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Information field dynamics (IFD) is introduced here as a framework to derive numerical schemes for the
simulation of physical and other fields without assuming a particular subgrid structure as many schemes do.
IFD constructs an ensemble of nonparametric subgrid field configurations from the combination of the data
in computer memory, representing constraints on possible field configurations, and prior assumptions on the
subgrid field statistics. Each of these field configurations can formally be evolved to a later moment since any
differential operator of the dynamics can act on fields living in continuous space. However, these virtually evolved
fields need again a representation by data in computer memory. The maximum entropy principle of information
theory guides the construction of updated data sets via entropic matching, optimally representing these field
configurations at the later time. The field dynamics thereby become represented by a finite set of evolution
equations for the data that can be solved numerically. The subgrid dynamics is thereby treated within auxiliary
analytic considerations. The resulting scheme acts solely on the data space. It should provide a more accurate
description of the physical field dynamics than simulation schemes constructed ad hoc, due to the more rigorous
accounting of subgrid physics and the space discretization process. Assimilation of measurement data into an
IFD simulation is conceptually straightforward since measurement and simulation data can just be merged. The
IFD approach is illustrated using the example of a coarsely discretized representation of a thermally excited
classical Klein-Gordon field. This should pave the way towards the construction of schemes for more complex
systems like turbulent hydrodynamics.
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I. INTRODUCTION

A. Motivation

Computer simulations of fields play a major role in science,
engineering, economics, and many other areas of modern
life. Computer limitations require that the infinite number
of degrees of freedom of a field are represented by a finite
data set that fits into computer memory. For example, in
hydrodynamics with mesh codes, the average density, pressure,
and velocities of the fluid within grid cells form the data.
The data make statements about the field properties, and the
simulation scheme describes how the present data determine
the future data. This dynamics is usually set up such that
the continuum limit of an infinite number of infinitesimal
dense grid points recovers the partial differential equations
governing the physical field dynamics. However, there are
many possible schemes to discretize the differential operators
of the field equations. Which one gives good results already at
finite resolution? Which one takes the influence of processes on
subgrid scales best into account? To address these questions,
a rigorous approach to construct accurate simulation schemes,
information field dynamics (IFD), is presented here. IFD rests
on information field theory (IFT), the theory of Bayesian
inference on fields [1,2]. In the ideal case, IFD and IFT provide
identical results, since both can be used to make statements
about fields at later times given some initial data. However, in
real-world applications of simulation schemes, compromises
with respect to accuracy and computational complexity are
often unavoidable. Thus, IFD can be regarded as a particular
approximation scheme within IFT, which may or may not
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provide optimal results from an information-theoretical point
of view.

The basic idea is that IFT turns the data in computer
memory into an ensemble of field configurations which are
consistent with the data and the knowledge on the subgrid
physics and field statistics. The differential operators of the
field dynamics can then formally operate on these field
configurations without the usual discretization approximation.
An unavoidable approximation finally happens when these
time-evolved fields get recast into the finite data representation
in computer memory. The information-theoretical guideline
of the maximum entropy principle (MEP) is used in order
to ensure maximal fidelity of this operation, which we call
in the following entropic matching. The subgrid dynamics is
thereby treated within an auxiliary analytic consideration. In
the end, an IFD simulation scheme for the time evolution of
a field is a pure data updating operation in computer memory
and, therefore, an implementable algorithm. Although this
algorithm does not explicitly deal with a field living in con-
tinuous space, it was, however, derived with the continuous-
space version of the original problem being very present
in the mathematical reasoning. The subgrid information,
which IFT used to construct the virtual continuous-space field
configurations, is encapsulated implicitly in the resulting IFD
scheme. Therefore, IFD schemes act solely on the data in
computer memory without using any explicit subgrid field
representation.

When constructing a computational simulation scheme for
field dynamics, whether using IFD or not, one is facing two
bottlenecks: finite computer memory and finite computational
time. This work deals only with the first issue and explains
how to construct schemes which optimally use the data stored
in computer memory. Optimizing with respect to only one
objective, memory in this case, very often results in solutions
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which are ineffective with respect to another aim, which here is
computational simplicity. Thus, we do not expect the resulting
IFD schemes necessarily to be the optimal solution for a
concrete computational problem. Deriving practically usable
schemes will often require additional approximations in order
to reduce the computational complexity. The IFD framework
can, however, help to clarify the nature of the approximations
made and guide the design of simulation schemes.

The concrete problem of how to discretize a thermally
excited Klein-Gordon (KG) field in position space will
illustrate the usage of the theoretical IFD framework.

B. Previous work

Our main motivation is to aid the construction of simulation
schemes, for example, in hydrodynamics, for which a very
rich body of previous work exists. Appendix A discusses
briefly the relevant concepts of partial differential equation
discretization, subgrid modeling, and information-theoretical
concepts in simulation schemes and their relation to IFD.

C. Structure of this work

In Sec. II we introduce the necessary concepts of IFT, MEP,
and IFD. In Sec. III IFD is developed in detail on an abstract
level, as well as for the illustrative example of a KG field.
The fidelity of IFD and a typical ad hoc scheme for the KG
field are compared numerically and against an exact solution
in Sec. IV. Section V contains the conclusion and outlook.

II. CONCEPTS

A. Information field theory

The idea of this work is that the data stored in a computer
is only a constraint on possible field configurations but does
not fully determine a unique subgrid field configuration.
Instead, the ensemble of possible field configurations is
constructed using IFT. IFT blends the information in the data
and any prior knowledge on the field behavior into a single
probability density function (PDF) over the space of all field
configurations.

IFT is information theory applied to fields, probabilistic
reasoning for an infinite set of unknowns, the field values at
all space positions. It provides field reconstructions from finite
data. For this IFT needs data, a data model describing how the
data are determined by the field, and a prior PDF summarizing
the statistical knowledge on the field degrees of freedom prior
to the data. How this works in our case will be shown in
the following. A general introduction to IFT can be found in
Ref. [2] and in the references therein.

IFT exploits mathematical methods from quantum and
statistical field theory. The unknown field φ is regarded as
a signal, a hidden message to be revealed from the data
d. A prior PDF P(φ) describes the knowledge about the
signal field prior to the data, and a likelihood PDF P(d|φ)
describes the probability of the data given a specific signal
field configuration. Bayes’s theorem allows one to construct
the posterior PDF,

P(φ|d) = P(d|φ)P(φ)

P(d)
, (1)

which summarizes the a posteriori (after the data is taken)
knowledge on the signal field. The connection to statistical
field theory becomes apparent when one realizes that Bayes’s
theorem can also be written as

P(φ|d) = e−H (d,φ)

Z(d)
, (2)

with the information Hamiltonian

H (d,φ) = − logP(d,φ) = − logP(d|φ) − logP(φ) (3)

and the partition function

Z(d) = P(d) =
∫

Dφ P(d,φ) =
∫

Dφ e−H (d,φ). (4)

Here,
∫
Dφ denotes a phase-space integral over all possible

field configurations of φ, a so-called path integral.
The information Hamiltonian combines prior and like-

lihood into a signal energy, which determines the signal
posterior according to the usual Boltzmann statistics. This
Hamiltonian therefore contains all available information on
the signal field.

The simplest IFT case is that of a free theory. This emerges
when three conditions are met:

(i) The a priori distribution of the field is a multivariate
Gaussian,

P(φ) = G(φ,�) = 1√|2π�| exp

(
−1

2
φ†�−1φ

)
, (5)

with signal covariance � = 〈φ φ†〉(φ) = ∫
Dφ P(φ) φ φ†, its

determinant |�| = det�, and φ†ψ = ∫
dx φx ψx denoting the

scalar product.
(ii) The data depend linearly on the signal field,

d = R φ + n, (6)

with a known response operator R.
(iii) The noise n = d − R φ is signal independent with

Gaussian statistics,

P(n|φ) = G(n,N ), (7)

where N = 〈n n†〉(n|φ) = ∫
DnP(n|φ) n n†.

In this case, the likelihood P(d|φ) = P(n = d − Rφ|φ) =
G(d − Rφ,N ) and the prior P(φ) contribute terms to the
Hamiltonian that are at most quadratical in the signal. Thus,
the Hamiltonian is also quadratical, which is the mark of a
free theory. In this specific case, the information Hamiltonian
states that the posterior field is also Gaussian, but with a shifted
mean m = 〈φ〉(φ|d) = ∫

Dφ φ P(φ|d) and uncertainty variance
D, which can be read off from

H (d,φ) =̂ 1

2
(d − Rφ)†N−1(d − Rφ) + 1

2
φ†�−1φ†

=̂ 1

2
[φ† (�−1 + R†N−1R)︸ ︷︷ ︸

D−1

φ + φ† R†N−1d︸ ︷︷ ︸
j

+j †φ]

= 1

2
(φ†D−1φ + φ†j + j †φ)

=̂ 1

2
(φ − m)†D−1(φ − m), (8)
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with

m = D j = (�−1 + R†N−1R)−1R†N−1︸ ︷︷ ︸
W

d = Wd. (9)

Here and later “=̂” means equality up to irrelevant constants.1

In analogy to the quantum field theory, an information prop-
agator D = (�−1 + R†N−1R)−1 and an information source
j = R†N−1d can be identified. The information source j is
given by the data d, weighted by the inverse noise covariance
N−1 and back-projected with the Hermitian adjoint response
R† into the signal space. The a posteriori mean field mx at
some location x of the signal space is constructed by
transporting the information jy sourced by the data at some
location y to x with the help of the information propagator
Dxy . This happens by applying this as a linear operator to
the information source field mx = ∫

dy Dxy jy . The resulting
posterior mean field depends linearly on the data, m = Wd.
The corresponding linear filter operation W is well known in
signal reconstruction as the (generalized) Wiener filter [3]. The
information propagator D is also identical to the a posteriori
uncertainty variance,

D = 〈(φ − m) (φ − m)†〉(φ|d), (10)

also known under the term Wiener variance. To conclude, in
free IFT, the posterior is Gaussian with Wiener mean and
variance,

P(φ|d) = G(φ − m,D). (11)

Although the field mean m is a continuous function in the signal
space, a full field with an apparently infinite number of field
values, it has, strictly speaking, only effectively a finite number
of degrees of freedom due to its construction. Since the mean
field is a deterministic function of the data, m = m(d) = Wd,
the phase space of possible mean fields can have at most as
many dimensions as the data have degrees of freedom. This
sets a limit to the maximal possible accuracy a simulation
scheme can achieve with finite data representation of the field.
However, in this work, we evolve not only the mean field
but also the full distribution of plausible fields around this, as
characterized by P(φ|d).

