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Univariate polynomial equation providing on-lattice higher-order models of thermal lattice
Boltzmann theory
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A univariate polynomial equation is presented. It provides on-lattice higher-order models of the thermal
lattice Boltzmann equation. The models can be accurate up to any required level and can be applied to regular
lattices, which allow efficient and accurate approximate solutions of the Boltzmann equation. We derive models
approaching the complete Galilean invariant and providing accuracy of the fourth-order moment and beyond. We
simulate one-dimensional thermal shock tube problems to illustrate the accuracy of our models. Moreover, we
show the remarkably enhanced stability obtained by our models and our discretized equilibrium distributions.
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I. INTRODUCTION

The kinetic theory of gases constitutes the statistical theory
of the dynamics of mechanical systems based on a simplified
molecular description of a gas, from which macroscopic
physical properties of the gas can be derived by using a
velocity distribution function which describes how molecular
velocities are distributed on average. The Boltzmann equation
describes how collisions and external forces cause the ve-
locity distribution to change. Through the Chapman-Enskog
expansion of the Boltzmann equation, we can obtain the Euler,
Navier-Stokes, Burnett equations, etc., according to the orders
of approximation [1]. The lattice Boltzmann equation (LBE)
is a discretized version of the Boltzmann equation in phase
space and time [2–6]. Originally, the LBE was developed
from the lattice-gas cellular automata [7–11], where fluids
are simulated by using fictitious molecules hopping in regular
lattices. The molecules collide with one another on the nodes
of a lattice and move to other nodes successively. In the
LBE, the fictitious molecules are replaced with a molecular
probability distribution. There exist various models of the
LBE according to the shape of lattice, the dimension of space,
and the number of discrete velocities. Increasing the number
of discrete velocities is a way to obtain models approaching
the complete Galilean invariant [12] and the correct thermal
results for compressible flows. However, the ratios of discrete
velocities should be rational for collisions to occur on the nodes
of regular lattices; otherwise additional effort is required. The
models needing additional effort are called off-lattice models
in contrast to on-lattice models having rational numbers
for ratios of discrete velocities. Note that the models using
the Gauss-type quadrature provide higher models, however,
they are off-lattice models [13]. It is proposed to use the
preservation of the norm and the orthogonality of the Hermite
polynomial tensors for obtaining on-lattice models; however,
with this framework it is difficult to obtain higher-order models
because we should derive and calculate a system of equations
for each model [14]. Using the minimization of an entropy
function provides on-lattice models [15,16]; however, it has
the same problem with the aforementioned framework.
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In this paper, we derive a univariate polynomial equation
whose variable is a discrete velocity. The coefficients of
the equation are composed of the ratios between discrete
velocities. Therefore, the problem to find an on-lattice model
of any required level of accuracy is reduced to a problem
only to solve the univariate polynomial equation. We also
discuss the dependence of the stability of models on discretized
equilibrium distributions. We present explicitly several on-
lattice higher-order models to simulate the thermal shock tube
problem with harsh conditions with respect to the previous
LBE simulations. We compare the simulation results with the
analytical solution of the Riemann problem [17] to illustrate
the accuracy of our models. We also show the remarkable
improvement of stability obtained by our models and our
discretized equilibrium distributions.

The Boltzmann equation with the BGK collision term
is ∂tf + V · ∇f = −(f − f eq)/τ . The infinitesimal quantity
f dxdV is the number of particles having velocity V in
an infinitesimal element of phase space dxdV at position
x at time t . The relaxation time τ adjusts a tendency to
approach the Maxwell-Boltzmann (MB) distribution f eq due
to collision. Macroscopic physical properties are obtained by
ρ{1,U,e} = ∫

f {1,V,2−1‖V − U‖2}dV where ρ is number
density, U macroscopic velocity, and e energy per unit of mass.
We can relate e with temperature T by e = DkBT/(2mg)
where D is the dimension of space, kB the Boltzmann
constant, and mg molecular mass. The MB distribution
is f eq = ρ(�0πθ )−D/2 exp(−‖v − u‖2/θ ) where dimension-
less variables are defined by θ ≡ T/T0, v ≡ �

−1/2
0 V, and

u ≡ �
−1/2
0 U where �0 ≡ 2kBT0/mg . The discretized ver-

sion of the Boltzmann equation in phase space and time
can be written by fi(x + Vi ,t + �t) − fi(x,t) = −[fi(x,t) −
f

eq
i (x,t)]/τ where fi(x,t) is the probability for a particle to

exist in a lattice site x at time t with discrete velocity Vi . The
essential work of the discretization is to find the discretized
MB distribution f

eq
i including a set of discrete velocities.

