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Twisted electrostatic ion-cyclotron waves in dusty plasmas
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We show the existence of a twisted electrostatic ion-cyclotron (ESIC) wave carrying orbital angular momentum
(OAM) in a magnetized dusty plasma. For our purposes, we derive a 3D wave equation for the coupled ESIC
and dust ion-acoustic (DIA) waves from the hydrodynamic equations that are composed of the continuity and
momentum equations, together with Poisson’s equation. The 3D wave equation reveals the formation of a braided
or twisted ESIC wave structure carrying OAM. The braided or twisted ESIC wave structure can trap and transport
plasma particles in magnetoplasmas, such as those in Saturn’s F-ring and in the forthcoming magnetized dusty
plasma experiments.
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Charged dust grains in plasmas or dusty plasmas are
ubiquitous [1–12], ranging from the cosmic and astrophysical
environments (e.g., interstellar media, molecular dust clouds,
star forming dust clouds, Eagle Nebula, and supernovae
remnants) to planetary ring systems (e.g., E and F rings of
Saturn) and interplanetary media with cometary dust particles,
as well as to the Martian atmosphere in the form of dust devils
and in the surrounding of the surface of Sun and moon, as well
as in the Earth’s ionosphere and mesosphere. Charged dust
debris also appear in space due to the destruction of satellites
and near space propulsion vehicles due to rocket exhausts.
Charged dust grains of different sizes and shapes are common
in industrial processing plasmas for nanotechnology and in
magnetic fusion reactors. Clearly, studies of the dynamics of
charged dust grains and collective dust-plasma interactions are
of great importance in a variety of diverse physical systems,
including astrophysical settings and Sun-Earth connection,
laboratory experiments on ground, and onboard the Interna-
tional Space Station for fundamental and applied research in
cutting-edge areas of modern sciences. Accordingly, over a
quarter century, much effort has been directed to studying
dust grain charging [13,14] and numerous collective phenom-
ena at kinetic levels [4,8–10,15–22] that naturally occur in
astrophysical and low-temperature laboratory dusty plasma
systems.

The dust acoustic wave (DAW) [15] and the dust ion-
acoustic wave (DIAW) [16] are the two fundamental eigen-
modes of an unmagnetized dusty plasma composed of elec-
trons, ions, and charged dust grains. In the low-phase speed
(in comparison with the electron and ion thermal speeds)
and low-frequency (in comparison with the dust plasma
frequency) DAW, the restoring force comes from the pressures
of the inertialess electrons and ions that follow the Boltzmann
distribution, while the dust mass provides the inertia. The DAW
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phase speed is CD = [ZdPkBTi/md (1 + ne0Ti/ni0Te)]1/2,
where Zd is the number of electrons on a dust grain, P =
Zdnd0/ni0 = 1 − ne0/ni0 is the dust parameter, nj0 is the
number density of the particle species j (j equals i for the ions,
e for electrons, and d for dust grains), kB is the Boltzmann
constant, and Ti (Te) is the ion (electron) temperature. We
note that there does not exist a counterpart of the DAW in
an electron-ion plasma without charged dust grains. On the
other, in the low-phase speed (in comparison with the electron
thermal speed) and low-frequency (in comparison with the
ion plasmas frequency) DIAW, the restoring force comes from
the pressure of the inertialess Boltzmann-distributed electrons,
while the ion mass provides the inertia to sustain the wave.
The dust effect appears here through the modification of the
equilibrium quasineutrality condition [15–17]

ni0 = ne0 + Zdnd0, (1)

which exhibits that there is depletion of the electrons from the
background plasma, because a dust grain absorbs electrons to
be negatively charged [23]. Since the ion number density is
now larger than the electron number density in the presence
of negative dust grains (which are stationary on the timescale
of the ion plasma period), the phase speed of the DIAW is
somewhat enhanced [by a factor (ni0/ne0)1/2] in comparison
with the ion acoustic speed cs = (kBTe/mi)1/2 of the IAW in
an electron-ion plasma without charged dust grains. Recently,
Shukla [22] has illuminated the underlying of the DAW and
has also discovered a twisted DAW in an unmagnetized dusty
plasma. We recall that both the dust acoustic and dust ion
acoustic waves have been observed in several low-temperature
laboratory dusty plasma discharges [24–29], and also in space
dusty plasmas [21].

