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Entropically damped form of artificial compressibility for explicit simulation of incompressible flow
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An alternative artificial compressibility (AC) scheme is proposed to allow the explicit simulation of the
incompressible Navier-Stokes (INS) equations. Traditional AC schemes rely on an artificial equation of state
that gives the pressure as a function of the density, which is known to enforce isentropic behavior. This
behavior is nonideal, especially in viscously dominated flows. An alternative, the entropically damped artificial
compressibility (EDAC) method, is proposed that employs a thermodynamic constraint to damp the pressure
oscillations inherent to AC methods. The EDAC method converges to the INS in the low-Mach limit, and is
consistent in both the low- and high-Reynolds-number limits, unlike standard AC schemes. The proposed EDAC
method is discretized using a simple finite-difference scheme and is compared with traditional AC schemes as
well as the lattice-Boltzmann method for steady lid-driven cavity flow and a transient traveling-wave problem.
The EDAC method is shown to be beneficial in damping pressure and velocity-divergence oscillations when
performing transient simulations. The EDAC method follows a similar derivation to the kinetically reduced local
Navier-Stokes (KRLNS) method [Borok et al., Phys. Rev. E 76, 066704 (2007)]; however, the EDAC method does
not rely on the grand potential as the thermodynamic variable, but instead uses the more common pressure-velocity
system. Additionally, a term neglected in the KRLNS is identified that is important for accurately approximating
the INS equations.
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I. INTRODUCTION

Fluid flows can be broadly split into two regimes: com-
pressible and incompressible. In the former case, compress-
ibility effects are important, and the equations governing the
flow include mass conservation, momentum conservation, a
thermodynamic equation of state, and energy conservation
(or entropy balance). These equations are collectively re-
ferred to as the compressible Navier-Stokes (CNS) equations.
Compressibility effects are governed by the Mach number
Ma ≡ u0/cs , where u0 is the flow velocity and cs is the speed
of sound. Time scales of interest include the acoustic time scale
ta ∼ L/cs , where L is a length scale of interest, the diffusive
time scale td ∼ L2/ν, where ν is the fluid kinematic viscosity,
and the convective time scale tc ∼ L/u0. In the limit Ma → 0,
the acoustic time scale becomes singularly perturbed, i.e.,
acoustic pressure disturbances are transmitted instantaneously.
The conservation of mass requirement reduces to the well-
known incompressibility requirement

∇ · u = 0, (1)

which, when combined with the equations governing the
conservation of momentum, yields the incompressible Navier-
Stokes (INS) equations. In these equations, the thermodynamic
state becomes fixed, thus the energy equation is decoupled
from the momentum equation and incompressibility require-
ment. This system represents a considerable simplification
compared with the traditional CNS equations. At low-Mach
numbers, the simulations using the CNS equations become
difficult due to the disparity between the acoustic and convec-
tive wave speeds. The strict decoupling of the energy equation
found in the INS can be weakened somewhat via an acoustic
filtering procedure that separates the pressure into mechanical
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and thermodynamic parts, thus yielding a temperature-only
equation of state for the thermodynamic pressure [1]. These
equations allow for a temperature-dependent density and are
typically used in cases where flow-driven compressibility
effects are negligible; however, temperature gradients can
create large density gradients that cannot be adequately
described via a Boussinesq approximation.

Despite the reduced system, significant computational
complexity is associated with solving the INS equations using
numerical techniques. Owing to the instantaneous propaga-
tion of information associated with the singularly perturbed
acoustic wave velocity, communication loads are typically
high in parallel computing applications, making scalability on
massively parallel computers nontrivial. Traditional solution
techniques often rely on fractional step approaches. A broad
class of these methods has been developed based on a Hodge
decomposition of the velocity field, pioneered with the original
projection methods of Chorin [2,3]. These methods rely on
some variation of operator splitting [4,5] to decompose the
problem into several steps, which can often be generalized
as the following: a velocity update to a intermediate value,
application of an incompressibility constraint, and a veloc-
ity correction step to maintain a solenoidal velocity field.
Original formulations of the projection schemes satisfied the
incompressibility constraint discretely; however, more recent
formulations have favored approximate forms that only satisfy
the discrete divergence to the numerical accuracy of the
method [6–8]. This point is important, since although the
equations associated with projection methods may be strictly
incompressible, the discrete solution will contain numerical
errors resulting in some degree of compressibility. The form
of the incompressibility constraint is typically formed using
the pressure-Poisson form of the continuity equation, which
is elliptic and thus requires an iterative approach to solving it.
A more detailed review on projection-based methods can be
found in Brown et al. [8].
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In general, scientific computational resources are trending
towards increasingly parallel architectures, with next genera-
tion “exascale” supercomputers having in excess of a million
processing cores [9]. This trend is being accelerated by the
emergence of general-purpose processing on graphic processor
units (GPGPU) as a viable resource for scientific computing.
GPGPU are exceedingly powerful; for comparison, an Intel
Xeon X5680 (Westmere) processor has a peak performance
of 160 giga floating-point operations per second (GFLOPS),
while a NVIDIA Tesla 2050 (Fermi) GPU has a peak
performance of 1180 GFLOPS [10]. This massive performance
is in large part due to the increased parallelism present in
GPUs. As computational resources trend towards evermore
parallel architectures, algorithms which are capable of scaling
on these resources are desirable.