It should be noted that there exist two equivalent formula-
tions of the Wiener filter operator,

W = (�−1 + R†N−1R)−1R†N−1

= �R†(R �R† + N )−1. (12)

The first one is called the signal space and the second one the
data space representation, since the operator inversions happen

1This is, of course, a context-dependent convention, since it depends
on what is regarded to be relevant. In the context of this work, any
field-dependent quantity is relevant. Field-independent normalization
constants of PDFs are not. The sign “=̂” is here used as the
logarithmic partner of the sign “∝”, since normalization constants
become constant additive terms after taking the logarithms. Later, we
will also regard terms of higher order in the time step δt as irrelevant,
since they can be made to vanish by taking the limit δt → 0.

in signal and data space, respectively. They are fully equivalent
as long as � and N are regular matrices.2

The data-space representation of the Wiener filter W =
�R (R �R† + N )−1 can cope with the here relevant case of
negligible noise, N → 0, leading to W = �R (R �R†)−1.
This is possible only if �̃ = R �R†, the data-space image
of the signal field covariance, is (pseudo-)invertible, which is
very often the case. If not, the data contain redundancies that
could be used to tailor the data space until �̃ is invertible.

This noiseless limit might be a desirable assumption for
dealing with the data of a numerical simulation, since one
might define the data to represent a statement about the
field like d = R φ exactly, without any uncertainty in data
space. However, in the course of a field dynamical simulation,
the knowledge of the exact field configuration φ might not
be present at later times due to unavoidable discretization
errors. Therefore, a mismatch of the data d in computer
memory and the correct discretized statement R φ for the
true field might develop and this can be regarded as noise
n = d − R φ. Furthermore, a full error propagation of initial
value uncertainties in a simulation might be of interest in
case the initial data resulted from a real measurement with
instrumental noise. For these reasons, we will keep the noise
term in the formalism.

The Wiener filter theory described so far gives us a sufficient
IFT background for this initial work on IFD. It should be
noted, however, that in the case of nonlinear relations between
data and signal, or non-Gaussian signal or noise statistics,
IFT becomes an interacting field theory, and the resulting
operations on the data to calculate a posteriori mean and vari-
ance become nonlinear. Such operations can be constructed
using diagrammatic perturbation series, resummation, and
renormalization techniques [2,4] or by use of the construction
and minimization of an effective action, the Gibbs free energy
[5,6]. In many cases, the posterior is well approximated by a
multivariate Gaussian, which we assume in the following.

B. Entropic matching

We assume now that an ensemble of field configurations for
a time t has been constructed with IFT, those being consistent
with the data d = dt and any background information at that
time. It has to be specified now how those evolve and how this
can be represented by an updated data set d ′ = dt ′ at a later
time t ′.

Each of the possible field configurations is assumed to
evolve for a short period according to the exact physical
field dynamics. In order to recast this evolved ensemble
of field configurations back into the data representation of
the computational scheme, an updated data set has to be
constructed. The field ensemble implied by the updated data
should resemble the evolved field ensemble of the original

2The equivalence of the two Wiener filter representations is easily
verified via the following equivalence transformations:

(�−1 + R†N−1R)−1R†N−1 = � R†(R � R† + N )−1

⇔ R†N−1(R � R† + N ) = (�−1 + R†N−1R)� R†

⇔ R†N−1R � R† + R† = R† + R†N−1R� R†.
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data as close as possible. We will use entropic matching for
this, the usage of the MEP without any additional constrains.
The MEP is the principle of our choice since it derives from
very generic and desirable first principles on how to update a
probability without introducing spurious knowledge.

For the MEP, entropy is just regarded as an abstract quantity
that can be used to rank various possible PDFs according to
how well they are suited to represent a knowledge state. A
large entropy resembles an uninformed or ignorance state.
MEP aims, therefore, for the least informed state that is still
consistent with all known constraints. This should be the state
with the least spurious assumptions.

A number of intuitively obvious requirements on the
internal logic of such a ranking fully determines the functional
form of this entropy [7–10]. These requirements are that
local information should have only local effects, that the
ranking should be independent of the coordinate system used,
and that independent systems lead to separable PDFs. These
requirements are further detailed in Appendix B. The only
function on the space of PDFs that is consistent with these
principles is the entropy

S(P|Q) = −
∫

Dφ P(φ) log

[P(φ)

Q(φ)

]
, (13)

where P(φ) denotes a PDF for some field φ to be ranked
for its ignorance and Q(φ) an a priori ignorance state. This
entropy is the relative entropy of information theory, the
Kullback-Leibler divergence of P to Q [10]. It is in general
also equivalent (up to some constant) to the Gibbs energy of
thermodynamics [5] and to the Boltzmann-Shannon entropy
in case the ignorance knowledge state Q does not favor any
region of physical phase space, i.e., Q(φ) = const.

Since the information entropy is equivalent to the Kullback-
Leibler distance of information theory, it can also be used
to match one PDF optimally to another one. This entropic
matching will be needed in this work in order to find the
data constrained representation of the field PDF at a later
instant that best matches the time-evolved PDF of an earlier
instant. In case P(φ) can be changed at any phase-space
point φ, maximizing S(P|Q) will reproduce the ignorance
prior P → Q. If there are, however, constraints limiting the
flexibility of P(φ) to adapt to Q(φ), the MEP solution will
differ. Such constraints can be imposed with the help of
Lagrange multipliers, respective thermodynamical potentials,
which can be used to imprint certain expectation values onto
P as shown in Appendix B. In this work, constraints arise due
to the fact that the degrees of freedom to represent functions
and PDFs in computers are limited by the size of the computer
memory. To be concrete, we write φ′ = φt ′ and assume for
definiteness only that the short time step δt = t ′ − t permits
a deterministic and invertible functional relation between φ′
and the earlier φ = φt , so P(φ′|φ) = δ[φ′ − φ′(φ)] as well as
P(φ|φ′) = δ[φ − φ(φ′)].3

3Stochastic terms could easily be incorporated into the dynamics,
e.g., by setting P(φ′|φ) = G(φ′ − φ′(φ), δt �) in case of additive
Gaussian and temporally white noise ξt with covariance 〈ξt ξ

†
t ′ 〉(ξ ) =

δ(t − t ′) �. This is a straightforward extension of the scheme
presented here [11].

Here and later, we assume further that the target knowledge
state Q in our case is given by the Gaussian signal field poste-
rior P(φ|d,t) = G(φ − m,D) at time t as specified by the data
d = dt , and the background knowledge at this time, however,
evolved according to the dynamical laws to a later time t ′, so

Q(φ′) = P(φ′|d) =
∫

Dφ P(φ′|φ)P(φ|d)

= G(φ(φ′) − m,D)

∣∣∣∣ ∂φ

∂φ′

∣∣∣∣. (14)

The state P ′ we want to match to this using the MEP is one
that can be represented by a new set of data d ′ = dt ′ at this
later time via the IFT posterior P ′(φ′) = P(φ′|d ′) = G(φ′ −
m′,D′). Since the data degrees of freedom are finite, the PDF
implied by this new data [via m′ = W ′d ′ and D′ = (�′−1 +
R′†N ′−1R′)−1] will be of a parametric form, with the new
data being the parameters. However, the evolved PDF will in
general have a different functional form. Therefore, a matching
between the PDFs P ′(φ′|d ′) and Q(φ′) is needed and using the
MEP for this ensures that the least amount of spurious infor-
mation is introduced in this unavoidable approximative step.

C. Simulation schemes construction

The IFD methodology to discretize the dynamics of a field
can be summarized as followings:

(A) Field dynamics. The field dynamics equations have to
be specified. The KG equation, which can be derived from a
suitable Hamiltonian, will serve as an example in this work.

(B) Prior knowledge. The ignorance knowledge state in the
case where there is an absence of data has to be specified. In
our example the field will be assumed to be initially excited
by contact with a thermal bath of known temperature. The
Hamiltonian determining the field dynamics will, therefore,
also determine the background knowledge on the initial state
in our example.

(C) Data constraints. The relation of data and the en-
semble of field configurations being consistent with data
and background knowledge has to be established using IFT.
Assimilation of external measurement data into the simulation
scheme is naturally done during this step.

(D) Field evolution. The evolution of the field ensemble
over a short time interval has to be described. This involves
either the evolution of the mean and spread of the ensemble or,
as we will use here, the analytical description of the evolution
of all possible field configurations.

(E) Prior update. The background knowledge for the later
time has to be constructed. In the chosen example, energy
and phase-space conservation of the Hamiltonian dynamics
guarantee that the same thermal ignorance state also holds at
later times.

(F) Data update. The relation of data and field ensemble
has to be invoked again to construct the data of the later
time using entropic matching based on the MEP. Thereby
a transformation rule is constructed that describes how the
initial data determine the later data. This transformation forms
the desired numerical simulation scheme. It has incorporated
the physics of the subgrid degrees of freedom into operations
solely in data space.
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An IFD simulation scheme resulting from this recipe acts
only on the data space. Any subgrid dynamics is encapsu-
lated implicitly. This is ensured by the auxiliary analytic
considerations that construct the ensemble of possible field
configurations, evolve them analytically in time, and map them
back onto the data representation using entropic matching.

III. INFORMATION FIELD DYNAMICS

The IFD program outlined above shall now be discussed
in detail and by following the recipe of Sec. II C step by
step. The discussion will deal only with linear dynamics
and Gaussian knowledge states. Many interesting problems
involve nonlinear dynamics and, consequently, should lead to
non-Gaussian knowledge states. However, the construction of
a nonlinear IFD theory will have its foundation in linear theory,
which, therefore, needs to be developed first.