II. UNIVARIATE POLYNOMIAL EQUATION

Here, we present a concise strategy to obtain f
eq
i and a set of

discrete velocities. The discretized models can be accurate up
to any required level and can be applied to regular lattices (on-
lattice models). The lattice shapes are formed by line segment
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for one-dimensional space, square for two-dimensional, cube
for three-dimensional, etc. We find a model satisfying∫

vmf eq(v) dV =
∑

i

vm
i f

eq
i (vi), (1)

to conserve physical properties such as mass, momentum,
pressure tensor, energy flux, and the change rate of the energy
flux, etc., which are obtained by mth-order moments of V, i.e.,∫

Vmf eq(V)dV. If we can express f eq by a series expansion
f

eq
E [18] having the form of

f eq(v) ≈ f
eq
E (v) = exp(−v2)P (N)(v), (2)

where P (N)(v) is a polynomial of degree N in v and v2 = v · v,
we can find f

eq
i in the form of

f
eq
i (vi) = wiP

(N)(vi), (3)

where wi are constant coefficients. We will show the method
of obtaining f

eq
E with an example of the fifth order of the

expression of f eq by the multivariate Hermite series expansion
[18] in this paper. By applying (2) and (3) to (1), we obtain∫

exp(−v2)P (m+N)(v) dv =
∑

i

wiP
(m+N)(vi). (4)

We begin our systematic procedure with one-dimensional
space. Formula (4) is satisfied for any polynomial of degree
m + N , if and only if∫

vn exp(−v2) dv =
∑

i

wiv
n
i , (5)

for any non-negative integer n � m + N . It is easy to demon-
strate this. Let us define P (m+N)(v) = ∑m+N

n=0 cnv
n. Then,

Formula (4) becomes∫ {
exp(−v2)

m+N∑
n=0

cnv
n

}
dv =

∑
i

{
wi

m+N∑
n=0

cnv
n
i

}
,

or
m+N∑
n=0

cn

{∫
exp(−v2)vn dv −

∑
i

wiv
n
i

}
= 0.

Therefore, for any coefficient cn, Formula (4) is satisfied if
Formula (5) is satisfied. And if Formula (5) is satisfied, we can
construct any polynomial of degree m + N by P (m+N)(v) =∑m+N

n=0 cnv
n where cn is any desired coefficient. We can

calculate the left side of (5) as∫
vn exp(−v2) dv =

{
	 [(n + 1)/2] for n = 2k

0 for n = 2k + 1
,

(6)

where k is any non-negative integer and 	 is the Gaussian
Gamma function which can be expressed by the double
factorial as 	[(n + 1)/2] = √

π (n − 1)!!/2n/2.
The system of equations (5) can become more concise

by considering symmetry. We construct one-dimensional q-
velocities models by defining the discrete velocities vi and
weight coefficients wi as

v1 = 0, v2i > 0, v2 < v4 < · · · < vq−1,

v2i = −v2i+1, and w2i = w2i+1 > 0 for i=1,2, . . . ,[q/2],

(7)

where [x] is the greatest integer that is less than or equal to x.
Note that we regard q as an odd number to include the zero
velocity v1. To use regular lattices, the ratios of vi should be
rational numbers [19], therefore, we have the constraints of

v2(i+1)/v2 =p2(i+1)/p2 = p̄2(i+1) for i = 1,2, . . . ,[q/2] − 1,

(8)

where p2 and p2(i+1) are relatively prime and p2(i+1) > p2i .
These models have 2q variables composed of vi and wi ,
but have only q unknown variables by their symmetry (7).
If p2 and p2(i+1) are given, we can express all vi by v2.
Consequently, we have n′ ≡ [q/2] + 2 = (q + 3)/2 unknown
variables which are v2, w1, and w2i where i = 1,2, . . . ,[q/2].
The variables defined by (7) satisfy 
(n) ≡ ∑

wiv
n
i = 0 for

any odd number n. Therefore, to find n′ unknown variables,
we need n′ equations and they are