In the context of incompressible flows, an explicit and local
procedure has the potential to leverage these increasingly
parallel computational resources. Removing the pressure-
Poisson solve requires weakening the constraint of strict
incompressibility and looking instead at the limit of in-
compressibility, with this class of methods being broadly
referred to as pseudocompressible. This strategy was taken
very early in the simulation of fluid flows by Chorin [11],
in which an artificial equation of state is prescribed in a
method referred to as artificial compressibility (AC). This
equation of state is equivalent to the isentropic limit (see
Sec. II), with compressibility relegated to O(Ma2) effects. In
this method, the Mach number becomes an artificial parameter,
which may be larger than the physical Mach number, yet
small enough to ensure negligible compressibility errors.
This method was originally conceived as a means to iterate
towards a steady solution, and many authors have noted issues
with performing time-accurate solutions unless a dual-time-
stepping iterative procedure is used [12–15], although some
evidence exists that with a sufficiently small Mach number,
time-accurate solutions are feasible [16,17]. Perhaps the most
successful pseudocompressible computational method is the
lattice-Boltzmann (LB) method [18,19]. This method is based
on a simplified kinetic model of the continuum governing
equations; however, the key to its success as a massively
parallel and scalable method lies in the finite, but large, sound
speed.

In the classic AC method of Chorin, an artificial equation
of state is provided; however, this artificial equation of
state is equivalent to providing an additional thermodynamic
constraint. This additional constraint is necessary to elimi-
nate the energy or entropy equation from the compressible
Navier-Stokes (CNS), reducing the number of equations and
unknowns by one. The traditional AC method of Chorin is
isentropic, thus the constraint equation is ds = 0, where s is
the specific entropy. Although the CNS behave isentropically
in the strict incompressible limit (Ma → 0), the traditional
isentropic limit is just one potential, and artificial, choice
of thermodynamic constraint when considering the higher
O(Ma2) terms. While this choice may be appropriate on
acoustic time scales, at the longer viscous and convective time
scales, dissipation is important and the isentropic assumption
may not be appropriate.

In this paper, an alternate constraint equation is proposed
based on minimizing density fluctuations. Minimizing the

density fluctuations results in a thermodynamic relationship
constraining changes in pressure to changes in temperature.
As discussed in Sec. II, this constraint has several important
consequences, and this selection results in markedly reduced
pressure fluctuations by introducing a smoothing term into
the equation governing the evolution of the pressure. In
effect, the acoustic waves are rapidly damped through entropy
generation. This contrasts with the isentropic case, where
acoustic wave damping occurs strictly through the coupling
of the pressure with the momentum equation. The resulting
system of equations subject to the above constraint is referred
to as the entropically damped artificially compressible (EDAC)
Navier-Stokes. Physically, at time scales much larger than
ta , acoustic waves have dissipated viscously, which is not a
process that conserves entropy. It is shown in Sec. II that the
EDAC equations converge to the INS as Ma → 0.

This research was in part motivated by a series of papers
that also proposed an alternate thermodynamic basis for the
limit of incompressibility [20–22], in which the authors noted
that an additional smoothing term is beneficial. This research
offers the following contributions:

(1) The governing equations are not recast using the ther-
modynamic grand potential since this substitution complicates
the derivation. Instead, the derivation proceeds directly from
the CNS in terms of the thermodynamic variables of interest.

(2) The reduced equations in Borok et al. [22] are missing
an important term, which is identified in Sec. II.

(3) The development of the smoothing or dissipative term is
a direct consequence of an artificially chosen thermodynamic
relationship. This relationship was chosen in the derivation
of Ansumali et al. [20] as an approximation, yet is stated
unambiguously here as an artificial constraint. Thus, the
equations derived in both the EDAC and kinetically reduced
local Navier-Stokes (KRLNS) methods do not represent the
true thermodynamic limit of incompressibility, but just one
potential limit subject to the chosen constraint.

This paper proceeds by closely examining the CNS equa-
tions as Ma → 0 in Sec. II, and the effect of the various ther-
modynamic constraints used to derive an artificial equation of
state. Section III describes a simple finite-difference discretiza-
tion method used to explore the performance and accuracy of
the EDAC method. Then, Sec. IV shows some simulations
of the EDAC method for lid-driven cavity, traveling-wave,
and shear-layer flows. The results are compared with those of
classical AC and LB methods. Section V discusses the findings
and places them in the context of future developments.

II. THERMODYNAMIC LIMIT OF INCOMPRESSIBILITY

In order to study the behavior of the CNS in the limit of
incompressibility, the CNS equations are made dimensionless.
Consequently, there are several dimensionless parameters of
interest: The Prandtl number is defined as Pr ≡ μcp/k, where
μ is the fluid shear viscosity, cp is the specific heat at constant
pressure, and k is the thermal conductivity. The Reynolds
number is defined as Re ≡ ρ0u0L/μ, where ρ0 and L are
a characteristic density and length, respectively. The ratio of
specific heats is defined as γ ≡ cp/cv , where cv is the specific
heat at constant volume. Note that all material properties are
assumed constant including the fluid viscosity.
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The variables are scaled according to

ρ∗ = ρ/ρ0, u∗ = u/u0, T ∗ = T − T0

Pr u2
0/cp

,

s∗ = s

cp

, P ∗ = P − P0

ρ0u
2
0

,

where starred quantities are dimensionless, and P0 and T0

are a chosen reference pressure and temperature, respectively.
Dropping the starred notation hereafter, and assuming all
quantities are dimensionless unless otherwise noted, the
continuity and momentum equations of the CNS can be written
as [23]

1

ρ

Dρ

Dt
= −∇ · u, (2)

ρ
Du
Dt

= −∇P + 1

Re
∇ · τ , (3)

where τ is the viscous stress tensor, and the convective
derivative is defined as

D(·)
Dt

≡ ∂(·)
∂t

+ u · ∇(·).
The continuity and momentum equations are augmented by
a thermodynamic equation expressing entropy balance (or,
alternately, energy conservation). Taking a standard form for
entropy balance [23] and rendering dimensionless via the
above scaling yields(

Prγ Ma2

A
T + 1

)
ρ

Ds

Dt
= Ma2γ

A

1

Re
(∇2T + �), (4)

where � is the viscous dissipation. Here A ≡ αρ0cpT0 is an
additional dimensionless parameter, where α is the isothermal
compressibility coefficient. Also, Fourier’s heat flux constitu-
tive relation has been used to simplify the heat flux. Note that
only two thermodynamic variables are independent, e.g., one
can express ρ = ρ(P,s) and T = T (P,s) to ensure the system
described by (2)–(4) is complete.