� In order to illustrate the IFD methodology, the problem
of how to discretize the dynamics of a thermally excited Klein-
Gordon (KG) field in one-dimensional position space is chosen
as an example. Since exact solutions of the field dynamics can
easily be given in Fourier-space representation, an exact, sub-
grid field model exists in this case to which numerical solutions
using IFD and other discretization schemes can be compared.
Passages dealing specifically with this example are marked as
this paragraph and might be skimmed over on a first reading. �

A. Field dynamics

The linear dynamics of a field φ can in general be
written as

∂tφ = c + Lφ, (15)

where L is a linear operator acting on the field vector of a time
instance, thereby determining the field’s time derivative. L

can be a differential operator, it can include integro-differential
operations, and it can depend on time. A dependence on earlier
field values is excluded from L, which is therefore assumed
here to be local in time. The field-independent, but potentially
time- and position-dependent, additive term c is a source term
of the field.

Nonlinear dynamics of the form

∂tχ = F (χ ) (16)

can often be cast approximatively into the form (15) via
a Fréchet-Taylor expansion around a sufficiently good and
known approximation ψ for χ = ψ + φ,

∂tφ = F (ψ) − ∂tψ︸ ︷︷ ︸
c

+ ∂ψF (ψ)︸ ︷︷ ︸
L

φ + O(φ2). (17)

One obvious choice of such an approximation would be to
use a static function ψt = χt0 for some short period [t0, t1] and
afterwards ψt = χt1 for the next such period, always ensuring
φ to be small and second-order effects to be negligible.

Stochastic terms in the evolution equations can also be
included into the formalism; however, here we refrain from
such complications and assume fully deterministic dynamics.
If higher time derivatives are part of the linear or linearized
evolution equation, these can be included as further compo-
nents of φ.

� For example, the one-dimensional KG equation for a real
scalar field with mass μ,

∂2
t ϕ = (

∂2
x − μ2

)
ϕ, (18)

which will serve as a concrete example in this work, can be
cast into the form (15) by setting φ = (ϕ†,π †)† and

∂t

(
ϕ

π

)
= Lφ =

[
0 1(

∂2
x − μ2

)
0

](
ϕ

π

)
=
[

π(
∂2
x − μ2

)
ϕ

]
.

(19)

Here, π = ∂tϕ is the canonical momentum field of the KG field
ϕ, which can be discriminated by context from the number π .
The dagger denotes transposing and complex conjugation of
functional vectors so ϕ†j = ∫

dx ϕ̄xjx = ∫
dk ϕ̄kjk/(2π ) in

real and Fourier space, respectively. The scalar product of two
component fields φ = (φ(ϕ)†,φ(π)†)† and ψ = (ψ (ϕ)†,ψ (π)†)† is

φ†ψ =
∫

dx
(
φ

(ϕ)
x ψ (ϕ)

x + φ
(π)
x ψ (π)

x

)
,

=
∫

dk

2π

(
φ

(ϕ)
k ψ

(ϕ)
k + φ

(π)
k ψ

(π)
k

)
, (20)

in real and Fourier space, respectively.
The KG field dynamics can be derived from the quadratic

Hamiltonian of the dynamical system,

H(φ) = 1

2
φ†E φ =

∫
dx

1

2

[
π2

x + (∂xϕx)2 + μ2ϕ2
x

]
=
∫

dk

4π
[|πk|2 + (μ2 + k2)|ϕk|2] (21)

in abstract, position space, and Fourier-space notation, respec-
tively. Here and in the following, x and y are coordinates in
position space, k and q coordinates in continuous or discrete
Fourier space, t is a time coordinate, and coordinate labels
determine in which functional basis a component of a field is
to be read out. The kernel E of the Hamiltonian reads, in the
Fourier basis,

Ekq = 2πδ(k − q)

(
μ2 + k2 0

0 1

)
. (22)

This determines the KG dynamics via

∂tφ = S ∂φH(φ) = S E φ, (23)

with the symplectic matrix

S =
(

0 1
−1 0

)
. (24)

Therefore, the linear time evolution operator is L = S E and
the temporal source is c = 0 in our example.

The Fourier-space representation of the KG dynamics,
(∂2

t + k2 + μ2)ϕk = 0, has the solution

ϕk = ake
iωt + a−ke

−iωt

(25)
πk = iω(ake

iωt − a−ke
−iωt )

with ω =
√

k2 + μ2, i = √−1, and ak ∈ C. With respect to
the remaining degrees of freedom, the complex amplitudes ak ,
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the Hamiltonian becomes

H(a) =
∫ ∞

0

dk

π
|ak|2(k2 + μ2), (26)

which implies that these variables are stationary, ∂tak = 0.
Therefore, an exact high-resolution solution can be specified
for the KG example for all times. This will be compared to ap-
proximative low-resolution solutions provided by simulation
schemes derived from IFD and by the usual discretization of
differential operators as described in Appendix A 1. �

B. Prior knowledge

The signal field prior P(φ) has to be specified. The prior
should summarize the data-independent knowledge on the field
configuration at current time t . For practical reasons, one will
typically approximate it by a Gaussian,

P(φ) = G(φ − ψ,�), (27)

with a properly chosen mean field ψ = 〈φ〉(φ) and prior
uncertainty variance � = 〈(φ − ψ) (φ − ψ)†〉(φ). Such an
approximation is often possible, since even non-Gaussian
knowledge states are typically sufficiently well approximated
by Gaussians. Any sophisticated treatment of the otherwise
resulting nonlinear, interacting IFT is beyond the scope of this
paper.

The Gaussian prior can also be justified from a pure
information-theoretical point of view. In case only the prior
mean ψ and variance � are known from physical considera-
tions, the MEP distribution of the field φ representing exactly
this knowledge is given by the Gaussian (27) with this mean
and variance, as shown in Appendix B.

Any known mean field ψ can easily be absorbed by the
redefinitions φ → φ′ = φ − ψ and c → c′ = c + Lψ . This,
however, might create a c term even if none existed initially
in the dynamical equation. Therefore, we keep the possibility
of a prior mean in the formalism, but note that there is some
freedom to trade a prior mean ψ against a field-independent c

term and vice versa.

� For our illustrative example of a KG field, we assume
that the field was initially in contact and equilibrium with a
thermal reservoir at temperature β−1 and became decoupled
from it at some time t0 = 0. The initial probability function of
the field is, therefore, thermal,

P(φ|β) = 1

Zβ

e−β H(φ) =
∏
k

1

zk

e−2β |ak |2(k2+μ2). (28)

It separates into independently excited modes, which do not
exchange energy at later times because the amplitudes are
stationary. Thus, an initially established thermal state stays
thermal and at the same temperature for all times. The partition
function is given by a complex Gaussian integral for each mode
and is

Zβ ≡
∫

Dφ e−β H(φ) =
∏
k

π

2β (k2 + μ2)︸ ︷︷ ︸
zk

, (29)

where the product goes over all accessible positive wave
vectors.

Since the energy Hamiltonian H(φ) = 1
2φ†E φ is quadratic

in φ, the prior information Hamiltonian H (φ|β) = β H(φ) =
β

2 φ†E φ is quadratic as well. The prior is simply a Gaussian
P(φ|β) = G(φ,�) with zero mean ψ = 0 and covariance
� = (β E)−1. In Fourier space this reads

�kq = 2π

β
δ(k − q)

[
(μ2 + k2)−1 0

0 1

]
(30)

and in position space it is

�xy = 1

β

[ 1
2μ

e−μ |x−y| 0
0 δ(x − y)

]
. (31)

A KG field realization drawn from (28) for β = 1 and μ = 1 is
displayed in Fig. 1. There the different spatial correlation struc-
tures of the field values with 〈ϕxϕy〉(φ) = (2μβ)−1e−μ|x−y|
and field momenta with 〈πxπy〉(φ) = β−1δ(x − y), as given
by (31), can be seen. �

(a) (b)

FIG. 1. (Color online) A realization of a thermally exited KG field ϕx (a) and its momentum distribution πx (b) is shown for β = 1 and
μ = 1 at t = 0 with a resolution of 2048 pixels with black lines passing through the diamond symbols. The low-resolution data with N = 64
data points describing the same fields are shown with yellow diamonds. The field configuration at t = 0.1 is also shown in panel (a) with a
thin brown (gray) line. The KG field ϕx shows a correlated structure due to the suppression of small scale power by the gradient term in the
Hamiltonian, whereas its momentum field πx is just white noise. The loss of small-scale structure information in the low-resolution sampling
is especially apparent for the momentum data.
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C. Data constraints

In addition to the relatively vague prior knowledge, the field
is constrained by the finite-dimensional data vector d = (di)i
in computer memory. The data are assumed to represent
linear statements on the field of the form d = Rs + n,

cf. Eq. (6). In typical numerical simulation schemes, the
response operator might just express an averaging of the field
within some environment �i of a grid point xi ∈ �i , i.e.,

Rix = 1

|�i |θ (x ∈ �i), (32)

where the logical θ function

θ (x ∈ �i) = P(x ∈ �i |x,�i) =
{

1 x ∈ �i

0 x /∈ �i
(33)

is 1 if the condition in its argument is true, otherwise it is
zero. In schemes based on grid cells or space tessellations,
the grid point volumes are disjoint, �i ∩ �j = ∅ for i �= j . In
case a conserved quantity should be conserved as accurately
as possible, the total amount of the quantity within the cells
of a space tessellation as well as the currents of the quantity
through the surfaces of the tessellation cells might be used
as data. In smoothed particle hydrodynamics, the volumes
overlap and are usually also structured by radially declining
kernel functions that have evolving locations and sizes.

For the moment, we only have to deal with the data at one
instant and need only to know that it depends linearly on the
underlying field by a known relation of the form d = Rφ + n.
This relation might or might not be the same at the next instant,
depending on the design choices for R = Rt (stationary grid
or Lagrangian moving mesh). Rt could even be determined
by the IFD formalism itself by requiring minimal information
loss of the scheme, as we will do later for the KG field example
in Sec. III F.