{
(n) = 	[(n + 1)/2]|n = 0,2, . . . ,2(n′ − 1)}. (9)

If the solution of (9) exists, it satisfies the polynomial of degree
m + N up to 2(n′ − 1) + 1 (= q + 2) in (4) because an odd
number 2(n′ − 1) + 1 satisfies 
(n) ≡ ∑

wiv
n
i = 0 as was

mentioned previously. Let us consider a q ′-velocities model
which does not possess the zero velocity, i.e., q ′ is an even
number. It satisfies the polynomial up to m + N = q ′ + 1.
This implies a q-velocities model satisfies the same order of the
moment accuracy m + N as a (q + 1)-velocities model where
q is an odd number. Therefore, an odd number is preferred
for the number of discrete velocities from the viewpoint of the
minimization of discrete velocities.

The system of equations (9) can be reduced to a univariate
polynomial equation. We define

w =

⎡
⎢⎢⎢⎢⎣

w2

w4

...

wq−1

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎢⎣

p̄2
2 p̄2

4 · · · p̄2
q−1

p̄4
2 p̄4

4 · · · p̄4
q−1

...
...

. . .
...

p̄
q−1
2 p̄

q−1
4 · · · p̄

q−1
q−1

⎤
⎥⎥⎥⎥⎥⎦ ,

p̄n =

⎡
⎢⎢⎢⎢⎣

p̄n
2

p̄n
4

...

p̄n
q−1

⎤
⎥⎥⎥⎥⎦

T

, and 	 = 1

2

⎡
⎢⎢⎢⎢⎢⎣

1
v2

2
	

(
2+1

2

)
1
v4

2
	

(
4+1

2

)
...

1
v

q−1
2

	
[ (q−1)+1

2

]

⎤
⎥⎥⎥⎥⎥⎦ ,

where the superscript T is used for a transpose and p̄2 =
1. Then, Formula (9) is expressed by Aw = 	, p̄q+1w =
(2v

q+1
2 )−1	{[(q + 1) + 1]/2}, and

∑
i wi = √

π . If we elim-
inate w from the first two relations, we obtain a relation
possessing only the variable v2 with parameters p̄2(i+1),

p̄q+1A−1	 = (
2v

q+1
2

)−1
	

[
(q + 1) + 1

2

]
. (10)

Once we find the solution v2 from (10), we can obtain
the weight coefficients from w = A−1	 and w1 = √

π −∑q

k=2 wk , and the discrete velocities from (8). Note that the
solution of weight coefficients can have imaginary or real
negative values, which are excluded for the positivity of weight
coefficients.
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FIG. 1. (Color online) Three-dimensional plot generated by
Eq. (10) when q = 7.

We plot Formula (10) for the 7-velocities model in Fig. 1.
We will compare a part of this figure with the solution of the
5-velocities model in this paper. We have obtained the discrete
velocities and the weight coefficients of one-dimensional
models. Therefore, we can easily construct higher-dimensional
models from the one-dimensional ones according to tensor
products of one-dimensional velocities [15]. To reduce the
number of discrete velocities for hypercubic [20] multidimen-
sional cases, we have obtained uniform polynomial equations,

∑
i

wivn
i =

D∏
α=1

	 [(aα + 1)/2] for n = 0,2,4, . . . ,nmax � m

+ k and even aα,

where m is the maximum order of moment satisfied in (1)
and k is the degree of polynomial such as the degree of
Taylor expansion (TE) or Hermite expansion (HE) of the
equilibrium distribution and vn

i ≡ v
a1
i,x1

v
a2
i,x2

· · · vaD

i,xD
such that

a1 + a2 + · · · + aD = n and aα ∈ N0 for α = 1,2, . . . ,D.
The subscripts xi for i = 1,2, . . . ,D signify the coordinates in
a D-dimensional Cartesian coordinate system. The solutions
of the uniform polynomial equations include the well-known
lower-order models. All solutions of the uniform polynomial
equations satisfy the rotational invariance by a selection of
a set of discrete velocities having rotational invariance. The
detail of multidimensional cases will be studied elsewhere.