The above system can be simplified by expanding the
density in terms of its thermodynamic relationship,

dρ = Ma2dP − B

(
Prγ Ma2

A
T + 1

)
ρds, (5)

where B ≡ βT0, β is the thermal expansion coefficient, and γ

is the ratio of specific heats. Next, taking the time derivative
of Eq. (5) and combining the result with the continuity (2) and
thermodynamic conservation (4) equations results in

−ρ∇ · u = Ma2 DP

Dt
− Ma2γ

Re

B

A
(∇2T + �). (6)

The reduced equations given in Eqs. (6) and (3) do not
represent a complete system since the number of unknowns
(two thermodynamic and three momentum) is greater than
the number of equations (four). An additional thermodynamic
constraint is necessary to complete the system. Equation (6)
can also be derived by combining the continuity equation, the
thermal energy equation, and the thermodynamic relationship
for the density with pressure and temperature as the indepen-
dent thermodynamic variables; however, the derivation from
the entropy form is more convenient.

A. Isentropic limit

One potential option to close the above system is to
assume isentropic behavior, i.e., ds = 0. With the isentropic
assumption, (6) becomes

DP

Dt
= − 1

Ma2 ρ∇ · u. (7)

Two approximations can be made: First, the convective
derivative can be approximated such that DP/Dt ≈ ∂P/∂t

due to the much faster velocity of the acoustic waves relative
to the convective velocity. Second, the density perturbations
are given as ρ ≈ 1 + O(Ma2), thus the higher-order terms
involving the density can be neglected. The resulting update
for the pressure is

∂P

∂t
= − 1

Ma2 ∇ · u. (8)

This result is equivalent to the classical AC methods, which
are commonly motivated by assuming the artificial equation of
state ρ = Ma2P . While entropy balance (4) shows isentropic
behavior to O(Ma2), (6) clearly shows that both the pressure
and entropic contributions contain terms of the same order.
This behavior suggests that an isentropic assumption, while
certainly valid to O(Ma2), may not be the only acceptable
choice for a pressure update procedure.

B. Minimization of density fluctuations

As an alternative constraint, one can try to artificially
suppress fluctuations in density separately from the low-Mach
limiting process. Consider the thermodynamic function for the
density as a function of the pressure and temperature,

dρ

ρ
= γ Ma2

(
dP − PrB

A
dT

)
. (9)

It is apparent that driving the term in parentheses towards
zero will limit the fluctuations in density caused by changes
in the thermodynamic state, which suggests a thermodynamic
relationship of the form

dP ≈ PrB

A
dT, (10)

which can be used to eliminate the temperature diffusion term
in Eq. (6). This relationship is identical to that used in Ansumali
et al. [20]. It is important to realize that while the density
naturally becomes constant in the low-Mach-number limit for
a given material region, (10) represents an additional constraint
that minimizes changes in density by thermodynamically
constraining fluctuations in temperature to fluctuations in
pressure. This constraint is entirely artificial, but so is the
isentropic constraint, and, as is shown in Sec. IV, this constraint
yields several desirable properties.

Simplifying (6) using (10) gives

DP

Dt
= − 1

Ma2 ρ∇ · u + γ

PrRe
∇2P + B

A

γ

Re
�. (11)

For the subsequent investigation of Eq. (11), several simpli-
fications are made. The density is eliminated just as in the
isentropic case, Pr = γ , and the effects of viscous dissipation
are neglected. These simplifications are possible through
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the appropriate selection of the dimensionless parameters,
although certainly not required. The resulting simplified
version is shown as

DP

Dt
= − 1

Ma2 ∇ · u + 1

Re
∇2P, (12)

which, when combined with the momentum equation (3),
forms a complete system for the solution of pseudocom-
pressible flow that is referred to as the EDAC method. In
this method, acoustic pressure waves are effectively damped
through an entropy-generation mechanism that is a result of
the constraint given in Eq. (10).

C. Discussion

Several points of discussion are appropriate. First, consider
the behavior of the AC and EDAC methods at varying limits.
As Ma → 0, both methods converge to the INS with O(Ma2)
errors. As the viscous terms become less important, i.e., Re →
∞, the EDAC and AC methods converge to the same isentropic
behavior. Physically, this behavior is consistent because at
high Reynolds number, (4) shows a convergence to isentropic
behavior. The primary difference occurs in the viscously
dominated regime as Re → 0. In this case, the EDAC method
converges to the pressure-Poisson equation for Stokes flow,

∇2P = 0, (13)

which also identically enforces incompressibility. In contrast,
the AC method is unaffected by the choice of Reynolds number
and is solely dependent on the low-Mach limiting process to
achieve incompressible behavior. The ability of the EDAC to
demonstrate proper behavior at both the viscous and inertial
limits is the key to developing a time-accurate AC method.

It is also worth comparing the EDAC method with the
existing KRLNS method. The KRLNS method is based on a
substitution,

G = P − ek, (14)

where G is stated to be the negative of the grand potential, and
ek ≡ ρu · u/2 is the kinetic energy. After simplifying the CNS
using the above substitution, an update procedure is obtained
for G as [22]

∂G
∂t

= − 1

Ma2 ∇ · u + 1

Re
∇2G. (15)

Taking the EDAC equation (12) and subtracting (15), in
conjunction with the definition for G, reveals a difference,
which is shown as

EDAC − KRLNS = ∇ · (uek) + 1

Re
∇u : ∇u. (16)

The first term on the right-hand side is associated with the
convection of kinetic energy and is likely negligible based on
the difference in acoustic and convective speeds. The second
term, however, is important in obtaining a qualitatively correct
pressure evolution, as shown in Sec. IV. Although both of these
terms are missing in the reduced set of equations [22], they
are present in earlier formulations (cf. Eq. (10) in Ansumali
et al. [20]).

