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Scaling properties of the area distribution functions and kinetic curves of dense plane discrete
Poisson-Voronoi tessellations
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This brief report supplements and refines previous publications [Korobov, Phys. Rev. B 76, 085430 (2007);
Korobov, Phys. Rev. E 79, 031607 (2009); 84, 021602 (2011)] to show that the scaling properties of the area
distribution functions and kinetic curves actually hold for dense plane discrete Poisson-Voronoi tessellations.
The previously noted apparent violations are due to the involved structures of boundaries of random domains.
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Poisson-Voronoi tessellations serve as a basis for develop-
ing more involved and realistic descriptions of birth-growth
processes, both analytical and numerical [1–8]. This, in turn,
stimulates further studies of these tessellations in various
respects [9–18]. All mentioned works deal with the Euclidean
metric. Some problems require different metrics. One example
is the evolution of a first-order phase transition on the sphere
[19]. Another one is the account of the crystal structure of
a substrate when its influence is tangible [20–22]. In the
latter two-dimensional case, tessellations are discrete and
are characterized by the density �, which is the ratio of
the number of nucleation tiles to the total number of tiles
in the tiling; � < 1. For sparse tessellations (� < 0.01) of
hexagonal, square, and triangular tilings, the area distributions
were shown to be practically metric insensitive, in contrast to
metric sensitive kinetic characteristics. The parameter c of the
Kiang conjecture [23]

F (y) = cc

�(c)
yc−1 exp(−cy) (1)

is close to that analytically derived for conventional contin-
ual tessellations with the Euclidian metric, c = 3.575 [24].
However, in the case of dense tessellations (�� 0.01, with
a relatively large number of nuclei), the value of c is
significantly different and kinetic curves of sparse and dense
tessellations are not scaled one into another. This casts doubt
on the universal behavior of discrete tessellations that is
well established in the conventional case (see, e.g., [25,26])
and plays an important role when scaling properties of
distribution functions are concerned [27–29]. The aim of
this brief report is to settle this doubt and to show that the
apparent violation of the universality is determined solely
by some computational problems with boundaries of random
domains.

The main features of the model are as follows (see [20–22]
for more details): square tiling, simultaneous nucleation,
one-tile stable nuclei, random distribution of nuclei, von
Neumann neighborhood, irreversible linear growth to im-
pingement, immobile islands. Several aspects of nucleation
on square and triangular lattices are discussed in [30]. The von
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Neumann neighborhood is determined by the displacement
vector:
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At each step s, standing for discrete time, all adjacent tiles
join the growing nucleus, forming the subsequent concentric
belt around it. The growth is linear. In a topological respect, a
peculiarity is the finite number of growth directions, whereas
in continual two-dimensional nucleation growth models this
number is infinite. In a metrical respect, a peculiarity is the fact
that the discrete growth mode determines the metric which is
different from the Euclidean metric: dist = |�x| + |�y|. It
is impossible to construct a tessellation with habitual linear
boundaries of random domains. There are two possibilities:
boundaries are formed solely by tiles or boundaries are
formed partly by lines and partly by tiles. The former case is
computationally simpler and is considered here. It requires that
the coordinates of all nuclei have the same evenness. Boundary
tiles may possess fairly high multiplicity (the number of
equidistant nuclei) and form two-dimensional arrays. The
ratio of their number to the total number of tiles in the
tiling considerably increases with the increase of �: 2.4, 8,
21.4, and 49.3% for � equals 0.0001, 0.001, 0.01, and 0.1
respectively [21].

To clarify the above problem, the area distribution functions
and kinetic curves have been computed for tiles with the
multiplicity 1 alone. To ensure consistency with previous
publications, the statistical level of computations is the same
as described in [20] (p. 5). The area of each random domain
is simply the number of tiles belonging exclusively to this
domain; the nucleation tile is included. Thus, computed areas
S have been scaled as S/S̄ (where S̄ is the mean area of
random domains), and the histogram constructed from these
data has been normalized to the unit area. Note that S̄ has
been computed accounting for all tiles, both interior and
boundary, which assumes the same partitioning of tilings as
before [20,21]. The fraction of the interior tiles depends on �,
as indicated above. Results for four different values of � are
collected in Fig. 1. The solid line corresponds to the Kiang
conjecture in Eq. (1), with c = 3.575. The fit is equally good
for all values of �. Recall that when boundary tiles were taken
into account c = 6.1 for � = 0.1 [21].