III. DISCRETIZED EQUILIBRIUM DISTRIBUTION

From now on, we find f
eq
E of Formula (2) to prepare dis-

cretized equilibrium distributions. For any multidimensional
variable x, the N th-order Taylor expansion of a function g

about x = x0 is

g(N)(x) =
N∑

n=0

1

n!

[(
(x − x0) · ∂

∂x′

)n

g(x′)
]

x′=x0

. (11)

We define a D + 1-dimensional variable y by combining the
D-dimensional macroscopic velocity u and the temperature
θ as y = (u,θ ). The N th-order Taylor expansion (TE) f

eq
TE

(N)

of the MB distribution about y0 = (0,θ0) can be written as
f

eq
TE

(N)(y) = g(N)(y). We assume that u and θ are infinitely
small quantities of the same order in this expansion. If we
assume u and θ1/2 are the same order, we obtain another TE
f

eq
HE

(N)(z) = g(N)(z) about z0 = (0,0) by defining z = (u,σ )
where εσ 2 = θ − 1 and ε = ±1. This is identical to the
Hermite expansion (HE) of order N [18]. For example, the
fifth order of the expression of f eq by the multivariate Hermite
series expansion is given by

f (v,u,θ ) = (�0π )−D/2 exp(−v2)
5∑

n=0

1

n!
a(n) · H(n),

where

a(0) · H(0) = 1,

a(1) · H(1) = ū · v̄,

a(2) · H(2) = (ū · v̄)2 + (θ − 1)(v̄2 − D) − ū2,

a(3) · H(3) = (ū · v̄)[(ū · v̄)2 − 3ū2 + 3(θ − 1)(−2 − D + v̄2)],

a(4) · H(4) = (ū · v̄)4 − 6(ū · v̄)2ū2 + 3ū4

+ 6(θ − 1){(ū · v̄)2[v̄2 − (D + 4)]

+ (D + 2 − v̄2)ū2} + 3(θ − 1)2

× [v̄4 − 2(D + 2)v̄2 + D(D + 2)],

and

a(5) · H(5) = (ū · v̄)[(ū · v̄)4 − 10(ū · v̄)2ū2 + 15ū4]

+ 10(θ − 1)(ū · v̄)[v̄2(ū · v̄)2 − (D + 6)(ū · v̄)2

− 3ū2v̄2 + 3(D + 4)ū2] + 15(θ − 1)2(ū · v̄)

× [v̄4 − 2(D + 4)v̄2 + (D2 + 6D + 8)].

where ū = √
2u and v̄ = √

2v [18]. The expansions f
eq
TE

(N)

and f
eq
HE

(N) satisfy∫
vmf eq(v) dv =

∫
vmf

eq
E (v) dv, (12)

for 0 � m � N . This is clear if we regard f eq(v) as an infinite
series expansion in u and θ . The evaluated result of the left-
hand side,

∫
vmf eq(v) dv, contains the terms uαθβ where α +

2β = m for α and β being non-negative integers. Therefore, if
we include the terms uαθβ in the series expansions f

eq
TE

(N) and
f

eq
HE

(N), Formula (12) is satisfied. Note that f
eq
HE

(N) itself is a
polynomial of degree N of v; however, f

eq
TE

(N)(v) is of degree
2N appearing in ∂Nf eq/∂θN |θ=θ0 .