In all derivations of the KRLNS [20–22], a key simpli-
fication relates fluctuations in temperature to fluctuations in

the grand potential, which is based on the argument that at
long time scales, the density is approximately constant. This
assumption requires the thermodynamic constraint shown in
Eq. (10); consequently, the KRLNS equations and likewise
the EDAC equations (12) represent only one potential limit
of incompressibility subject to the previously mentioned
thermodynamic constraint.

III. NUMERICAL METHOD

In order to study the numerical behavior of the EDAC
equations and compare the results with traditional AC and
LB techniques, the equations are discretized using a simple
MacCormack finite-difference scheme [24]. The MacCormack
scheme is a predictor-corrector scheme with a nominal
accuracy of O(	x2,	t2). Restating the governing equations
in conservative form for a two-dimensional system gives

∂U
∂t

+ ∂ F(U)

∂x
+ ∂G(U)

∂y
= S(U), (17)

where U ≡ (P,u) is a vector of the solution variables. The
functions F and G capture advection terms, and S contains
the source terms. Note that in writing the EDAC equations in
conservative terms, we neglected higher-order terms of ∇ · u
in Eq. (12) and the bulk viscosity component of the viscous
stress tensor.

The MacCormack discretization of the left-hand side of
Eq. (17) gives a predictor-corrector sequence of

U∗
i,j = Un

i,j − 	t

	x

(
Fn

i+1,j − Fn
i,j

) − 	t

	y

(
Gn

i,j+1 − Gn
i,j

)
+ S(Un) (18)

Un+1
i,j = 1

2

{
Un

i,j + U∗
i,j − 	t

	x
(F∗

i,j − F∗
i−1,j )

− 	t

	y
[G∗

i,j − G∗
i,j−1 + S(U∗)]

}
, (19)

where n denotes a discrete time and i,j denote a discrete spatial
location. Not shown above are the source terms S(U), which
are evaluated using second-order central differences. As writ-
ten in Eqs. (18) and (19), the spatial differencing progresses
in a forward-back manner. In the presented simulations, the
forward-back integration is alternated with a back-forward step
to reduce errors [25]. The stability limit of the MacCormack
scheme is given in dimensionless form as [25]

	tCFL � σ

(
1

	x
+ 1

	y
+ 1

Ma

√
1

	x2
+ 1

	y2

)−1

, (20)

where σ is a safety factor and is chosen to be 1/2 in this work.
An additional stability limit exists for the diffusion term such
that

	tdiff � σRe

2

(
1

	x2
+ 1

	y2

)−1

. (21)

Stability is ensured by selecting a time step such that 	t =
min(	tCFL,	tdiff).

Code verification is performed by the method of manufac-
tured solutions (MMS) [26]. The solution form is chosen as a
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FIG. 1. (Color online) The (a) convergence and (b) order of
accuracy plots for the traveling-wave solution using MMS to isolate
the discretization errors.

traveling-wave problem [27], which has an exact solution for
the INS shown as

u(x,y,t) = 1

3
+ 2

3

{
cos

[
2π

(
x − t

3

)]
sin

[
2π

(
y − t

3

)]

× exp

(−8π2t

Re

)}
, (22)

v(x,y,t) = 1

3
− 2

3

{
sin

[
2π

(
x − t

3

)]
cos

[
2π

(
y − t

3

)]

× exp

(−8π2t

Re

)}
, (23)

P (x,y,t) = −1

9

{
cos

[
4π

(
x − t

3

)]
+ cos

[
4π

(
y − t

3

)]}

× exp

(−16π2t

Re

)
, (24)

with doubly periodic boundary conditions; however, the AC,
KRLNS, and EDAC methods only approximate the INS
equations with an error of O(Ma2). To remove this error,
analytical source terms are derived using a computer algebra
program that, when added to Eqs. (8) and (12), make the
solution in Eqs. (22)–(24) exact. The full form for these source
terms can be found in the Appendix A. Accordingly, errors are
restricted to discretization errors. The ability of the various

0.0

0.2

0.4

0.6

0.8

1.0

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

y

u

(a)

Ghia et al.
AC

EDAC; Ma=0.1
EDAC; Ma=0.3

KRLNS; Ma=0.3

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

v

x

(b)

FIG. 2. (Color online) LDCF results for Re = 100 showing
excellent agreement for the (a) u and (b) v velocity components.

methods to approximate the INS will be discussed in the
following section. A grid-refinement study is conducted, where
h = 	x/	xfine describes the relative mesh resolution. At all
refinements, 	x/	t is held constant and the results are shown
for the L2 error norms in Fig. 1(a) and for the order of accuracy
in Fig. 1(b). All error norms are calculated at t = 0.08. The
results in Fig. 1 show the expected nominal quadratic error
convergence.

In addition to the finite-difference scheme mentioned
above, a simple single-relaxation-time LB method is used [28].
The LB approximates the INS equations in the long-time limit,
and relies on solving a discrete version of the Boltzmann
equation. The reader is referred to Chen and Doolen [18]
and Aidun and Clausen [19] for relevant reviews of the
implementation of the LB method. The LB method has been
long known to behave similarly to an AC method [16] with
an equation of state P = c2

s ρ. The LB method has been
quite successful in simulating a variety of flows, including
turbulent, suspension, and multiphase flows. The locality of
information propagation, i.e., pseudocompressibility, of the
method has been key to its scalability, with simulations scaling
to O(100 000) processors [29].