The simulation data vector d can even be extended also to
contain measurement data on the system to be simulated (e.g.,
the weather) obtained for the current simulation time. If this
auxiliary data d resulted from a linear measurement d = Rφ +
n with response R and Gaussian noise n with covariance N,
only the replacements

d →
(

d

d

)
, R →

(
R

R

)
, and N →

(
N 0
0 N

)
(34)

are needed.4 This way, the measurement information is
assimilated into the simulation scheme and can be evolved
into the future (or into the past, if the simulation is backward
in time). The added data could become simulation degrees of
freedom, or they could be discarded at the next simulation time

4The block diagonal structure of the extended noise covariance
matrix assumes that the measurement error and the simulation error
are uncorrelated. This assumption would be improper in case repeated
measurements with the same incorrectly calibrated instrument are
assimilated into the simulation. In that case, correlations among
the simulation and measurement data errors could exist since the
correlated measurement errors are partly imprinted onto the simula-
tion data.

step after their information was transferred to the simulation
data via the entropic matching operation. The former option
would certainly conserve more information, and the latter is
similar to what is done in particle filter methods as described
in Appendix A 3.

The ensemble of field configurations constrained by the
data via (6) and by the prior via (27) is then

P(φ|d) = G(φ − m,D), (35)

where

D = (�−1 + R†N−1R)−1

and

m = ψ + W (d − R ψ) = D (R†N−1d + �−1ψ). (36)

The mean is shifted here with respect to (9) due to the
nonvanishing prior mean ψ .

In the case where the external data d are to be assimilated
into the simulation, applying replacements of (34) to (36) and
expanding this yields D = (�−1 + R†N−1R + R†N−1R)−1

and d = D (R†N−1d + R†N−1d + �−1ψ). Thus, data assim-
ilation is very naturally done in IFD since simulation and
measurement data shape the field posterior P(φ|d) = G(φ −
m,D) in a similar way.

� In our example of the KG field we want to deal with
the simplest possible data as given by (6) and (32) that lives
on a regular grid, with equidistant space filling and disjoint
pixel volumes �i = [i�, (i + 1) �), with � > 0 being the
grid spacings. Since on a computer one can deal only with
finite domains, we assume periodic boundary conditions for
the interval � = ∪i�i = [0, 2π ] and require that the number
of grid points N = 2π/� ∈ N. The Fourier transformed field
is then

φk =
∫ 2π

0
dx eikxφx, (37)

with

φx =
∞∑

k=−∞

1

2π
e−ikxφk. (38)

Here the following substitution with respect to the infinitely
extended case have been made:

∫
dx → ∫ 2π

0 dx and
∫

dk
2π

→∑∞
k=−∞

1
2π

, which are the appropriately weighted sums of the
scalar products in position and Fourier space, respectively.
Furthermore, we note that δ(k − q) → δkq in this case, so the
unit operator is 1kq = 2πδkq and the field covariance (30) reads

�kq = 2π

β
δkq

[
(μ2 + k2)−1 0

0 1

]
. (39)

Since the data space is finite, its Fourier space is also finite,
where

dk =
N−1∑
j=0

�eikj�dj , (40)

with

dj =
N−1∑
k=0

1

2π
e−ikj�dk, (41)
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and k ∈ {0, . . . N − 1}. Higher or negative Fourier modes
do not carry any additional information due to the Nyquist
theorem.5

The Fourier transformed response,

Rkq = 2 π θ (q − k ∈ N Z)
1 − e−iq�

iq�
, (42)

= 2 π θ (q − k ∈ N Z) e− 1
2 iq�sinc

(
1

2
q�

)
, (43)

is block diagonal in the reduced Fourier space of the data with
k ∈ {0, . . .N − 1}. Note, however, that higher Fourier modes
of the field φq with q ∈ k + N Z, which carry information on
subgrid structure, imprint also onto the data and blend with the
lower Fourier modes k ∈ {0, . . .N − 1}. Therefore, a unique
reconstruction of the individual Fourier modes from the data
alone is impossible even within the range q ∈ {0, . . .N − 1}.

The individual terms in (42) can easily be understood. The
exp(− 1

2 iq�) term stems from the fact that the centers of the
pixel volumes are shifted by 1

2� from the pixel positions j�

used in the definition of the Fourier transformation. The sinc
function is the Fourier-space transform of the pixel window.
It encodes how well a given Fourier mode is represented in
the data and, therefore, how well it is protected from noise
and confusion with other modes imprinted onto the same data
mode.

The data-space signal covariance, which is needed by the
Wiener filter, is6

�̃kq = (R �R†)kq =
(

�̃
(ϕ)
kq 0
0 �̃

(π)
kq

)
, (44)

with

�̃
(ϕ)
kq = �̃

(π)
kq

μ2

{
1 k = 0[
1 − 2

μ�

sinh(μ�) sin2( 1
2 k�)

cosh(μ�)−cos(k�)

]
k �= 0

,

�̃
(π)
kq = 2πδkq

β

{
1 k = 0
1−cos(k�)
2 sin2( 1

2 k�)
k �= 0 .

Since the field covariance and response are translationally
invariant, we have every reason to believe that the noise statis-
tics, which are fed only by approximation errors depending on

5These conventions for the discrete Fourier transformation might
appear a bit unusual, but they have the advantage that they match
best the continuous-space Fourier convention used in physics. They
permit us to use all derived Fourier-space equations for the KG
field without changing normalization constants and with the intuitive
identifications dx → �, x → j�, and k → k.

6Here, we used the following identities:∑
j∈Z

1

(a + j )2
= π 2

sin2(πa)

and ∑
j∈Z

1

(a + j )2[(a + j )2 + b2]

= π

b3

[
bπ

sin2(πa)
− sinh(2πb)

cosh(2πb) − cos(2πa)

]
.

these latter two quantities, will also be translationally invariant
in data space. Therefore, its covariance will also be diagonal
in discrete Fourier space:

Nkq = 2πδkq

(
η

(ϕ)
k η

(c)
k

η
(c)
k η

(π)
k

)
, (45)

where η(ϕ), η(π), and η(c) are the noise spectra of the field
value data, the field momenta data, and the cross-spectra of
those, respectively. However, in Sec. III F we will show that the
ideal IFD scheme stays noiseless if it was initially noiseless.
Therefore, we can set N → 0 for all times and use the η

parameters to ensure consistency of all formulas. They will be
set to zero at the end of the calculation if this is a permitted
limit.

Taking the noiseless case as granted for the moment, the
Wiener filter becomes

Wkq = (�R†�̃−1)kq

= 2πθ (q = k modN ) e
1
2 ik�sinc

(
1

2
k�

)
2 sin2

(
1
2q�

)
1 − cos(q�)

×
(

μ2

μ2+k2

[
1 − 2

μ�

sinh(μ�) sin2( 1
2 k�)

cosh(μ�)−cos(k�)

]−1
0

0 1

)
. (46)

For a reconstructed signal image generated by this Wiener
filter, any image Fourier mode k ∈ Z gets exited by its first
Brillouin zone data-space mode q = k modN ∈ {0, . . .N −
1}. Thereby, all Fourier modes k ∈ Z of the mean field m =
W d get some nontrivial value if the corresponding data mode
k modN was nonzero. �

D. Field evolution

A Gaussian knowledge state P(φ|t) = P[φ| d = d(t)] =
G(φ − m,D) at some initial time t is represented by the
data d = dt , which determines the mean field via m = W d.
The field uncertainty variance D is data independent in our
example but not in general. The knowledge state P(φ|t) has to
be evolved to an infinitesimally later time t ′ = t + δt via the
evolution of the individual field configurations.

An individual field configuration φ = φt at initial time
t becomes φ′ = φt ′ =̂ φt + δt φ̇t = φt + δt (Lφt + c), where
the time derivative is given by (15). Here, and in the following,
we drop nonessential terms ofO(δt2), as indicated by “=̂”. The
time-evolved knowledge state therefore becomes

P(φ′| d) = P(φ| d)

∣∣∣∣ ∂φ

∂φ′

∣∣∣∣ (47)

by conservation of probability density. We need to calculate
the Jacobian up to linear order in δt . This is most simply done
from the inverse Jacobian,∣∣∣∣∂φ′

∂φ

∣∣∣∣ = |1 + δt L| = exp log |1 + δt L|
=̂ exp Tr(δt L) =̂ 1 + δt Tr(L). (48)
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In the case of linear Hamiltonian dynamics ∂tφ =
S ∂φH(φ), with dynamical Hamiltonian of the from H(φ) =
1
2φ†E φ + b†φ and E being block diagonal in the field value
ϕ and field momentum π eigenspaces, we have L = S E and
c = S b. The Jacobian is then unity, since

Tr(L) = Tr(S E) = Tr

[(
0 1

−1 0

)(
E(φ) 0

0 E(π)

)]
= Tr

(
0 −E(π)

E(φ) 0

)
= 0. (49)

This is not surprising, since it is well known that symplectic
Hamiltonian systems conserve the phase-space density, so the
unity of the Jacobian is also valid for noninfinitesimal time
steps δt in such cases.

In general, for non-Hamiltonian systems, the Jacobian can
differ from 1. It can be larger for systems with dynamical
attractors or with dissipation (Navier-Stokes equations) and it
can be smaller for systems with diverging phase-space flows,
like chaotic inflation in cosmology or driven hydrodynamical
turbulence (without significant dissipation).

The evolved knowledge state, or the knowledge state on the
evolved field, is, therefore,

P(φ′| d) =̂ P(φ = φ′ − δt φ̇| d) |∂φ/∂φ′|
=̂ G[φ′ − δt (Lφ′ + c) − m,D] [1 − δt Tr (L)]

=̂ G(φ′ − m∗,D∗), (50)

with7

m∗ =̂ m + δt(c + Lm)

=̂ (1 + δt L) [ψ + W (d − R ψ)] + δt c,

D∗ =̂ D + δt (LD + D L†).

D∗−1 =̂ D−1 − δt (D−1L + L†D−1). (51)

� In the case of our KG field, we have Tr(L) = 0 due
to the symplectic dynamics with L = S E and c = 0, as
well as m∗ =̂ m + δt S E m. Furthermore, using L = S E,
S† = −S, D−1 = �−1 + R†N−1R, and �−1 = β E, we get
D∗−1 =̂ D−1 − δt (R†N−1R S E − E S R†N−1R).

