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We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose
of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an
estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation
of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information
on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and
a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a
finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to
standard importance sampling methods.

DOI: 10.1103/PhysRevE.87.013306 PACS number(s): 02.70.Ss, 02.70.Tt

I. INTRODUCTION

Entanglement is a measure of the ties that bind quantum
mechanical particles across space and time. In a quantum
many-body wave function, the amount of entanglement be-
tween two subregions of a system, A and B, is often quantified
through a functional weighting of the eigenvalues λi of the
reduced density matrix ρA = TrBρ, where there is always
some set of |φi〉 such that ρ = ∑

i λi |φi〉〈φi |. This is used
to define the so-called Rényi entanglement entropies [1],

Sα(A) = 1

1 − α
ln

[
Tr

(
ρα

A

)]
, (1)

where the limit α = 1 is the familiar von Neumann entan-
glement entropy. The scaling of S1 in particular has been
used to study and classify the ground-state phases and phase
transitions of condensed matter systems [2–7]. Until recently
it could only be accessed in numerical simulations through
complete knowledge of the ground-state wave function—
restricting its study to Hamiltonians that can be solved by
exact diagonalization or related methods (e.g., density matrix
renormalization group) [8].

In 2010, Hastings et al. introduced a procedure to calculate
Rényi entropies for integers α � 2 in zero-temperature pro-
jector quantum Monte Carlo (QMC) simulations through the
expectation value of a swap operator [9]. This operator acts on
two independent copies of the QMC-sampled configuration,
literally “swapping” basis states in region A between the two
copies. Since introduction of the algorithm, there has been
a flurry of activity in calculating Rényi entropies numerically
using swap-related techniques [10–14]. Soon thereafter [15], it
also was demonstrated that Rényi entropies could be calculated
in finite-temperature QMC simulation through adaptation of
a well known “replica” trick [16], whereby the (d + 1)-
dimensional QMC simulation cell is doubled (in the case
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of S2) in size in its imaginary time direction [17,18]. The
Rényi entropy is then related to the logarithm of the ratio
of the partition function of the replicated system (Z[A,2,T ]) to
the partition function of the original system, Z(T ). Unlike the
swap method that gives a Rényi entropy directly at T = 0, the
replica trick calculated for two simulations (one for Z[A,2,T0]
and one for Z(T0)) alone does not give the Rényi entropy
at the temperature T0. Typically, a careful integration over
many simulations from T = ∞ to T = T0 must be performed
to calculate the Rényi entropy [15,19]. Other approaches are
possible, including a recent idea that allows direct calculation
of the ratio of two partition functions at a fixed temperature
without integration [20], which effectively implements ideas
of the swap operator at finite temperature. Ultimately, such
ideas should be wed into the application of broad histogram
techniques, which are natural solutions for Monte Carlo
simulations which require calculating the partition function.

In this paper, we use an advanced Wang-Landau [21]
sampling technique for calculating the Rényi entropy in
finite-temperature QMC simulation that avoids the need for
many separate simulations and allows access to the Rényi
entropy at any arbitrary temperature between T = ∞ and some
chosen cutoff temperature. We outline the technique for the
specific case of S2 using a stochastic series expansion (SSE)
QMC simulation. We then demonstrate the method by looking
at the finite-size scaling of the Rényi mutual information in
three variants of the spin-1/2 XXZ model in two and three
dimensions and the two-dimensional (2D) transverse field
Ising model.

II. METHODS

In this section we discuss the specific implementation
details of the Wang-Landau method in the context of QMC
simulation and calculating the mutual information between
two subregions A and B. This particular implementation
is guided by the established SSE QMC simulation [22–24]
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and recent extensions using a modified simulation topology
[15]. For adding Wang-Landau sampling to the SSE QMC
simulation, we find the method outlined by Troyer et al. [25]
is a simple and concise starting point, although it has similar
limitations that have been found also to exist in classical
Wang-Landau methods [26]. Going beyond Wang-Landau
approaches to more general broad histogram sampling, we
implement a more advanced technique detailed by Wessel et al.
[27] that addresses some of the shortcomings with the original
Wang-Landau approach but still provides the density of states
needed to calculate thermodynamic properties (including the
Rényi entropy) over a large range of temperatures.