IV. RESULTS

This section demonstrates the ability of the EDAC equations
to model the INS equations in both steady and transient
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FIG. 3. (Color online) LDCF results for Re = 1000 showing
excellent agreement for the (a) u and (b) v velocity components.

flows using the MacCormack finite-difference discretization.
Comparisons are made to the traditional AC method, the
recently developed KRLNS method, and, where appropriate,
the LB method. The results show that both the EDAC and
AC methods perform well in the studied lid-driven cavity flow
(LDCF). While the AC method is expected to converge to the
INS solution at a steady state regardless of the Mach number,
the EDAC method shows good agreement even at relatively
high-Mach numbers (Ma = 0.3). The traveling-wave problem
shows incorrect transient behavior for the AC method unless
a very small Mach number is chosen, while the EDAC
method agrees well with the analytical solution. The KRLNS
method shows errors in both the steady LDCF and transient
traveling-wave problems.

A. Lid-driven cavity flow

Lid-driven cavity flow is a canonical flow in the evaluation
of incompressible flow solvers due to the complex flow
patterns exhibited. For this test case, the simulation domain
is a 1 × 1 square, with the top wall moving to the right
with velocity utop = 1. Simulations are performed using three
methods (AC, EDAC, and KRLNS) at Re = 100, 1000, and
5000. For the AC method, it is trivial to see that at a steady
state, (8) is independent of the Mach number and identical to
the INS result; however, for the EDAC and KRLNS methods,
an error still remains. Thus, Ma = 0.1 and 0.3 simulations
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FIG. 4. (Color online) LDCF results for Re = 5000 showing
excellent agreement for the (a) u and (b) v velocity components.

are performed. All simulations are performed on a 256 × 256
mesh. The velocity profiles are compared with high-resolution
stream-vorticity formulations [30,31]. Unlike traditional INS
solvers, the pressure evolution equation requires an additional
boundary condition. Following Borok et al. [22], for the AC,
EDAC, and KRLNS simulations, a Neumann condition for
the pressure is used enforcing ∂P/∂n = 0, where n is the
wall-normal distance. The boundary condition is implemented
via a second-order one-sided finite difference. Simulations are
considered steady state when the L2 norms of the unsteady
terms are less than 1.0 × 10−8.

Figure 2 shows the centerline velocity profiles for Re =
100. Excellent agreement is seen between the AC results,
the EDAC results up to Ma = 0.3, and the numerical results
of Ghia et al. [30]. The EDAC and AC results are nearly
indistinguishable from one another; however, the KRLNS
results show a noticeable deviation. Although the author
notes that Ma = 0.3 likely exceeds the Ma 	 1 assumption,
differences are seen for lower Mach cases as well [22]. As
noted in Borok et al. [22], the KRLNS results would improve
with a refinement in the Mach number, yet the EDAC method
is clearly more accurate at relatively higher Mach numbers.
Figure 3 shows the velocity profiles at Re = 1000 and Fig. 4
shows the velocity profiles at Re = 5000. The trends seen at
Re = 100 continue, with excellent agreement with the AC and
EDAC methods at all Mach numbers simulated. The KRLNS
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Re = 100 Re = 1000 Re = 5000

FIG. 5. (Color online) Streamlines from the EDAC simulations
at Ma = 0.1 showing the formation of three vortices: the primary,
bottom left, and bottom right. At Re = 5000, an additional vortex
forms along the top left of the domain, as is expected. Warmer colors
indicate higher stream-function values.

method continues to show larger deviations, particularly at the
highest Reynolds number. While the error term in Eq. (16)
scales 1/Re, larger velocity gradients are present, creating
larger errors.

At low Reynolds numbers, three vortices appear during
the simulation: a primary vortex located near the center of
the domain, and two secondary vortices located in the bottom
left and bottom right corners of the simulation domain. For
Re = 5000, a vortex appears near the top left corner, and
additional vortices are known to form at even higher Reynolds
numbers [32]. Streamlines showing the development of the
vortices are listed in Fig. 5. The locations of the primary and
secondary vortices are shown in Table I and the tertiary vortex
location at Re = 5000 is listed in Table II. The following are
some comments on the vortex location results: First, for the
Re = 100 case, the AC and EDAC cases show large errors in
the location and strength of the secondary vortices. These
vortices are very weak at this Reynolds number, and the

TABLE II. Location of tertiary vortex at Re = 5000.

Vortex location
Simulation (x, y, ψ × 103)

Ghia et al. [30] (0.0625, 0.9102, −1.4564)
Hou et al. [33] (0.0667, 0.9059, −1.40)
Borok et al. [22], Ma = 0.05 (0.0667, 0.9137, −1.45)
AC, Ma = 0.1 (0.0627, 0.9098, −1.3887)
EDAC, Ma = 0.1 (0.0627, 0.9098, −1.3926)
EDAC, Ma = 0.3 (0.0627, 0.9098, −1.4932)

discrepancies are seen in the EDAC as well as the existing
AC methods. The errors could be due to the MacCormack
discretization, which was chosen as a simple way to explore the
behavior of the EDAC method and not for numerical accuracy.
Another potential culprit could be the Neumann pressure
boundary condition, which is not present in a strictly INS
flow. More accurate numerical schemes and a more thorough
treatment of the solid wall boundary conditions are deferred
for future study. Second, with the exception of the Re = 100
cases, the vortex locations are relatively insensitive to the
choice of pressure evolution scheme (AC or EDAC) as well
as the chosen Mach number, although some error is seen at
Ma = 0.3. The value of the stream function shows only slightly
more sensitivity. Again, while some small deviations from the
high-resolution numerical results of Ghia et al. [30] and Erturk
et al. [31] are seen, the deviations between the AC and EDAC
methods are small, which suggests that the general numerical
scheme is causing these deviations, and not the choice of the
pressure evolution equation.