7The key to understand this result is a short rearrangement in the
exponent of the Gaussian,

[(1 − δt L)φ′ − m − δt c]†D−1[(1 − δt L)φ′ − m − δt c]

= {φ′ − [(1 − δt L)−1m + δt c]︸ ︷︷ ︸
m∗

}†

× (1 − δt L)†D−1(1 − δt L)︸ ︷︷ ︸
D∗−1

(φ′ − m′),

the δt expansion of the new mean field,

m∗ =̂ (1 + δt L) m + δt c,

that of the new uncertainty variance,

D∗ =̂ (1 + δt L) D (1 + δt L)†

=̂ D + δt (LD + D L†),

and its determinant,

|D∗| =̂ [1 + 2δt Tr(L)] |D|.

The evolved mean field still can be regarded to be
parametrized by the data; however, this is in a different way,
m∗ = (1 + δt S E) W d. It is not clear in general whether a
new data set d ′ can be found that expresses this new mean
field via the original parametrization m′ = W d ′ (or with the
appropriate W ′, in case that D′ also changed). This is because
the functional forms of the two parametrizations differ since W

and L = S E operate on completely different vector spaces, the
discrete data space and the continuous field space, respectively.

Therefore, entropic matching will be used to choose a d ′
that determines P ′(φ′| d ′) such that it captures most of the
information content of P(φ′| d). �

E. Prior update

The field prior for time t ′ has to be updated since the
subgrid statistics might have changed. For example, some of
the energy contained in subgrid modes might dissipate, leading
to a different P(φ′) = G(φ′ − ψ ′,�′) as parametrized via the
updated prior mean ψ ′ and variance �′.

� In the case of our KG field, energy conservation of the
dynamics leads to an unchanged prior for the evolved field
P(φ′) = G(φ′,�), still with � = (β E)−1. �

F. Data update

The new data have to be determined from their relation to
the updated field. Again, we assume the new data to depend
linearly on the evolved field,

d ′ = R′ φ′ + n′.

Note that we could chose a different pixilation at t ′, leading
to a different response R′, propagator D′, and Wiener filter
W ′. This is needed, e.g., in case a simulation with moving or
adaptive mesh is to be developed. It can even be considered
that the response operator determination becomes a part of
the entropic matching step, leading to an information optimal
moving mesh.

Furthermore, we have to allow for a changed noise level,
with new covariance N ′, since the meaning of the data values
could have changed with changed pixilation and since we
might have to allow for additional uncertainty in order to
capture any mismatch between the new parametrized posterior
and the evolved field posterior.

According to (35) and (36), the relation of new posterior
and new data is

P(φ′|d ′) = G(φ′ − m′,D′), (52)

where

D′ = (�′−1 + R′†N ′−1R′)−1,

m′ = ψ ′ + W ′ (d ′ − R′ ψ ′)
= D′ (R′†N ′−1d ′ + �′−1ψ ′), and

W ′ = D′ R′†N ′−1 = �′R′†(R′ �′ R′†︸ ︷︷ ︸
�̃′

+N ′)−1. (53)

Now, the new posterior P ′ = P(φ′|d ′) should match the
evolved posterior P = P(φ′|d) as well as possible. According
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to (13), the cross entropy of the former with the latter is

S(P ′|P) = − 1
2 Tr[(δm δm† + D′) D∗−1

+ 1 + log(D′ D∗−1)] (54)

with δm = m′ − m∗.
Maximizing this entropy with respect to the new data d ′

yields

−∂d ′S = (∂d ′m′)†D∗−1δm

= W ′†D∗−1[W ′ (d ′ − R′ ψ ′) + ψ ′ − m∗] = 0 (55)

⇒ d ′ = R′ ψ ′ + (W ′†D∗−1W ′)−1W ′†D∗−1(m∗ − ψ ′).

This is the general formula to update the data. It should
be expanded up to linear order in all the relevant changes in
response R′ = R + δR, noise covariance N ′ = N + δN , and
prior parameters �′ = � + δ� and ψ ′ = ψ + δψ , as well as
in time t ′ = t + δt . The resulting general formula is lengthy
and not directly instructive,8 therefore, we concentrate here
more on special cases.

The update of the uncertainty variance is also obtained by
maximizing the entropy with respect to the degrees of freedom
of D′ = (�′ + R′†N ′−1R′)−1. These could be the location of
the new pixel positions, which influence R′, an updated noise
level, influencing N ′, or properties of the field prior expressed
via �′ and ψ ′.

We combine these degrees of freedom into the single vector
η, irrespective of whether they determine R′, N ′, �′, ψ ′, or
combinations thereof. The entropic matching of the updated
uncertainty variance D′ = D(η + δη) = D(η) +∑

i δηi�i +
O(δη2), with �i = ∂ηi

D(η) the linear changes due to changes
in the degrees of freedom, is then given by

−∂ηS = 1
2 Tr[(∂ηD

′) (D∗−1 − D′−1)] = 0

⇒ δη = C−1b,

with

bi = Tr[�i (D∗−1 − D−1)]

and

Cij = Tr[�i D
−1 �j D−1]. (56)

8A few useful identities, when dealing with (55) might be in order.
A short calculation shows that, up to linear order in δt ,

(W ′†D∗−1W ′)−1W ′†

= (�̃′ + N ′) (R′�′D∗−1�′R†)−1 R′�′

=̂(�̃′ + N ′) [R′�′(D−1 − δt (D−1L + L†D−1)]�′R′†)−1 R′�′

=̂(�̃′ + N ′) [D̃ + δt D̃ R′�′(D−1L + L†D−1)�′R′† D̃ ] R′�′,

with D̃ = (R′�′D−1�′R†)−1 and that

D∗−1(m∗ − ψ ′)

=̂[D−1 − δt (D−1L + L†D−1)] [(1 + δt L) .

× (ψ + W (d − R ψ)] + δt c

=̂D−1ψ + R†N−1(d − Rψ)

+ δt[D−1c − L†(D−1ψ + R†N−1(d − R ψ))].

From the first line it is already apparent that if D′ is able to
match D∗ exactly, then it will do so. The detailed formula
for updating response, noise, and prior can be complex, since
operator inversions are involved. In general, approximations
might be necessary here in order to proceed with a reasonable
computational complexity.

The formulas (55) and (56) form the desired simulation
scheme. The scheme deals optimally with time-dependent
pixilation, non-Hamiltonian dynamics, subgrid processes, as
well as with the accumulation of discretization errors. The
price of this generality is a higher complexity of the detailed
formula compared to many ad hoc schemes. These formulas
have to be analyzed case by case to identify the optimal
numerical implementation strategy. In order to show this in
a simple example, we turn again to the KG field.

� Assuming that we have all freedom to chose R′, N ′, and
�′ to match D′−1 = �′−1 + R′†N ′−1R′ exactly with

D∗−1 =̂ �−1+R†N−1R − δt (R†N−1RSE − E S R†N−1R)

as derived in Sec. III D, we would immediately use �′ = �

and try to accommodate the change in variance in a changed
response or noise. Thus, the unchanged signal covariance also
results from the data update via the MEP. The considerations
to update the prior in Sec. III E were therefore superfluous in
this case. The updated prior mean ψ ′ could also be derived by
maximizing the entropy with respect to it. It is not surprising
that it turns out to be ψ ′ = ψ = 0.

Writing R′ = R + δR and N ′ = N + δN , we find

D′−1 =̂ �−1 + R†N−1R + δR†N−1R

+R†N−1δR − R†N−1δN N−1R. (58)

Comparing the terms of the last two equations, we conclude
that the best match is found by the identification

δR = −δt R S E, δN = 0. (59)

Thus, the noise should stay unchanged and can be assumed
to be zero for all times it was zero initially, which we will
assume in the following. The response of an optimal scheme
should, however, evolve according to ∂tRt = −Rt S E. This
can actually be solved analytically, providing

Rt = R T−t , (60)

with the time translation operator

(Tt )k q = (eS E t )k q

= 1k q

[
cos(ωkt)

(
1 0
0 1

)
+ sin(ωkt)

(
0 ω−1

k

−ωk 0

)]
.

(61)

In case we insist on using the original response R for all
later times, the change in the uncertainty variance D∗ would
have been needed to be captured by either �′ or by N ′. Neither
is optimal for this, which is why the resulting schemes would
lose information in the course of the simulation. As we will
see in Sec. III G, our scheme with evolving response is lossless
with respect to information.

For the data update from d = dt to d ′ = dt ′ at t ′ = t + δt

we need only to expand (55) to first order in δt .
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In our ideal case with N → 0, we have W ′ = �R
†
t ′

(Rt ′�R
†
t ′ )

−1 = �R
†
t ′(R�R†)−1 = �R

†
t ′�̃

−1 = W − �(Rt −
Rt ′)†�̃−1 =̂ W − δt �L†R†

t �̃
−1, as a short calculation

verifies. The data evolution is then

d ′ = (W ′†D∗−1W ′)−1W ′†D∗−1m∗

=̂ (W ′†D∗−1W ′)−1W ′†D∗−1(1 + δt L) W d

=̂ (W ′†D∗−1W ′)−1

×[W ′†D∗−1W ′ + W ′†D∗−1(W − W ′ + δt LW )] d

=̂ d + (W ′†D∗−1W ′)−1W ′†D∗−1δt

×(�L† + L�︸ ︷︷ ︸
0

) R
†
t �̃−1d

= d, (62)

since �L† = β−1E−1E S† = −S E β−1E−1 = −L�. Thus,
∂tdt = 0, the data should not be changed, and the evolution is
completely captured by the response evolution. This scheme
is optimal from an IFT point of view, as we will see in
the following. Note that the scheme is completely specified
in the data space, since (62) does not require any subgrid
calculations, as it does not require any calculations at all. It
will be shown in the next section that the evolution of binned
field values is also completely specified in data space and that
the subgrid field configuration predictions require the usage of
a finer grid only at the very end of the calculation.