A. Stochastic series expansion

The SSE [23,28] is a framework similar conceptually
to world line methods [29–31] in which one simulates a
d-dimensional quantum system using a (d + 1)-dimensional
classical simulation. To begin, we recall the standard SSE
implementation, which represents the partition function as

Z = Tr[e−βH ] =
∑
ψ

〈ψ |
∞∑

n=0

(−β)nHn

n!
|ψ〉, (2)

where
∑

ψ represents the trace over some complete basis of
states for the system. We rewrite the above by collecting all
the prefactors to the left and inserting the resolution of the
identity between each power of the Hamiltonian. Since the
Hamiltonian is a sum, we can group operators into pieces
that act on certain groups of sites and by whether they are
diagonal or off diagonal in our basis of choice. These grouped
pieces of the Hamiltonian we refer to as “bond” operators
Ha,b, where a differentiates diagonal and off diagonal terms
and b denotes a grouping of sites. For our formalism, a = 1
represents diagonal terms and a = 2 represents off diagonal
terms, while b specifies the bond connecting two sites that
the Hamiltonian piece operates on. Using this formalism we
obtain the SSE representation of the partition function,

Z =
∑

n

(−β)n

n!

∑
{ψ}

n∑
i=0

〈ψi |Hai,bi
|ψi+1〉, (3)

where
∑

{ψ} represents the sum over all valid configurations
{ψ0, . . . ,ψn+1} with the condition 〈ψ0| = 〈ψn+1|. If we allow
the sum to go from zero to infinity and include all possible
lists of operators Hai,bi

for each n, this formulation is exact.
In practice, contributions above some large value N are
numerically insignificant and can be ignored. The cutoff N

is always larger than any visited n in the importance sampling
SSE QMC simulation and, as such, does not affect the statistics
except to allow us to represent the set of operators as a finite
list.

The two updates we use to efficiently sample only nonzero
weights are referred to as the diagonal update and the directed
loop update [23]. In the diagonal update we insert and remove
diagonal operators from the list, changing n and the total
weight, but not changing 〈ψ0|. We use the change in weight at
each insertion or removal and the usual Boltzmann condition
to accept or reject these proposed moves. In the directed loop
updates we connect all the Hamiltonian elements by what
sites they interact with at each insertion of the identity in

FIG. 1. (Color online) Boundary conditions of the modified
simulation, related to Eq. (6). States with the same labels represent
where the periodic boundary conditions of the simulation cell are,
while lines represent the paths of up spins (or bosons, depending on
context) in the imaginary time direction.

the expanded trace 〈ψi |. We then allow a loop to traverse
this linked network of sites and change the operators (and
spin configurations) it passes through, changing the type of
each operator (and hence total weight) but not changing which
sites each operator interacts with. Using these two updates
our simulation is able to satisfy both ergodicity and detailed
balance.

Recently, the SSE QMC simulation was adapted to allow
for the calculation of Rényi entropy between two regions, A

and its complement B [19]. To do this, the so-called replica
trick was employed to estimate Eq. (1):

Tr
(
ρα

A

) = Z(A,α,β)

Z(β)α
, (4)

allowing the calculation of the Rényi entropies through

Sα(ρA) = 1
1−α

(ln[Z(A,α,β)] − α ln[Z(β)]). (5)

Here, the two partition functions represent two separate QMC
simulations: Z(β) is the “usual” partition function for the
physical system under study, and Z(A,α,β) is a replicated
partition function of the form