TABLE I. Location of primary and secondary vortices for LDCF simulations.

Primary vortex Bottom left vortex Bottom right vortex
Simulation (x, y, ψ) (x, y, ψ × 105) (x, y, ψ × 104)

Re = 100
Ghia et al. [30] (0.6172, 0.7344, 0.10342) (0.0313, 0.0391, −0.17488) (0.9453, 0.0625, −0.12537)
Hou et al. [33] (0.6196, 0.7373, 0.1030) (0.0392, 0.0353, −0.172) (0.9451, 0.0627, −0.122)
AC, Ma = 0.1 (0.6157, 0.7373, 0.10320) N/A (0.9451, 0.0628, 0.35492)
EDAC, Ma = 0.1 (0.6157, 0.7373, 0.10294) (0.0549, 0.0157, −1.5972) (0.9451, 0.0628, −0.28197)
EDAC, Ma = 0.3 (0.6157, 0.7412, 0.10145) (0.0196, 0.0980, −36.418) (0.9412, 0.0588, −1.0248)

Re = 1000
Ghia et al. [30] (0.5313, 0.5625, 0.11793) (0.0859, 0.0781, −23.113) (0.8594, 0.1094, −17.510)
Hou et al. [33] (0.5333, 0.5647, 0.1178) (0.0902, 0.0784, −22.2) (0.8667, 0.1137, −16.9)
Erturk et al. [31] (0.5300, 0.5650, 0.11878) (0.0833, 0.0783, −23.261) (0.8633, 0.1117, −17.281)
Borok et al. [22], Ma = 0.01 (0.5373, 0.5686, 0.1175) (0.0863, 0.0784, −21) (0.8667, 0.1137, −18.5)
AC, Ma = 0.1 (0.5294, 0.5647, 0.11810) (0.0863, 0.0745, −18.585) (0.8627, 0.1137, −17.189)
EDAC, Ma = 0.1 (0.5294, 0.5647, 0.11800) (0.0824, 0.0784, −18.851) (0.8627, 0.1137, −17.243)
EDAC, Ma = 0.3 (0.5294, 0.5647, 0.11704) (0.0745, 0.0823, −16.857) (0.8627, 0.1137, −16.860)

Re = 5000
Ghia et al. [30] (0.5117, 0.5352, 0.11897) (0.0703, 0.1367, −136.12) (0.8086, 0.0742, −30.836)
Hou et al. [33] (0.5176, 0.5373, 0.1214) (0.0784, 0.1373, −135) (0.8078, 0.0745, −30.3)
Erturk et al. [31] (0.5150, 0.5350, 0.12129) (0.0733, 0.1367, −136.39) (0.8050, 0.0733, −30.604)
Borok et al. [22], Ma = 0.05 (0.5176, 0.5451, 0.1107) (0.0784, 0.1333, −107) (0.7922, 0.0824, −32.6)
AC, Ma = 0.1 (0.5137, 0.5373, 0.11943) (0.0745, 0.1333, −117.07) (0.7961, 0.0706, −32.870)
EDAC, Ma = 0.1 (0.5137, 0.5373, 0.11935) (0.0745, 0.1333, −116.58) (0.7961, 0.0706, −32.850)
EDAC, Ma = 0.3 (0.5137, 0.5373, 0.11863) (0.0706, 0.1373, −106.36) (0.7922, 0.0706, −30.371)
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B. Traveling wave

To explore the transient behavior of the EDAC method, the
traveling-wave solution given in Eqs. (22)–(24) is used. This
equation is an exact solution to the INS for a convecting,
decaying Taylor-Green vortex. It is important to note that
the solution in Eqs. (22)–(24) at t = 0 is not an exact
solution to either the AC or EDAC methods, thus an initial
perturbation is introduced that must decay, and the smoothing
term that appears in Eq. (12) is crucial to recover time-accurate
dynamics at moderate values of the Mach number. Traditional
AC schemes must use an extremely small Mach number in
order to keep the pressure fluctuations from polluting the
solution domain. The error in the traditional AC method is
magnified at very low Reynolds numbers. Since literature
results were not available for solutions to this problem using
the LB method, a simple two-dimensional nine-direction LB
model is used for comparisons. A single-relaxation-time model
is used, where the relaxation time is given by τ . Further details
involving the theory and implementation of the LB method are
outside the scope of this paper and can be found in Aidun and
Clausen [19].

While the KRLNS method showed errors in the steady-state
solution of the LDCF problem, the solution of the traveling-
wave problem reveals a qualitatively incorrect evolution of
the pressure field. To illustrate this error, simulations are
performed on a 65 × 65 domain at Re = 1 with periodic
boundary conditions and 	t = 2.96 × 10−5. In Fig. 6(a), one
can see that a naive implementation of the reduced KRLNS
equations listed in Borok et al. [22] results in a pressure decay
that is much too rapid, and an incorrect steady pressure after
the complete decay of the vortex. The error is still present as
the Mach number is reduced. Upon addition of 1

Re∇u : ∇u
from Eq. (16), the KRLNS results converge to those of the
EDAC, demonstrating that this term is largely responsible
for the incorrect results. The EDAC results agree well with
the analytical curve. Figure 6(b) shows the divergence errors
associated with the methods. Again, the largest divergence
errors are seen with the unmodified KRLNS method. While
this divergence error does decrease with decreasing Mach
number, the corrected KRLNS and EDAC methods show
very small divergence errors even at the larger Ma = 0.1. The
errors in the pressure and velocity divergence are much more
pronounced than the velocity component errors, which are not
shown for these cases. Since the KRLNS method neglects a
term important for low-Reynolds-number flow, the remainder
of this paper will focus on characterizing the EDAC method
in comparison with the AC and LB methods.