IV. ORDER OF ACCURACY

Consequently, if we use the one-dimensional q-velocities
models obtained by (9) with f

eq
TE

(N), it is guaranteed that the
moments evaluated from f

eq
i are identical to those from f eq up

to the mth-order where m � min[N, q + 2 − 2N ]. The reason
is that f

eq
TE

(N) satisfies (12) for m � N and the q-velocities
model satisfies 
(q + 2) = 0 under the condition that f

eq
TE

(N)

itself is a polynomial of degree 2N . Similarly, if we use f
eq
HE

(N),
we have the condition of satisfaction, m � min[N, q + 2 −
N ]. Therefore, we can obtain sufficiently accurate models of
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the thermal lattice Boltzmann equation by controlling q and
N . The use of f

eq
HE

(N) between TE and HE is optimal to reduce
the number of discrete velocities in a given level of accuracy.
However, from the viewpoint of stability, f

eq
TE

(N) performs
better with respect to f

eq
HE

(N). It seems the higher-order terms
in θ appearing in f

eq
TE

(N) stabilize the models of the LBE
because it is the only difference between f

eq
TE

(N) and f
eq
HE

(N).
We will demonstrate it at the simulation part of this paper. Note
that the discretized equilibrium distribution is f

eq
i = ρwiP (vi)

where P (v) = θ1/2 exp(v2)f eq
E (v) and f

eq
E is f

eq
TE or f

eq
HE.

V. MODEL EXAMPLES

We explicitly present some models. We will give only the
values of v2 and w̄2i because the others are easy to obtain
by (7) and w̄1 = 1 − ∑q

k=2 w̄k . When q = 3, we obtain the
well-known solution of v2 = √

3/2 and w̄2 = 1/6 where w̄i =
wi/

√
π . When q = 5, we obtain

v2 = (3 + 3r2 ± χ )1/2/2,

w̄2 = [9r4 − 27r2 − 6 ∓ (3r2 − 2)χ ]/[300r2(r2 − 1)], (13)

w̄4 = [6r4 + 27r2 − 9 ∓ (2r2 − 3)χ ]/[300(r2 − 1)],

where χ = (9r4 − 42r2 + 9)1/2 and r = 1/p̄4. The weight
coefficients w̄i are the same as those from the entropic method
[15,16]; however, instead of their fixed reference temperature
for isothermal models, we provide the speeds of the discrete
velocities for thermal models. Note that the first relation
describing v2 in (13) can be found as a graph in Fig. 1 when
p̄6 approaches infinity.

We define a ghost velocity by vi whose weight coefficient
w̄i is very small. For example, we can have a q-velocities
model having a pair of ghost velocities vq−1 and vq . When w̄q

approaches zero, the solution of (9) for a q-velocities model
satisfies 
(q + 1) = 	(q + 2/3) in addition to the system
of equations for a (q − 2)-velocities model. Consequently,
the solution for a q-velocities model having a pair of ghost
velocities approaches the solution for a (q − 2)-velocities
model with giving us additional information of w̄q and vq .
This exactly occurs in the 5-velocities model (13) drawn in
Fig. 2. When r approaches zero, the solution represented
by dashed lines approaches that of the 3-velocities model,
and the solution of the 7-velocities model in Fig. 1 ap-
proaches that of the 5-velocities model when 1/p6 approaches
zero. Therefore, it is better to use a solution set without
ghost velocities to avoid the downgrade of the number of dis-
crete velocities. We show the stability issue related to the ghost
velocities.

VI. SIMULATION EXAMPLES

A one-dimensional shock tube (linear 1000 nodes) simu-
lation was performed by the two solutions of the 5-velocities
model (13) with r = 1/3 and f

eq
HE

(2). The initial condition
is a density step CL = {ρ = p = 3, θ = 1, u = 0} for X <

500 and CR = {ρ = p = θ = 1, u = 0} for X � 500. The
boundary condition is CL at X = 1 and CR at X = 1000. The
relaxation time is τ = 1. We observe the fluctuation only in
the case of the solution having ghost velocities in Fig. 3. For
the next simulation, we will use the stable solution.

0.0 0.1 0.2 0.3 0.4
r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

wi,v2

FIG. 2. (Color online) The graph of Eq. (13) is drawn. Two
families are plotted and distinguished by dashed and solid lines. The
thinner black line is for v2, the thin blue for w̄1, the medium orange
for w̄2, the thicker red for w̄4. The black dots indicate w̄i and v2

merged into identical values.