Z(A,α,β) =
∑
ψ

〈
ψA

0

∣∣〈ψB
0

∣∣e−βH
∣∣ψA

1

〉∣∣ψB
0

〉

⊗ 〈ψA
1

∣∣〈ψB
1

∣∣e−βH
∣∣ψA

0

〉∣∣ψB
1

〉
, (6)

where 〈ψA
i | represents the basis containing spins in A, while

〈ψB
i | represent the spins not in region A and, as illustrated in

Fig. 1, the boundary of region A is “stitched” together between
the two replicas in the imaginary time direction.
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It is apparent from Eq. (5) that the calculation of Rényi
entropies involves a procedure very similar to calculating a
difference of free energies. As is well known, neither the
free energy, ln[Z(T )], nor in fact the partition function itself
is accessible directly through importance sampling. Previous
calculations of Sα were obtained using a thermodynamic
integration of internal energies E, obtained over many separate
simulations (or one “annealing” simulation) [15,19] or by
simulations that sample the ratio of two distinct partition
functions at a fixed temperature [20]. However, techniques
involving extended ensembles have been employed for decades
in the calculation of free energies and related quantities in
a variety of Monte Carlo techniques. Below, we discuss the
adaptation of one of these, Wang-Landau sampling [21], to
the calculation of Rényi entropies in finite-temperature QMC
techniques.

B. Wang-Landau sampling

In contrast to importance sampling where we sample states
using the thermal weights of the system and take an unweighted
average of observables, Wang-Landau sampling seeks to use
the sampling process itself to determine the distribution of
an unknown function. If we consider Eq. (3), the partition
function can be rewritten as

Z =
∑

n

βng(n), (7)

where n is the number of operators in the SSE formalism,
Eq. (3). Since in the SSE the energy can be calculated using the
estimator [32] E = −〈n〉/β, by knowing g(n) we are also able
to calculate the energy and related variables like the specific
heat for all temperatures [assuming complete knowledge of
g(n)]. In addition, we are able to explicitly calculate the
partition function for any temperature (up to some cutoff),
something not possible when using importance sampling.

Unlike importance sampling in which we sample states with
weights derived from the Boltzmann distribution, the Wang-
Landau method samples using the weighting W = g−1(E) [or
g−1(n) in the quantum case], ensuring that all energies are
sampled with equal frequency. Since we do not know g(E) a
priori we start with an estimated density of states, typically
flat, and sample the system assuming that our estimate is good.
If g(E) is correct for all energy (up to a scaling factor) then
the histogram of energies sampled will be flat; if the histogram
is larger for some energy E′, then our estimate for g(E′) is
too low for that energy, and vice versa. In this way we use the
sampling histogram to iteratively update the density of states
until the histogram is flat and g(E) is converged.

C. Quantum Monte Carlo and Wang-Landau techniques

In this section we describe all the changes added to the
SSE QMC simulation necessary for performing the quantum
Wang-Landau technique. As mentioned before, previous work
[25] has successfully implemented Wang-Landau sampling in
SSE QMC simulations, as well as extensions of the method
[27]. Our implementation mainly focuses on using the Wang-
Landau method (as a proof of concept) and includes recent
advances made in the classical Wang-Landau formalism [26].

The first challenge with all Wang-Landau techniques is
representing the sampling function, here g(n), in a tractable
way. This problem of internal representation is that g(n)
ranges over 2000 orders of magnitude (for larger systems of
typical Hamiltonians). Given computer precision, the common
solution that works here is to only keep track of the natural
logarithm of g(n). This representation is entirely compatible
with the simulation and allows for the largest amount of
precision without using special data types. For the purpose
of the below discussion, we let G(n) = ln(g(n)).

