ω2

ν � 0. The
extent of the modes is often characterized by their participation
number (PN):

P2 =
(∑

n |An,ν |2
)2∑

n |An,ν |4 . (8)

In Fig. 2, the PNs are plotted versus the eigenfrequencies for
different finite lattice sizes and a fixed bandwidth of b = 5. All
states are localized (P2 < N ), yet two windows are observed:

FIG. 2. (Color online) Participation number vs. frequency for
b = 5. Various finite system sizes are delineated by different colors.
Colored stripes indicate the groups of the most extended modes, for
which P2 � 0.6P max

2 . A normalized count of selected states yield
a scaling I ∼ N−γ for the integrated density of states, as shown
in the inset, for three representative bandwidths: b = 5 (circles),
b = 10 (squares), and b = 12 (diamonds). The best fit indicates
γ ≈ 0.1 ± 0.05 (black solid line).
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FIG. 3. (Color online) The disordered and spectral (over δω)
averaged PN ξN against 1/N for various b values. Saturation of ξN as
N → ∞ is observed for moderate bandwidths. For larger values of b

a fitting of the data to a rational function of fifth-order polynomials
(dashed and dot-dashed lines) allows us to extract the limit ξ∞. The
inset shows the parametric dependence of ξ∞ on b. The dashed line
is the power relation b3.5.

a window of highly localized states for higher frequencies and
a window of states with larger PN for lower frequencies.

We define the spectral window δω = ωmax − ωmin, whereby
the modes with the larger PN are supported by the condition
P2(ω) � 0.6P max

2 . This allows us to find a scaling behavior for
the integrated density of states (IDOS) of these modes,

I (δω) =
∫ ωmax

ωmin

ρ(ω)dω ∼ N−γ , (9)

Our results for various values of bandwidth b are shown in
the inset of Fig. 2. The solid line indicates the best fit with
γ = 0.1 ± 0.05. The averaged (over the spectral window δω

and over disorder realizations) PN is ξN = 〈P2〉δω, reported in
Fig. 3 for various b values versus 1/N . Typically, more than
104 eigenvectors were used for the averaging. We find that
ξN→∞(b) shows a convergence toward a finite value ξ∞(b).
For moderate b values this asymptotic PN is reached, while
for larger bandwidths it can be extrapolated from the quotient
of two fifth-order polynomials fitted to the data (dashed and
dot-dashed lines in Fig. 3). Inspired by previous studies on the
localization properties of BRMs [25,26,33–35], we speculate
that the asymptotic PN will scale as ξ∞ ∼ bη. Our expectation
is nicely confirmed by the numerical data, reported in the
inset of Fig. 3. The best fit indicates that η ≈ 3.5, and thus
ξ∞(b) ∼ b3.5.

Scaling theory. Equipped with knowledge of the localiza-
tion properties of the normal modes of our system in Eq. (3),
we now turn to the study of the steady-state heat current of
Eq. (7). This is formally expressed as J = ∫ ∞

0 ρ(ω)τ (ω)dω ≈∫ ωmax

ωmin
ρ(ω)τ (ω)dω, where ρ(ω) is the density of states and

τ (ω) is the frequency dependent transmittance. Since heat is
transported significantly only by the modes with the larger
PNs, we confine the integration range within the spectral
window δω. These modes have similar localization, and
therefore transport, properties, as shown previously. Therefore,
we approximate τ (ω) by its average value over this window
〈τ 〉δω. The remaining integral is then just the IDOS of Eq. (9).
We can now use knowledge of the transmittance of harmonic
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FIG. 4. (Color online) Rescaled heat current J̃ vs � = ξ∞/N ,
where ξ∞ ∼ b3.5, as was found from Fig. 3. The dashed line is a fit
to the analytical curve of Eq. (10). The inset shows the resulting β

function of Eq. (1). The dashed lines correspond to the asymptotic
limits of β = 1.28 + 0.94 ln J̃ for N → ∞ and β = −ν for N → 0.

chains to deduce a scaling relation for the rescaled heat current
J̃ ≡ J/N−γ ∝ 〈τ 〉δω.