However, dusty plasmas in the Saturn’s F-ring system
and in the forthcoming laboratory experiments have ambient
magnetic fields. In the presence of the latter, both the electrons
and ions can be magnetized, which, in turn, participate in
the dynamics of such new modes as linearly coupled dust
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ion-acoustic and ESIC modes [30,31], modified lower-hybrid
[17] and dust lower-hybrid waves [32], the dust magnetoacous-
tic [33] and dust Alfvén [17,34], and the dust whistler [17,35]
in a uniform dusty magnetoplasma.

In this Brief Report, we show that a 3D dispersive ESIC
wave can propagate in the form of a twisted vortex beam
or in the form of a braided electrostatic potential structure.
The latter, which is also associated with a tornado of an
electrical potential distribution, can trap and transport the
plasma particles from one region to another location in a
uniform dusty magnetoplasma. In fact, the present result
may help to understand the salient features of a braided
electrical potential structure of the Saturn’s F ring that has
been conjectured by Hill and Mendis [36].

Let us consider a magnetized electron-ion plasma in the
presence of the low-frequency (in comparison with the electron
gyrofrequency ωce = eB0/mec � νei � νen, where e is the
magnitude of the electron charge, B0 the strength of the
ambient magnetic field B0ẑ, me the electron mass, c the speed
of light in vacuum, ẑ the unit vector along the z axis in a
Cartesian coordinate system, and νen is the electron-neutral
frequency), long wavelength (in comparison with the ion
gyroradius) dispersive ESIC waves with the electric field
E = −∇φ, where φ is the scalar potential. We assume that
the charged dust grains of uniform sizes are immobile, since
we are concerned with the occurrence of a twisted ESIC
wave (with the phase speed much larger than the ion and
dust thermal speeds) on a timescale much shorter than the
dust plasma and dust gyroperiods. Thus, the charged dust
grains do not have time to respond to the ESIC oscillations,
and subsequently there are insignificant dust number density
perturbations. The effect of the dust component then appears
through the equilibrium quasineutrality condition, given by
Eq. (1). Hence, in the ESIC wave field, the electron fluid
velocity is

ue ≈ c

B0
ẑ × ∇ϕe + c

B0ωce

(
∂

∂t
+ νen

)
ϕe + ẑuez, (2)

where ϕe = φ − kBTene1/ne0, ne1 (�ne0) is a small electron
number density perturbation in the equilibrium electron
number density ne0, kB is the Boltzmann constant, Te is the
electron temperature, and the magnetic field-aligned electron
fluid velocity uez is determined from the z component of the
electron momentum equation

(
∂

∂t
+ νen

)
uez = e

me

∂ϕe

∂z
. (3)

The electron number density perturbation ne1 is determined
from the electron continuity equation

∂ne1

∂t
+ ne0∇ · ue = 0, (4)

which, together with Eqs. (2) and (3), yields

(
∂2

∂t2
+ νen

∂

∂t
− V 2

T e

∂2

∂z2

)
ne1 + ne0c

B0ωce

(
∂

∂t
+ νen

)2

∇2
⊥φ

+ ne0e

me

∂2φ

∂z2
= 0, (5)

where Vte = (kBTe/me)1/2 is the electron thermal speed. We
have assumed that (VT e/ωce)2∇2

⊥ne1 � ne1. The perpendicu-
lar (to ẑ) component of the ion fluid velocity perturbation ui⊥
is determined from(

∂2

∂t2
+ ω2

ci

)
ui⊥ = cω2

ci

B0
ẑ × ∇ϕi − cωci

B0

∂∇⊥ϕi

∂t
, (6)

which is obtained by manipulating the perpendicular compo-
nent of the ion momentum equation, where ωci = eB0/mic

(�νie,νin) is the ion gyrofrequency, mi is the ion mass, and
νie (νin) is the ion-electron (ion-neutral) collision frequency.
Furthermore, we have denoted ϕ = φ + γikBTini1/ni0, with
γi being the adiabatic index for the ion fluid, and ni1(�ni0) is
the ion number density perturbation.