This simple data (non-)evolution equation ∂tdt = 0 is a
consequence of our KG example having a linear symplectic
evolution, as determined by H(φ) = 1

2φ†E φ and a thermal
prior distribution, as characterized by H (φ|β) = βH(φ), both
depending on the same energy matrix E. In general, ∂tdt �=
0 can be expected as soon as prior and dynamics are more
orthogonal in their eigenvector sets. �

G. Information field-theoretical solution

� The KG problem is exactly solvable and the later time
field can be obtained from applying a time translation operator,
as given by (61), to an earlier time field. This operator
depends only on the time difference, φt ′ = Tt ′−tφt , and is even
invertible, so the earlier field can be calculated from the later
one. With this, the time invariance of the field covariance can
easily be verified,

�t = 〈φtφ
†
t 〉(φ) = Tt�t=0T

†
t = �0 ≡ �, (63)

where the last identity requires a few lines of straightforward
matrix multiplications using (30) and (61).

Since we want to infer the future field φt from the initial
data d = dt=0, we have to specify how the initial data depends
on the future field. This backward-in-time response is simply
given by

d = R φ0 = R T−t︸ ︷︷ ︸
Rt

φt ≡ Rtφt . (64)

Since we now have the response of the initial data d = d0

to the field φt as well its variance �t at a later time, we
can simply write down the Wiener filter mean field at time t ,
which is

mt = 〈φt 〉(φt |d) = Wtd = �R
†
t �̃

−1d. (65)

Here we used the identity Rt�R
†
t = R T−t�T

†
−tR

† =
R �R† = �̃ that follows from (63). Therefore, any future
mean field can be calculated directly from the original data,
which therefore does not need to be evolved in time. The
response Rt and Wiener filter Wt operators connecting the field
at time t to the static data d = dt=0 are exactly the ones which
were found for the ideal IFD scheme. Thus, IFD reproduces
IFT if the parameters of the future instances are able to capture
all details of the evolved PDF.9 The subgrid representation
of the evolved field as given by (65) only requires complex
operations in data space, since �̃ is fully specified there.
Solely the back-projection into continuous signal space by R

†
t

and the subsequent spectral weighting by �̃ require subgrid
operations.

One might therefore ask how the virtual data d̃t = R φt of
the original response R applied to later field configurations
would evolve and if this requires a subgrid field resolution.
This is of importance to us, since we want to compare the
IFD/IFT scheme with ad hoc schemes, which do not need to
have a notion of a subgrid structure. Since the future field is
not precisely known, the correct data at later times cannot be
specified. The best we can do is to calculate the a posteriori
expectation value of this hypothetical future data. This ideal
data at later time, ďt ≡ 〈d̃t 〉 = 〈Rφt 〉(φt |d), is, therefore,

ďt = R�R
†
t (R�R†)−1︸ ︷︷ ︸

T̃t

d ≡ T̃t d. (66)

Note that the time translation operator of the data T̃t is not
unity in general; basically it is only T̃t = 1 for t = 0, since
one of the response operators contains a time translation of the
field

(T̃t )kq = (R�T
†
−tR

†�̃−1)kq

=
∑

k′∈k+NZ

2 [1 − cos(k′�)]

k′2�2

×
[

ω−2
k′ cos(ωk′ t) −ω−1

k′ sin(ωk′ t)
ω−1

k′ sin(ωk′ t) cos(ωk′ t)

]
�̃−1

kq . (67)

Since this time evolution operator is fully determined in data
space, and the subgrid mode dynamics is just captured by a sum
in a prefactor to the computational expensive operator �̃−1

kq , we
can conclude that a data-space-only scheme was derived. The
time-evolving data ďt = 〈d̃t 〉 contain the same information as
d, since the latter can be reconstructed from the former via
d = T̃ −1

t ďt . We can derive an evolution equation for ďt by
simply taking the temporal derivative of (66),

∂t ďt = (∂t T̃t )d = (∂t T̃t ) T̃ −1
t ďt .

It is obvious that this ideal evolution equation of the virtual
data according to the original response R is not only more
complicated than just having an evolving response Rt and

9The observation that an entropic matching approximation enforced
in any instance of continuous time can result in the exact equation
for a dynamical system was observed previously in an attempt to
reconstruct quantum mechanics from statistics [12].

013308-11



TORSTEN A. ENßLIN PHYSICAL REVIEW E 87, 013308 (2013)

(a) (b)

FIG. 2. (Color online) (a) Fourier–data-space dispersion relations ω̃k of numerical schemes for the KG field simulation for the parameters
N = 64 and μ = 1. The IFD scheme data mode frequencies ω̌k,t are shown at initial time t = 0 as given by (69) (top, blue dots), an instance
later at t = 10−4 (top, blue solid line with kinks), and at time t = π/2 (strongly oscillating blue dotted line). At t = π, the IFD scheme
dispersion relation looks similar to the initial one. The spectral scheme frequencies ω̃

spec
k as given by (71) (middle, black squares) follow the

continuous-space field dispersion (thin, smooth, and black line). Finally, the finite-difference scheme ω̃diff
k as given by (70) has the lowest

frequencies (bottom, brick red triangles). (b) Data-space representation of the numerical scheme operator L̃i j as a function of the pixel number
difference i − j for small differences. The curves are given by the discrete Fourier transformations of ω̃2

k for the IFD scheme at t = 0 (most
extreme, blue dots and line) as well as for t = π/2 (smaller light blue dots and blue dotted line close to intermediate black line), the spectral
scheme (intermediate values, black squares and line), and for the finite-difference scheme (most moderate values, brick red triangles and line).
It should be noted that the IFD operator at t = π/2 also contains some power around positions i − j = ±N /2 = ±32 (not shown in this
figure) as a consequence of the heavy oscillations of ω̌k,t at this time that are visible in panel (a).

stationary data, it is also a differential equation with time-
dependent coefficients. This might be surprising, since the
dynamical equation of the underlying KG field is invariant
under time translation. However, this time-translational sym-
metry is broken for our knowledge state on the field, for which
the time t = 0 of the initial data set d = Rφt=0 is clearly
singled out. The different Fourier data modes are mixtures of
different field modes, which evolve with individual frequen-
cies. Thus, the recovery of a similar mixture, d̃k = (R φt )k =∑

j∈Z 2 π e− 1
2 ik�sinc( 1

2k� + πj ) (Ttφ)k+N j , with the origi-
nal phases in the response, works differently at different times,
due to the changed phases of the individual modes. Therefore,
the optimal IFD differential equation for data according to
the original response becomes time dependent. Nevertheless,
we would like to have something like a (now time-dependent)
data mode frequency for a comparison with ad hoc simulation
schemes. An observer of the data dynamics could estimate such
a frequency in a pragmatic way by using ∂2

t ďk + ω̌2
k,t ďk = 0 as

an analog of ∂2
t ϕk + ω2

kϕk = 0 to define

ω̌2
k,t = −(∂2

t d
(ϕ)
k,t

)/
d

(ϕ)
k,t . (68)

The resulting frequencies are best calculated numerically,
since the involved formula (67) contains an infinite sum
without a known closed form. For t = 0, however, a closed
form can be derived,

ω̌2
k,t=0 = μ2

[
1 − 2

�μ

sinh (μ�) sin
(

1
2 k�

)2

cosh (μ�) − cos (k�)

]−1

= (k2 + μ2)

[
1 + k2�2

12
+ O(�4)

]
, (69)

that recovers the original continuous-space KG frequency
ωk = (k2 + μ2)1/2 in the limit � → 0 but differs from it for
finite grid spacings. The oscillation frequency of a data mode

is slightly higher than the directly corresponding continuous
field mode, since the former also contains field modes from
larger k, which have larger frequencies, due to the mode mixing
of the response operator. The advanced revolution of the field
modes at early times will be compensated later by a reduced
oscillation speed. The initial and later time data dispersion
relation is shown in Fig. 2 together with those of ad hoc
schemes derived in Sec. IV. �

H. Summary of the derivation

� A brief summary of the essential steps of the IFD recipe
applied to the KG problem might be instructive.

(A) Field dynamics. The KG equation was converted into
a differential equation of first order in time, ∂tφ = Lφ, by
the introduction of the momentum field πx = ϕ̇x as a second
component of a two-component field φ = (ϕ,π )†. The KG
equation is linear as L is independent of φ. This simplified the
derivation of an IFD scheme. If a nonlinear equation should be
simulated, the equation has to be linearized around the current
mean field at any simulation time step.

(B) Prior knowledge. The a priori KG field statistics
was specified as a thermal distribution P(φ) ∝ exp(−βH(φ)).
The fact that, in this case, the KG Hamiltonian H(φ)
determines both the dynamical operator L as well as the
a priori statistics P(φ) turns out to simplify the resulting
scheme considerably. It is, however, not a general necessity
for the applicability of IFD. The a priori distribution is
a Gaussian since the Hamiltonian is quadratically in φ. If
non-Gaussian priors are to be used it is recommended to find a
Gaussian approximation since IFD is developed so far only for
Gaussian priors.

(C) Data constraints. As a next step, the computer data
space was introduced. The computer data d needs to be
related to the field φ and this relation should be linear for
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practical reasons and could be assumed to be noiseless for the
KG example, d = R φ. The initial discretization operator R

was chosen here to perform a simple bin average. Therefore,
the average field value in each bin is known if the data
are available, but not the detailed field configuration within
those. However, not all possible subgrid field configurations
are equally plausible, since the prior gives them different
weights. Combining prior and data information, the ensem-
ble of plausible field configurations can be specified and
characterized by its mean field m = 〈φ〉(φ|d) and uncertainty
variance D = 〈(φ − m) (φ − m)†〉(φ|d) determining a Gaussian
a posteriori distribution P(φ|d) = G(φ − m,D). This is a
Gaussian thanks to the Gaussian prior and linear data model.
The mean field and its variance are auxiliary mathematical
objects used in the derivation of the simulation scheme that
need not concrete representations in computer memory.

(D) Field evolution. The action of the time evolution
operator on the posterior distribution had then to be worked out
analytically. Since we insisted on linear or linearized operators,
the time-evolved posterior is again a Gaussian, P(φ′|d) =
G(φ′ − m∗,D∗), characterized by an updated mean m∗ and
uncertainty variance D∗, both again auxiliary mathematical
objects.