Specifically, the transport theory of disordered media
predicts that the average transmittance 〈τ 〉δω of a disordered
sample of length N which is characterized by a localization
length ξ∞ follows a one-parameter scaling 〈τ 〉δω = fT (�),
where the one parameter is � ≡ ξ∞ /N . It is natural to then
speculate that the same scaling relation will apply for the
rescaled heat current J̃ . In the main panel of Fig. 4 we show
our numerics of J̃ plotted against � for a number of different
bandwidths and system sizes (b ∈ [2,35],N ∈ [102,103]). In
this approach, we have used ξ∞ as a scaling parameter, which
allows us to collapse all data associated with various b values
to one scaling curve. By visual inspection [36], we find that the
scaling parameter ξ∞ ∼ b3.5±0.2, which confirms the previous
independent scaling analysis from the participation numbers
(see Fig. 3 and its discussion). The obvious data collapse
confirms the conjecture that J̃N (ξ∞) is a function of � only,
i.e., J̃N (ξ∞) = fJ̃ (�).

Next, we want to determine the analytical form of the
scaling function fJ̃ (�). We have found that in the limit of
the localized regime (� � 1) this dependence has the form
J̃ ∼ e−c0/�, in agreement with previous theoretical results for
pinned harmonic chains with only nearest-neighbor coupling
and mass disorder [16]. In the other limit of � � 1, the heat
transport is diffusive. Assuming validity of the Fourier law,
we may expect a scaling of the type J̃ ∼ 1/N1−γ ; however,
recent investigations [20,37] found an anomalous behavior of
the heat current, which results in the scaling J̃ ∼ 1/Nα−γ .
We therefore speculate that in the diffusive domain of � � 1,
the rescaled steady-state heat current will follow the relation
J̃ (�) ∼ c1�

ν . A possible interpolating law valid in all regimes
(including the crossover region) is

J̃ (�) = (c2 + c1�
ν) exp(−c0/�). (10)

Comparison with numerical data in the two limits (� � 1,
� � 1) yields ν ≈ 0.25, c1 ≈ 0.4, and c0 ≈ 0.06. Adjusting
the last parameter, c2, to fit numerics in the intermediate
region yields c2 ≈ 0.012. The resulting analytical formula
nicely fits the numerical results in all regions and therefore
provides a compact summary of our empirical data (see
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dashed line in Fig. 4). We stress that the limiting value of
J (� � 1) ∝ 1/Nγ+ν leads to an anomalous heat exponent
α ≈ 0.35 ± 0.05. It should be noted that this value is less
than what has typically been seen in other, nonlinear and
disordered, chain models, which show values from ≈0.4 to
0.7 [18,20,21,37–39].

Equation (10) can be rewritten in the form of Eq. (1). This
is the main result of the present Rapid Communication, as it
allows postulating the existence of a β function for the J̃N of
generic quasi-1D disordered systems. The resulting β function
is plotted in the inset of Fig. 4. Its asymptotes are seen to follow
β = 1.28 + 0.94 ln J̃ for N → ∞, and β = −ν for N → 0.

Conclusions. We presented a one-parameter scaling theory
for the steady-state heat current of quasi-one-dimensional
disordered harmonic systems with substrate pinnings de-
scribed by a variant banded random matrix ensemble. Via
numerical analysis and theoretical considerations, we have
established Eq. (1), which allows us to conclude that changing

disorder strength (or coupling range) and system size in the
way described by Eq. (10) would not change the renor-
malized (average) heat current. The one-parameter scaling
theory presented here is a powerful approach in the quest
of understanding thermal transport, and the validity of the
Fourier law, in disordered media. Of further interest will be
to investigate higher moments of the NESS heat current and
also to establish a scaling theory for the thermal profile as
a function of the scaling parameter �. Although the focus
of this Rapid Communication was on harmonic quasi-1D
disordered phononic transport, our approach can be used to
study high-dimensional pinned harmonic systems and to better
understand the effects of phonon-phonon interactions [26] in
thermal transport.
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