The magnetic field-aligned ion fluid velocity perturbation
uiz is determined from

∂uiz

∂t
= − e

mi

∂ϕi

∂z
, (7)

where ∂uiz/∂t � νinuiz has been assumed. We also assume
that the number density of immobile neutral particles in
our dusty plasmas is rather low, and therefore there are
insignificant interactions between neutrals and the charged
species of our magnetized dusty plasma.

Equations (6) and (7) can be combined with the linearized
ion continuity equation to obtain an equation that relates ni1

and φ. We have(
∂2

∂t2
+ ω2

ci

)
∂2ni1

∂t2
− ni0cωci

B0

∂2∇2
⊥φ

∂t2

+ ni0e

mi

(
∂2

∂t2
+ ω2

ci

)
∂2φ

∂z2
= 0. (8)

Equations (5) and (8) are closed by Poisson’s equation,

∇2φ = 4πe(ne1 − ni1). (9)

We now consider coupled 3D DIA and ESIC waves
with ∂ne1/∂t � νenne1, νen∂ne1/∂t � V 2

T e∂
2ne1/∂z2, and

νen∂∇2
⊥φ/∂t � ω2

ce∂
2φ/∂z2. Here, Eq. (5) yields the

Boltzmann law for the electron number density perturbation

ne1 ≈ ne0eφ

kBTe

. (10)

Equation (10) dictates that in our magnetized dusty plasma
with frequent electron-ion collisions, inertialess electrons
rapidly thermalize along the external magnetic field direction
B0ẑ in order to establish the Boltzmann law for the electron
number density perturbation. The magnetic field-aligned rapid
motion of the electrons ensures their couplings with the ions
in order to maintain overall quasineutrality on the time scale
of the ion gyroperiod.

Invoking the quasineutrality condition ne1 ≈ ni1, which is
valid for λ2

De∇2φ � φ, where λDe = (kBTe/4πne0e
2)1/2 is the

electron Debye radius, we can eliminate ni1 from Eq. (8) by
using Eq. (10), obtaining the coupled DIA-ESIC wave equation(

∂2

∂t2
+ ω2

ci

)
∂2φ

∂t2
− C2

s

∂2∇2
⊥φ

∂t2
−

(
∂2

∂t2
+ ω2

ci

)
C2

s

∂2φ

∂z2
= 0,

(11)
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where Cs = (ni0kBTe/ne0mi)1/2 is the modified ion-acoustic
(m-IA) speed [16]. In deducing Eq. (10), we have assumed
that Te � Ti . We see that the the m-IA speed Cs is larger by a
factor

√
ni0/ne0 in comparison with

√
kBTe/mi .

Within the framework of a plane-wave approximation,
assuming that φ is proportional to exp(−iωt + ik · r), where
ω and k(=k⊥ + ẑkz) are the angular frequency and the wave
vector, respectively, we can Fourier analyze Eq. (11) to
obtain

ω2 = 
2
ic

2
± 1

2

(

4

ic + 4
2
sω

2
ci

)1/2
, (12)

which reveals a linear coupling between the ESIC and DIA
waves. Here, 
ic = (ω2

ci + k2C2
s )1/2 and 
s = kzCs are the

ESIC and DIA wave frequencies, respectively, k2 = k2
⊥ + k2

z ,
with k⊥ and kz being the components of k across and
along ẑ.

The plane-wave approximation has to be abandoned for 3D
coupled ESIC and DIA waves that are twisted. Accordingly,
we consider a twisted ESIC (T-ESIC) wave with the frequency
ωk and the magnetic field-aligned propagation wave number
kz, which has the potential structure of the form

φ = �(r) exp(ikzz − iωkt), (13)

where �(r) is a slowly varying function of z, and r = (x2 +
y2)1/2. By using Eq. (13), which reveals that a propagating
T-ESIC wave will have a radial mode structure, we can write
Eq. (11) in a paraxial approximation (viz. ∂2�/∂z2 � k2

z�)
as

2i
∂�

∂ξ
+ ∇2

⊥� = 0, (14)

where ξ = zλ3
z/8π3ρ2

s (1 + 4π2ρ2
s /λ

2
z), λz = 2π/kz, and ρs =

Cs/ωci is the modified ion-acoustic gyroradius. In obtaining
Eq. (14), we used ωk = (ω2

ci + 4π2C2
s /λ

2
z)1/2. Moreover, we

have denoted the operator ∇2
⊥� = (1/r)(∂/∂r)(r∂�l/∂r) +

(1/r2)∂2�l/∂θ2 and introduced the cylindrical coordinates
with r = (r,θ,z). The choice of ∇2