(E) Prior update. The prior of the later time might differ and
should be updated since it will be used again. However, due
to energy and phase-space conservation of the KG dynamics,
the KG prior is unchanged. This step could have been skipped,
since the evolution of the prior can also be determined as part of
the next step, the data update via entropic matching. However,
this requires that the field dynamical equation captures all
subgrid physics. If this not the case, the prior update step
might permit implementation of subgrid processes not being
present in the dynamical equation.

(F) Data update. Finally, an update formula for the later
time data d ′ in computer memory was constructed. This
was done by, first, specifying the mathematical relationship
between any such data and the later time field a posteriori
distribution, P(φ′|d ′) = G(φ′ − m′,D′), where m′ = D′ R′†d ′
and R′ and D′ are response and propagator (or variance) at
the later time. The time-evolved distribution P(φ′|d) and the
one determined by the new data P(φ′|d ′) then were matched
entropically. The parameters used to get an optimal match can
be any of the later time, primed quantities. In the particular KG
example it turned out to be most effective to vary d ′ and R′ in
the entropic matching since this way an information-lossless
scheme could be obtained. This scheme maps the entire field
evolution onto an evolving response operator Rt and stationary
data. We showed that the resulting simulation scheme is indeed
optimal by comparison to the exact information theoretically
derived solution of the future field prediction problem. Since
this particular KG simulation scheme does not modify the
data, we asked how the binned field values (with stationary bin
averaging) would evolve and derived their evolution equation.
The time translation operator of this does also not require any
explicit subgrid field representation but has encodes subgrid
physics implicitly.

The derived simulation scheme can now be implemented
on a computer. The resulting code performs only data-space
operations and does not require any subgrid representation.
The subgrid physics, the prior knowledge, and the details of

the measurement process (the data to fields relation) have all
been included in the IFD scheme. �

IV. NUMERICAL VERIFICATION

A. Standard simulation schemes

� The IFD scheme for the KG field should now be com-
pared to more standard simulation schemes for the KG
equation as described in Appendix A 1.

The most common one is the finite-difference discretization
of the differential operators by setting ∂xϕx ≈ (ϕ(i+1)� −
ϕi�)/� and ∂2

xϕx ≈ (−ϕ(i+1)� + 2ϕi� − ϕ(i−1)�)/�2. The
KG equation discretized in this way, ∂td = L̃diff d with L̃diff

ij =
�−2δi [j+1]N − (2�−2 + μ2) δij + �−2δi [j−1]N and [j ]N =
j modN , becomes diagonal in Fourier space, just with the
dispersion relation given by

ω2
k → (

ω̃diff
k

)2 = μ2 + 2�−2[1 − cos (k�)]. (70)

This and the IFD dispersion relation are shown in Fig. 2 in
comparison to the one of the original KG field, ω2 = μ2 + k2.

Since the initial IFD frequencies are above, and the frequencies
of the difference scheme are below the one of the KG field, it
is also natural to consider the latter as another option. Thus,
we also investigate a spectral simulation scheme with10

(
ω̃

spec
k

)2 =
{
μ2 + k2 for k ∈ {0, . . . N /2}
μ2 + (N − k)2 for k ∈ {N /2, . . . N } . (71)

The Fourier-space data evolution equation can be solved
analytically and has the solution

d
(ϕ)
k = ãke

iω̃k t + ãN−ke
−iω̃k t ,

(72)
d

(π)
k = iω̃k(ãke

iω̃k t − ãN−ke
−iω̃k t ),

with the coefficients determined by the initial data,

ãk = d
(ϕ)
k t=0

2
+ d

(π)
k t=0

2iω̃k

. (73)

Thus, the most efficient simulation scheme for the KG field
evolution schemes is to evolve the initial data according to
these Fourier-space equations analytically and transform the
field back to position space at the desired time.

The ad hoc simulation schemes are best implemented
via (72) and (73), the corresponding data ď of the IFD scheme
according to (66) and (67), whereas the full field including the
subgrid modes can be followed via (25). �

B. Time evolution

� To see how well the different simulation schemes
perform, we simulate a KG field by setting up its Fourier
amplitudes ak ∈ C up to |k| = Nφ/2 drawn from P(ak) =
G{ak,1/[4 β (μ2 + k2)]} and aNφ−k = ak for the “negative”
modes, so (26), (28), and φx ∈ R2 are satisfied. We use

10The distinctions of the cases is only necessary here, since we
use k ∈ {0, . . .N − 1} so the negative frequencies are represented
by wave numbers in the second half of the range. If we would use
k ∈ {−N /2 + 1, . . .N /2} as our first Brillouin zone, we would have
(ω̃spec

k )2 = μ2 + k2.
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(a) (b)

FIG. 3. (Color online) (a) Evolved field (thin, black line) and data at t = 10 of the field also shown in Fig. 1 (β = 1, μ = 1, N = 64). The
exact data d̃t = Rϕt are shown as yellow diamonds. The IFD data according to (66) and (67) (blue dots) follows the exact data closely. The data
of the spectral scheme (black squares) is very close to the IFD data. The data of the difference scheme (brick red triangles) exhibit the poorest

match to the correct data of the evolved field. The root-mean-square errors of the field data values σ
(ϕ)
d =

√∑N−1
i=0 (d̃ (ϕ) − Rϕ)2

i /N of the three

schemes are 0.003, 0.004, and 0.020 for the IFD, spectral, and difference schemes, respectively. (b) Temporal evolution of the data error σ
(ϕ)
d (t)

for the IFD (bottom solid blue line), spectral (dashed black line slightly above the former), and finite-difference (top brick red line) schemes.
The dip in the IFD and spectral scheme error at t = π is due to the nearly perfect alignment of the mode phases at this particular time.

Nφ = 2048, μ = 1, and β = 1. A resulting field realization
is displayed in Fig. 1. We time evolve all its Fourier modes
according to (25). The initial and late time exact data are
generated via d̃t = Rφt with the response given by (32) for
N = 64 data bins. This means that there are Nφ/N = 32
independent field modes combined in a single datum, ensur-
ing that there is substantial subgrid uncertainty, as is well
observable in Fig. 1. For the spectral and difference schemes,
the data are time evolved according to (72) and (73). For the
IFD scheme, we use (66) and (67) to calculate corresponding
late time data.

For time t = 10, the field is shown and the different
data sets at this time are compared in Fig. 3. This time
was chosen because the difference scheme already exhibits
some significant but still moderate deviations from the correct
solution. The IFD and spectral schemes are both relatively
accurate. A difference between them exists but is hard to see
by eye in this snapshot. However, a comparison of the spatially
averaged errors of the two schemes reveals a significantly
higher accuracy of the IFD scheme with respect to the spectral
scheme at basically all times.

Although the IFD scheme has the highest fidelity, the
spectral scheme is also very good for arbitrarily large times.
The reason can easily be understood. Despite the fact that
any data Fourier mode is a mixture of several field modes,
the spectral scheme just follows the most dominant of these
modes and treats the others as random noise. However, since
the main mode is correctly captured, it can be followed for
infinitely large intervals, and the ignored modes just contribute
a fixed amount of uncertainty. The IFD scheme also assigns
some power to these higher modes and follows their evolution.
This is why it has a higher accuracy.

Optimally, one would have chosen an initial response that
maps the first N Fourier modes of the field exactly into the
data. Then these modes could have been followed with absolute
precision, while one would have no information on the lower-
amplitude higher Fourier modes. In this case, the IFD scheme

would have been identical to the spectral scheme, but it would
not have served us well as a sufficiently complex example
illustrating the inner workings of the IFD framework. �

V. CONCLUSIONS AND OUTLOOK

Information field dynamics serves as a framework to derive
numerical simulation schemes. It rests on information field the-
ory in order to construct continuous-space field configurations
from the finite data in computer memory. It uses the maximum
entropy principle to construct updated computer memory
data so the ensemble of time-evolved continuous-space field
configurations is matched by the ensemble implied by the
updated data with minimal information loss.

The data-updating operations of an IFD simulation time
step, as given by (55) and (56), are, in general, complex and
might require the usage of linear algebra solvers. However,
for numerical stability reasons, an implicit time step scheme
might be adopted for a simulation anyway, and the linear
algebra operations of the implicit and IFD schemes might be
performed together.

As an illustrative example, we have derived the optimal IFD
scheme for a thermally excited Klein-Gordon field. It could be
shown that the resulting IFD scheme is identical to the one
resulting from IFT. The scheme is much more accurate than a
simplistic real-space discretization of the differential operator,
and it is still significantly more accurate than a spectral scheme.
In comparison to these two ad hoc schemes with stationary
evolution equations for the data, the IFD scheme exhibits
a time-dependent discretization of the differential equation.
This is due to its ability to follow to some level the evolution
of the subgrid scales without representing them explicitly in
computer memory but capturing their influence implicitly in
the data-update rules.

This initial work on IFD should be regarded as a proposal
for how to incorporate information-theoretical considerations
into the construction of simulation schemes. IFD permits us to
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state and include explicitly background knowledge on subgrid
behavior as well as external measurement data in a way that
hopefully exploits and conserves as much of the available
information as possible.

For technical reasons, one might compromise
information-theoretical fidelity for reducing the numerical
complexity. Also for this balance, the information-theoretical
language introduced here should help to judge the choices.
Finally, the language of IFD is already what is needed for
data assimilation simulation schemes, as, for example, used
in weather forecasts. The next goal of this research line is to
develop IFD schemes for scientifically and technologically
more relevant problems, like turbulent hydrodynamics. This,
however, is left for future work.
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APPENDIX A: PREVIOUS WORK

1. Discretization of differential operators

Most of the dynamical systems in physics are described
by partial differential equations. These contain differential
operators acting on the dynamical fields. With the finite
representation of the fields in computer memory, these op-
erators need a discretized representation as well. A number of
discretization schemes have been developed, including finite-
difference methods, finite-volume methods, finite-element
methods, spectral methods, smoothed particle hydrodynamics
and others. Most of these schemes assume a distinct subgrid
structure for the fields, in contrast to IFD.