The previous experiment is repeated using the AC, LB, and
EDAC methods, and the results are shown in Fig. 7. The same
number of grid points and time step size are used, except for
the LB method where 	t = 8.88 × 10−5. The LB simulation
uses a relaxation time of τ = 1.62. The traditional AC method
and the LB method both show oscillations in the solution.
The pressure oscillations are more pronounced in the AC
method than the LB method; however, both methods show
similar velocity-divergence errors. At high-Mach numbers,
the physical relevance of the AC method is lost. Increasing
the Mach number in LB simulations at a fixed Reynolds
number requires increasing τ , which causes a degradation in
the solution accuracy, particularly for the single-relaxation-
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FIG. 6. (Color online) Traveling-wave solution showing the
(a) pressure and (b) velocity divergence at location (1/2,1/2) at
Re = 1. The KRLNS method error creates qualitatively incorrect
behavior unless a correction term is included.

time model used here; thus, LB simulations are limited to
Ma = 0.01. In contrast to the AC and LB methods, the EDAC
method shows little error. Essentially, no pressure oscillations
are seen and the thermodynamic formulation associated with
the EDAC method results in much smaller divergence errors
than the other methods.

When using a strictly explicit scheme, there is little reason
to increase the Mach number beyond 0.01 at Re = 1.0, since
the time step size is diffusion limited; however, mixed implicit-
explicit schemes are a possibility. Furthermore, the poor behav-
ior of the AC method at Ma = 0.1, which is still approximately
incompressible, demonstrates that the underlying physics
associated with the AC method are not generally applicable
for transient simulations at all Re. These limitations are not
present with the EDAC method. Another issue exists in the
pressure-mode coupling and the lack of smoothing associated
with using collocated pressure and velocity variables, i.e., a
nonstaggered grid. In previous investigations [16], the solution
of the AC method on a staggered grid was found to demonstrate
similar pressure fluctuations as the LB method, although some
investigators have used AC on nonstaggered grids [17]. The
ability of the EDAC method to use a simpler collocated scheme
is beneficial and results in simpler algorithms.

As the Reynolds number increases, the relative importance
of the pressure smoothing term is decreased. Nonetheless, the
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FIG. 7. (Color online) Traveling-wave solution showing the
(a) pressure and (b) velocity divergence at location (1/2,1/2) at
Re = 1. Pressure and velocity-divergence errors exist for the AC
and LB methods. The EDAC method rapidly damps the fluctuations
showing greatly reduced errors.

smoothing introduced in the EDAC method results in improved
behavior. Figure 8 shows the results for a simulation domain
of 65 × 65 and Re = 1000. The time step is 4.77 × 10−4

for the Ma = 0.1 AC and EDAC cases, 8.89 × 10−4 for the
LB case, and 5.36343 × 10−5 for the Ma = 0.01 AC case.
Figure 8(a) shows the pressure, with generally good results
seen for all methods, although some oscillations still exist as
seen in the zoomed region shown by Fig. 8(b). Looking at the
divergence errors shows that the EDAC method consistently
outperforms the traditional AC method, with divergence errors
on the same magnitude as the LB method.

C. Doubly periodic shear layer

A doubly periodic shear layer is also considered. In this
problem, a periodic domain of [1 × 1] is considered, with a
uniform pressure field and velocity initial conditions of

u(x,y) =
{

tanh[δw(y − 0.25)] if y � 0.5,

tanh[δw(0.75 − y)] if y > 0.5,
(25)

v(x,y) = δp sin[2π (x + 0.25)], (26)

where δw is a parameter governing the width of the shear layer
and δp is the strength of the initial perturbation. In this system,
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FIG. 8. (Color online) Traveling-wave solution showing the
(a) pressure and (b) velocity divergence at location (1/2,1/2) at
Re = 1000. Pressure and velocity-divergence errors exist for the AC
and LB methods. The EDAC method rapidly damps the fluctuations
showing greatly reduced errors.

first investigated by Bell et al. [34] and studied in depth by
Minion and Brown [27], the shear layers roll up into a pair of
symmetric vortices. In cases in which the mesh is too coarse
relative to the thickness of the shear layers, spurious vortices
are created. All of the cases considered here use δw = 80 and
δp = 0.05, which corresponds to the thin shear-layer cases
in Minion and Brown [27]. The Reynolds number is 10 000.
Figure 9 shows the vorticity at a time t = 1 for mesh sizes
of (a) 128 × 128 and (b) 256 × 256 for the EDAC method.
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(b)

(a)

FIG. 9. (Color online) Doubly periodic shear-layer test using the
EDAC method showing the vorticity at t = 1 for meshes of (a) 128 ×
128 and (b) 256 × 256.

In the coarse mesh case, the spurious vortices are clearly
present, while in the refined case, the vortices have been
suppressed. Simulations using traditional AC or LB techniques
(not shown) also show similar behavior, which is consistent
with literature results [27] in which spurious vortices were
seen on under-resolved meshes regardless of the underlying
numerical method.

Next, the global enstrophy � and energy E are calculated
according to

� =
N∑

i=1

ω2
i Ai

2A
, (27)

E =
N∑

i=1

(u · u)Ai

2A
, (28)

where the summation is over the number of nodes N , ω is
the vorticity, Ai is the cell area, and A is the overall domain
area. The vorticity is calculated using a fourth-order central
difference. The enstrophy and energy decays are shown in
Fig. 10 for the EDAC and AC methods at several grid sizes.
Also shown are pseudospectral (Pspect), pressure-Poisson
(PPois), Godunov projection (GProj), and upwind velocity–
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FIG. 10. (Color online) Enstrophy and energy decay for a
pseudospectral (Pspect) reference solution, pressure-Poisson (PPois),
and upwind vorticity–stream-function (VSup), as well as the EDAC
and AC methods. Ma = 0.1 for all EDAC and AC methods.

stream-function (VSup) [27] methods. The pseudospectral
results are performed on a 768 × 768 grid, while the pressure-
Poisson, Godunov projection, and velocity–stream-function
results are performed on a 128 × 128 grid. The pseudospectral
and pressure-Poisson results are shown to have fourth-order
convergence, while the upwind velocity–stream-function and
Godunov projection results show second-order convergence.