⊥�, as above, ensures that
in 3D space dimension, a T-EIC wave will possess orbital
angular momentum (OAM) because of the dependence of �

on θ .
The solution of Eq. (14) can be written as a superposition

of Laguerre-Gaussian (LG) modes [37–39], each of them
representing a state of OAM, characterized by the quantum
number l, such that

� =
∑
pl

�plFpl(r,z) exp(ilθ ), (15)

where the mode structure function is

Fpl(r,z) = Hplf
|l|L|l|

p (f ) exp(−f/2), (16)

with f = r2/w2(ξ ), and w(ξ ) is the ESIC beam width.
The normalization factor Hpl and the associated Laguerre
polynomial L

|l|
p (f ) are, respectively,

Hpl = 1

2
√

π

[
(l + p)!

p!

]1/2

, (17)

and

L|l|
p (f ) = exp(f )

f lp!

dp

df p
[f l+p exp(−f )], (18)

where p and l are the radial and angular mode numbers of the
ESIC orbital angular momentum state. In a special case with
l = 0 and p = 0, we have a Gaussian ESIC beam.

The LG solutions, given by Eq. (15), describe the salient
feature of a twisted ESIC vortex (ESICV) beam carrying OAM
(l = ±1,l = ±2, . . .). In a twisted ESICV beam, the phase
fronts rotate, clockwise for positive l values and anticlockwise
for negative l values, around the beam’s propagation direction
in a spiral that looks like fusilli pasta (or a bit like a DNA
double helix), creating an ESICV. The ESICV beam will
have zero intensity at its center and be strongest at its edges,
which cause orbital angular momentum. A twisted ESICV
beam in a magnetized dusty plasma can occur naturally or
it can be spontaneously created artificially by two oppositely
propagating 3D ESIC waves that are colliding. Twisting of
the ESIC waves occurs because different sections of the
wavefront bounce off different steps, introducing a delay
between the reflection of neighboring sections and, therefore,
causing the wavefront to be twisted due to entanglement of the
wavefronts.

In summary, we have shown that a 3D ESIC wave in a uni-
form dusty magnetoplasma can propagate as a twisted ESICV
beam or as a braided electric potential structure. A twisted
ESICV beam can trap the plasma particles and transport them
from one region to another in planetary systems (e.g., through
a braided electric potential structure in the F ring of Saturn
[36] and in the forthcoming laboratory dusty magnetoplasma
experiments [40]). A twisted ESICV beam can be identified as
observational signatures of a rapidly rotating helical-shaped
electric potential structure with twisted wavefronts, which
can provide an alternative mechanism for the transport of
the plasma particles in the planetary system, in the Earth’s
ionosphere, and in low-temperature laboratory experiments
with strong external magnetic fields [40]. Furthermore, the
present investigation of a twisted ESICV beam can also
be exploited for diagnostic purposes, since the frequency and
the magnetic field-aligned phase speed of a twisted ESIC wave
are (ω2

ci + 4π2C2
s /λ

2
z)1/2 and 2πCs/λz(ω2

ci + 4π2C2
s /λ

2
z)1/2,

respectively. In closing, we mention that long- and short-
wavelength (in comparison with the ion gyroradius) twisted
electrostatic dust-cyclotrons (T-ESDC) may also arise in a
magnetized dusty plasma. Here, the electrons, ions, and
charged dust particles are magnetized in strong magnetic fields
(say of the order of several Tesla), and one has to account for
the dust number density perturbation [41] on the timescale
of the dust gyroperiod. The governing 3D equation for a
T-ESDC wave will be different than Eq. (10), but essential
solutions may resemble Eq. (14). A detailed investigation of
a T-ESDC wave is outside the scope of the present Brief
Report.
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