The shock tube problem was simulated by the 5-, 7-,
and 11-velocities models with the ratios of discrete veloci-
ties and the base discrete velocity (p̄4,v2) = (3,0.553 432),
(p̄4, p̄6,v2) = (2, 3,0.846 393), and (p̄4, p̄6,p̄8,p̄10,v2) =
(2, 3, 4, 5,0.685 900), respectively. We can easily calculate
the weight coefficients by w = A−1	. Because of the page
limit, we give only the values of v2 and p̄2i . The boundary
and initial conditions and the geometry are the same for the
simulation of Fig. 3. The simulation results are in excellent
agreement with the analytical solution of the Riemann problem
except the result obtained by the 5-velocities model with
f

eq
TE

(2) having the second-order moment accuracy. For the
physical properties ρ, p, θ , and u, the subscripts 1 and 2
will be used to indicate that the values are extracted from the
positions X = 430 and 650, respectively, where the plateaus
appear. When (q,N,m) = (5,3∗,3), (7,3,3), and (11,4,4),
the results are ρ1 = 2.46, ρ2 = 1.18, p1,2 = 1.65, θ1 = 0.67,
θ2 = 1.40, and u1,2 = 0.22 as in the solution of the Riemann
problem. When (q,N,m) = (5,2,2), the results are ρ1 = 2.43,

200 400 600 800 1000
X

1.5

2.0

2.5

3.0

FIG. 3. (Color online) Simulation of shock tube obtained by
the 5-velocities models. The black and orange (gray) lines are the
results from the solutions of the dashed and the solid lines of Fig. 2,
respectively.
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200 400 600 800 1000
X

2

4

6

8

10

200 400 600 800 1000
X

1.0

1.5

2.0

FIG. 4. Simulation of the one-dimensional (1000 nodes) shock tube problem by the 21-velocities model with f
eq

TE
(5) and the relaxation time

τ = 1.

ρ2 = 1.18, p1,2 = 1.64, θ1 = 0.68, θ2 = 1.39, u1 = 0.23, and
u2 = 0.22. Note that N is the order of the TE (N = 2,3,4)
and HE (N = 3∗); m is the maximum order of the satisfied
moment; q is the number of discrete velocities.

If we pass a critical value of the density ratio between
the left (X < 500) and the right (X � 500) domains in the
initial and boundary conditions of the shock tube problem,
the models of the LBE become unstable. Also, the decrease
of the viscosity below a critical value by decreasing the
relaxation time τ makes the models unstable. By virtue of
(10), we could find the models having a high number of
discrete velocities to obtain robustness. Moreover, we realized
that f

eq
HE

(N) is not optimal from the viewpoint of stability.
The following simulation shows the robustness of our 21-
velocities model (p̄4,p̄6,p̄8,p̄10,p̄12,p̄14,p̄16,p̄18,p̄20,v2) =
(2,3,4,5,6,7,8,9,11,0.372 889) and our discretized equilib-
rium distribution f

eq
TE

(5). Under the initial condition C̄L =
{ρ = p = 11, θ = 1, u = 0} for X < 500 and CR = {ρ =
p = θ = 1, u = 0} for X � 500 and the boundary condition
C̄L at X = 1 and CR at X = 1000, the simulation was stable
with τ = 1 as in Fig. 4, although the density ratio was 11.
However, f

eq
HE

(N) with N � 10 could not pass the simulation

test with the same conditions. Note that f
eq
HE

(10) includes all
terms appearing in f

eq
TE

(5).

VII. CONCLUSION

In conclusion, we have derived a univariate polynomial
equation providing on-lattice higher-order models of the
thermal LBE. Finding an on-lattice model of any required
level of accuracy is reduced to only solving the univariate
polynomial equation. This opens a way to construct the robust
models having high number of discrete velocities. Moreover,
we have presented discretized equilibrium distributions which
are more robust than those obtained from the HE.
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