014401-11539-3755/2013/87(1)/014401(3) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.76.085430
http://dx.doi.org/10.1103/PhysRevE.79.031607
http://dx.doi.org/10.1103/PhysRevE.84.021602
http://dx.doi.org/10.1103/PhysRevE.87.014401


BRIEF REPORTS PHYSICAL REVIEW E 87, 014401 (2013)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

o – Λ=0.1
 – Λ=0.01

+ – Λ=0.001
x – Λ=0.0001

Scaled area

Fr
eq

ue
nc

y 

FIG. 1. Area distributions of the random domains (symbols) in
comparison with the Kiang conjecture (solid line, c = 3.575).

Figure 2 shows kinetic curves computed as the number of
tiles with the multiplicity 1 that form the free boundary at each
step s (normalized to the total number of nuclei). With the
decrease of nuclei density, the maximum on kinetic curves is
shifted right and upward. In Fig. 3, these curves are scaled
to the curve analytically calculated for the corresponding
continual analog [22]:

L(r) = 4
√

2r exp(−2r2λ), (3)

where r is the radius of the growing square nucleus (pro-
portional to time) and λ is the conventional nuclei density
(density of points, not tiles). The fit is acceptable for all values
of �; at � = 0.1, it is somewhat worse. At this density, the
normalized free boundary length equals 3.35 (<4) even at the
very first step, which means the impingement of about 16% of
all nuclei. In other words, even the first step of growth is not
completely unrestricted. The model under study includes three

0 50 100 150
0

50

100

4

3
2 1

1 – Λ = 0.1 
2 – Λ = 0.01
3 – Λ = 0.001 
4 – Λ = 0.0001

In
te

rf
ac

e 
le

ng
th

s

FIG. 2. Kinetic curves of tessellations with different densities of
nuclei �.
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FIG. 3. The kinetic curve for the continual analog of considered
tessellations (solid line, λ = 1) and scaled kinetic curves from Fig. 2
(symbols).

main processes: nucleation, unrestricted growth, and growth
restricted by impingements. If there is no unrestricted growth
because of the too-large density of nuclei, this is a different
model. This determines a reasonable upper limit for �. The
normalized free boundary length at the first growth step should
be about 4.

In the case of hexagonal and triangular tilings, the situation
is the same: in the whole range of studied values of � the area
distributions are well approximated by the function Eq. (1)
with c = 3.575, and the kinetic curves may be scaled one
into another and into the kinetic curve of the corresponding
continual analog provided that only tiles with the multiplicity
1 are taken into account.

In previous computations [20–22], neighbors were deter-
mined as follows. For each tile of the tiling, distances in
the appropriate metric to all nucleation tiles were computed
and the minimal distance was identified. Then the number of
these minimal values in the array of distances was determined.
This is the multiplicity of a tile (the number of equidistant
nuclei). Two nucleation tiles were considered as neighbors
if they had at least two common boundary tiles irrespective
of their multiplicity. If they had only one common boundary
tile (vertex), they were not neighbors. A detailed analysis of
dense tessellations revealed that this criterion is ambiguous.
In quite a number of cases, it selects nuclei that actually
are not neighbors. Moreover, it is difficult, if possible, to
suggest an unambiguous algorithm capable of determining
actual neighbors in dense random tessellations after the growth
process is completed.

To conclude, the presented results show that the scaling
properties of the area distribution functions and kinetic curves
hold for discrete tessellations on the whole studied range of
�, and its apparent violation is rooted in the mentioned com-
putational difficulties. To get more detailed characteristics of
discrete random tessellations, neighbors need to be determined
during the simulation of the growth process.
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