For the enstrophy decay, the coarse grid simulation shows
some deviation from the reference solution (Pspect). The de-
viations are likely caused by insufficient resolution to resolve
the thin shear layer, where all the enstrophy is located. For
the under-resolved 1282 cases, the choice of finite-difference
stencil for the vorticity calculation can alter the enstrophy
results significantly. Longer term deviations could be attributed
to the formation of spurious vortices at this mesh resolution.
With higher mesh resolutions, the shear layer is captured and
spurious vortices do not form, and both the AC and EDAC
methods compare well with the pseudospectral method. For
the energy case, all EDAC and AC methods, while slightly
more dissipative than the pseudospectral method and Go-
dunov projection methods, perform well and demonstrate less
dissipation than the pressure-Poisson and vorticity–stream-
function results. Some oscillations are seen in the solution
associated with oscillations due to acoustic waves. At this
high Reynolds number (Re = 10 000), additional dissipation
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FIG. 11. (Color online) Effect of Mach number on enstrophy and
energy decay for the EDAC method on a 256 × 256 grid.

in the EDAC method is minimal, thus EDAC and AC methods
appear nearly identical in behavior.

In Fig. 11, the effect of the Ma number is explored for
the EDAC method, with a mesh size of 256 × 256 for all
simulations. Enstrophy results are relatively insensitive to the
selection of Ma number; however, the energy decay shows
a strong sensitivity to the Mach number. At Ma = 0.2, the
simulation is much too dissipative, and fluctuations are clearly
present that are associated with the finite speed of the acoustic
waves. At the smallest Mach number (Ma = 0.5), the EDAC
method compares favorably with the pseudospectral method.

V. CONCLUSIONS

In this paper, an alternative to the standard AC technique is
presented. Unlike the method devised by Chorin [11], in which
the artificial equation of state enforces isentropic behavior,
the alternative method, called EDAC, uses a thermodynamic
relationship which creates entropy to damp the acoustic
pressure waves. The development of the EDAC method follows
the recently published KRLNS method [20–22], in which
a damping term is shown to be beneficial. In contrast to
the KRLNS method, the development of the EDAC method
forgoes the substitution for the grand potential, and instead
proceeds directly from the CNS in a simple fashion. Through
this derivation, the EDAC equations result from the addition
of a constraint that minimizes density fluctuations instead

of enforcing isentropic behavior. The same relationship is
assumed in the derivation of the KRLNS, but this relationship
is not explicitly stated as an additional and artificial constraint
on the system. Furthermore, the simplified EDAC equations
reveal that a term is incorrectly neglected in the reduced
KRLNS equations [22], which yields qualitatively incorrect
behavior as seen in the traveling-wave problem.

The AC, EDAC, and KRLNS methods are discretized
using a simple MacCormack finite-difference scheme for the
purposes of this investigation. A small verification test is
performed, and then the various methods are compared using
steady lid-driven cavity and transient traveling-wave tests.
As is known, the traditional AC method shows fluctuations
associated with the propagation of acoustic waves, which
creates errors in the pressure and velocity divergence. The
errors in the AC method are particularly evident at low
Reynolds numbers, whereas the EDAC method effectively
damps these oscillations. Both the AC and EDAC methods
converge to the INS in the limit Ma → 0; however, differences
exist in terms of O(Ma2). As Re → ∞, fluid behavior naturally
becomes isentropic, and the AC and EDAC methods converge.
In contrast to the traditional AC method, the EDAC method
is consistent in the limit Re → 0, since the pressure evolution
becomes the pressure-Poisson equation for a Stokes fluid.

Renewed interest in the general class of pseudocompress-
ible methods, i.e., methods in which the flow is allowed to
have a small but finite level of compressibility, is motivated
by the ability of these methods to operate in a fully ex-
plicit manner when simulating (nearly) incompressible flows,
avoiding the necessarily implicit pressure-Poisson solve. Fully
explicit methods involve local communication, which can be
trivially scaled on emerging massively parallel architectures
and GPGPU computing. This massively parallel capability
has been one of the reasons that the LB method, also a
pseudocompressible method, has become popular for certain
types of simulations. Unlike the LB method, the AC and EDAC
methods remain based on continuum conservation laws, which
alleviates difficulties in formulating more complex boundary
conditions and constitutive models.

Despite their attractiveness, fully explicit methods have
significant limitations, namely, the time step limitations due
to diffusion, acoustic wave propagation, and convection. As
such, these methods excel in transient simulations where time
accuracy requires time steps on the order of the stability limits.
Beyond using the EDAC method in a strictly explicit setting,
the EDAC method provides a natural and physically motivated
mechanism to relax the high-frequency errors in the pressure
field. When combined with multigrid techniques [35] to relax
the low-frequency errors, the EDAC scheme may become
attractive for relaxing to a steady solution, although more
investigation is required and will be a focus of future effort.
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APPENDIX: METHOD OF MANUFACTURED SOLUTION SOURCE TERMS

The method of manufactured solutions provides a way to isolate discretization error in numerical methods. For the AC (8)
and EDAC (12) pressure evolution equations, a source term can be added to the right-hand side that makes the traveling-wave
solution given in Eqs. (22)–(24) exact. The source terms are listed as

SEDAC = 8π

27
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{
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and

SAC = 16π2
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for the EDAC and AC methods, respectively.
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