Finite-difference methods [14] represent differentials by
finite differences between the field values at the lattice grid
points. These finite-difference operators are exact if the field
is polynomial of the order of the operator. Thus, a finite-
difference gradient operator implicitly assumes the field to
be piecewise linear on subgrid scales, a Laplace operator the
field to be quadratic and so forth. In Sec. IV we will show
numerically that the IFD operator for the KG field evolution
is superior to the finite-difference operator.

Finite-volume methods [15] are used when conserved
quantities are simulated, such as, e.g., the fluid mass in
hydrodynamics. The space is split into pixel volumes. The
continuity equations for the conserved quantities can be
turned into balance equations for the fluxes of the quantity
through the boundaries of a pixel’s volume. The simplest
assumption for the subgrid field configuration is that it is
constant within the pixels, with jumps at their boundaries.
The resulting discontinuities have to be treated as separate
Riemann problems at the boundaries in hydrodynamics. A
conservative IFD scheme should also be possible if the stored
data of the scheme are the amounts of the conserved quantity
within pixel volumes and the fluxes between adjacent pixels.

Finite-element methods [16,17] also partition the space into
subvolumes, the “elements.” A set of basis functions for the

field is defined, with a support covering only a small number
of the elements or pixels. The field is represented as a linear
combination of these basis functions and, therefore, with a
tightly parametrized subgrid structure, e.g., being piecewise
linear. The partial differential equations are only required to
be solved weakly, in the Sobolev function space spanned by the
chosen basis functions. This turns spatial differential operators
into linear systems of equations, which then can be solved on
a computer.

Spectral methods are also Sobolev space based, just with
the basis functions being Fourier modes. We will compare the
IFD scheme for the KG field to a spectral method and show
that IFD provides a slightly more accurate simulation.

Smoothed particle hydrodynamics [18–20] discretizes the
mass of the fluid and not the space. Smoothed particle hydro-
dynamics is one example of Lagrangian methods, in which the
“grid” follows the flow. Each mass element has a dynamically
evolving position and is thought to be distributed over some
finite ball according to a radially declining and adaptively sized
kernel function determining the subgrid field structure.

Moving mesh codes can be regarded as a compromise
between Eulerian schemes with fixed lattices and Lagrangian
schemes with a comoving but particle-based fluid discretiza-
tion as smoothed particle hydrodynamics [21,22]. Moving
mesh codes were recently improved by using Voronoi tes-
sellation to create flexible volume cells around the moving
grid points on which finite-volume methods can be used [23].
Thus, also the subgrid field representation is of a predetermined
functional form.

In contrast to these approaches, IFD does not assume an
a priori shape of the subgrid field structure. It considers all
possible subgrid configurations consistent with the constraints
given by the data and the field equations but weights them with
a priori plausibilities. This requires knowledge on the subgrid
dynamics.

2. Subgrid scale modeling

IFD, as proposed here, requires prior information on all
modes of the dynamical field in order to constrain the unre-
solved degrees of freedom. The necessity to use information on
subgrid scales in simulations was already realized for hydrody-
namics. For this reason, the method of large eddy simulations
was developed [24–26]. This resolves the largest scale of a flow
by simulating a spatially filtered (convolved) dynamics in com-
bination with subgrid scale models that try to summarize the
effect of the unresolved scales on the global dynamics [27–30].
Usually stress tensors describe the subgrid scales. These
are actually velocity fluctuation covariance matrices and,
therefore, conceptually similar to the uncertainty dynamical
field covariances in IFD. Large-eddy simulations have recently
been combined with adaptive mesh refinement methods that
increase the resolution at locations where small-scale dynam-
ics is particularly important. This is especially important in
astrophysical applications, where a large range of scales should
be followed, as, for example, in galaxy clusters [31,32].

In astrophysical hydrodynamics, many additional pro-
cesses on unresolved scales, like star formation and radiative
feedback, are relevant yet cannot be followed in detail. In
simulations of galaxies using smooth particle hydrodynamics,
the interstellar medium is often described as a mixture of
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interacting gas phases (e.g., molecular and ionized) forming
a complex weather, with a single effective equation of state
summarizing these phases [33]. However, the translation of
subgrid physics into a concrete simulation scheme is usually
done ad hoc without considering the resolution-dependent
level of subgrid fluctuations.

In oceanography, it has been recognized that some in-
formation about subgrid eddy evolution is contained in the
large-scale fluid motions due to the practical incompressibility
of water and the resulting solenoidality of the flow patterns.
Partial reconstruction of the subgrid eddies from a coarse
resolution is therefore possible [34]. This has been used to
construct accurate simulation schemes for advective tracers
and for vorticity transport [35,36]. A maximum entropy
production principle was introduced in this context in order to
construct subgrid configurations that are numerically stable
[35]. There maximum entropy was regarded merely as a
numerical regularization trick, while in our work it plays an
important role in ensuring optimal information flow between
the simulation data at different time steps.

3. Data assimilation methods

Data assimilation methods are probably most similar
in spirit to IFD. Data assimilation methods are used in
weather forecast calculations to impose constraints from past
measurements on numerical simulation of the atmosphere. A
recent comparison of such methods can be found in Ref. [37].
The gold standard of the field is the full Bayesian posterior
distribution of the dynamical system given all data. Typically,
there are two broad classes of algorithms used to approximate
this in a computationally affordable way: particle ensemble
filters and variational methods.

Particle filters represent the knowledge and uncertainty on
the system state as an ensemble of realizations, called the
particles. These evolve individually according to the system
dynamics to later times, when new measurements are available.
Then, the particles are selected and/or reweighted according
to their individual consistency with the new data. Resampling
this distribution with a new set of particles (now with equal
weights) closes the loop and prepares for the next simulation
time step. A recent discussion of such methods can be found
in Ref. [38].

Ensemble Kalman filters represent the system knowledge
as well as an ensemble of realizations that can be propagated
by the full nonlinear dynamics in time. The data assimilation
step, however, is not done via reweighting or resampling but
by Kalman filtering. Kalman filtering is basically Wiener
filtering, which we introduced in Sec. II A, while using
an empirically determined signal covariance matrix. This is
computed from the ensemble, which is informed by the actual
external measurement data.

Variational methods for data assimilation combine the
action of a Lagrangian determining the dynamics and a loss
function describing a penalty for any mismatch of the model
prediction and the data [39]. From this combined Lagrangian,
combining dynamics and data constraints, a variational equa-
tion aries that satisfies both the system dynamics and the data
constraints. Variational methods treat information processing
and field dynamics simultaneously, similarly to IFD.

A third approach to data assimilation has recently been
proposed for the simulation of cosmic structure formation
[40–42]. There the full posteriori of the cosmic matter field
as determined by galaxy catalogs and the Gaussian initial
condition statistics of cosmic structure formation is sampled
via a Hamiltonian sampling method.

APPENDIX B: MAXIMUM ENTROPY PRINCIPLE

The MEP [7–10] is uniquely specified by the following
three requirements on how probabilities should be ranked and
updated with respect to new information. Entropy is defined to
quantify how well a given PDF represents a knowledge state.
Its functional form is determined by three requirements on the
resulting probability updating scheme.

(a) Locality. Local information has local effects; informa-
tion that affects only some part of the phase space should not
modify the entropy and the implied MEP PDF in case this area
is discarded.

(b) Coordinate invariance. The system of coordinates of
the phase space does not carry information. Entropy should
be invariant under coordinate transformation as well as the
determined MEP PDF.

(c) Independence. Independent systems can be treated
jointly or separately, yielding the same entropy in both cases.
The joint MEP PDF therefore must be separable into a product
of PDFs for the individual systems.

The unique (up to trivial rescaling) entropy functional
on PDFs that is consistent with these requirements is given
by (13), as shown in Refs. [7–10]. The usual way to use this
entropy in order to specify the PDF P(φ) is to maximize
it subject to some constraints imposed on certain moments
of the signal field statistics. An obvious one is the proper
normalization 〈1〉P(φ) = 1 of the PDF, but also a number of
higher moments might be known a priori, and summarized
in the form 〈fi(φ)〉P(φ) = ai . Here the functions could be
simple moments like φ, φφ†, etc., or more complicated
functions thereof. These constraints on PDF moments are
then incorporated into the entropy via Lagrange multiplier
or thermodynamical potentials μ and λ = (λi)i ,

S(P,μ,λ|Q)

= S(P|Q) − 〈μ + λ†f (φ)〉
= −

∫
Dφ P(φ)

[
log

(P(φ)

Q(φ)

)
+ μ + λ†f (φ)

]
. (B1)

Maximizing this entropy with respect to all components of
P(φ) yields

P(φ) = Q(φ)

Z(λ)
e−λ†f (φ), (B2)

where

Z(λ) =
∫

Dφ Q(φ) e−λ†f (φ) (B3)

ensures proper normalization, and the Lagrange potentials λ

have to be chosen to satisfy

−∂λS = ∂λ log Z =
∫

Dφ P(φ) f (φ) = 〈f (φ)〉P(φ) = a.

(B4)
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In Sec. III B, it is claimed that the MEP distribution for
φ with known mean ψ and covariance � is the Gaussian
G(φ − ψ,�). This can now be verified by a short calculation.
The entropy (B1) can be constrained by the knowledge of
zero, first, and second moments of the field via the Lagrange-
multiplier scalar μ, field λ, and matrix �, respectively,

S(P,μ,λ,�|Q)

= S(P|Q) − μ − λ†〈φ〉(φ) − Tr(� 〈φφ†〉(φ))

= −
∫

Dφ P(φ)

{
log

[P(φ)

Q(φ)

]
+ μ + λ†φ + φ†�φ

}
.

(B5)

Minimizing this with respect to all components of
P(φ) for a flat prior-prior Q(φ) = const subject to the
constraints

−∂μS = 〈1〉(φ) = 1, (B6)

−∂λS = 〈φ〉(φ) = ψ, (B7)

−∂�S = 〈φ φ†〉(φ) = � + ψ ψ†, (B8)

to ensure proper PDF normalization, mean, and variance,
respectively, yields P(φ|ψ,�) = G(φ − ψ,�) as assumed
in (27).
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