The biggest change from the importance sampling simula-
tion is a modification of the diagonal update [25] in which the
number of operators [the n in g(n)] is changed. In the normal
simulation, we compare the weight before and after, giving us
the probability of adding an operator as

P = min

{ 〈ψi |H1,b|ψi+1〉β
M − n

,1

}
, (8)

where H1,b is a diagonal operator acting on bond b and n is the
number of operators. When using the Wang-Landau technique
this update changes to

P = min

{ 〈ψi |H1,b|ψi+1〉eG(n)−G(n+1)

M − n
,1

}
, (9)

using the current internal estimate of G(n). Then, whether we
accept or reject the move, we update

g(n) = gold(n)f, (10)

G(n) = Gold(n) + F, (11)

using the new n after the update. F = log(f ) is the refinement
parameter used to converge the function G(n). The refinement
parameter starts as some large value (in our case e, the natural
log) and when the current histogram is found to be flat (±10%
of the mean for each bin), F is reduced by

F = Fold/2, (12)

and the histogram is reset. The directed loop update is carried
out as before [22] (after each diagonal update), but G(n) is not
changed or used in this update since the number of operators
does not change.

The above algorithm works well when the estimate of
G(n) is far from convergence, but more recent work on
the classical Wang-Landau algorithm [26] has shown that a
small saturated error may not converge with this method. The
concept is simple: when the system is close to converged, say
the maximum deviation of G(n) from the true function is less
than our flatness tolerance, then the simulation will assume
the histogram is flat (within tolerance) after a small amount of
sampling. This results in the refinement factor getting small
very quickly without changing G(n) significantly, causing
early noise in the sampling of G(n) to become frozen in.
To correct for this, we keep track of the number of full
diagonal updates (update over all elements of the operator
list) and directed loop updates as a number t . We use the
aforementioned update until we find that F < 1/t , after which
we ignore the histograms and instead set the refinement
parameter to

F = 1/t. (13)
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FIG. 2. (Color online) Comparison of the first derivative of Gi(n)
using G0(n) (arbitrary) as a baseline for i = 0, . . . ,15. Each color
represents a different independent simulation of the 2D XXZ model
of a 32 × 32 lattice. The noise is evenly distributed with a larger
width for the minimal and maximal values of n.

The above algorithm is used for all the results we present.

D. Ensemble optimization

If we move to more general broad histogram techniques, a
good extension for the SSE QMC simulation is the “minimum
round trip” approach [27]. This technique tends to reduce the
statistical error (shown in Fig. 2) by reshifting the sampling
effort to the areas contributing most to the error, thereby being
more efficient overall.

To briefly summarize the technique, it keeps track of sep-
arate histograms for upward and downward moving walkers,
where the walkers are moving in the one-dimensional space
of number of operators, n. A walker is “upward” if it most
recently visited n = 0, and “downward” walkers are those that
most recently visited n = N (where N is our cutoff in the
number of operators). With these two histograms we have
both the total sampling (upward plus downward) and the rate
of change in the fraction of upward (or downward) walkers
as a function of n. The concept is that if there is a point in
the simulation where the fraction of upward walkers change
sharply, this is interpreted as the simulation having trouble
tunneling through a barrier in configuration space. To pass
through such barriers more easily, we weight the simulation to
locations where the change in the fraction of walkers is large.
In addition, the sampling is weighted by the inverse number
of total samples—this alone would simply be Wang-Landau
sampling (in that the weights would converge to the inverse
density of states), but the addition of the second condition
skews the weights. This process is iterated until the modified
weights converge.

With the modified distribution we can sample and take the
product of the histogram of visits and our skewed weights to get
the density of states (in Wang-Landau the histogram of visits
is flat, and so this product is not necessary in principle), and
once we have this we can proceed with an identical analysis to
our treatment of generating the density of states with Wang-
Landau sampling alone. We implement this method for the 2D
transverse field Ising model and present and discuss the results
in Sec. III.

E. Calculating observables

Unlike importance sampling where the calculation of
observables is aggregated over the course of the simulation,
Wang-Landau sampling produces a function from which
observables can be calculated after the simulation. In this
section we discuss the challenges associated with using the
function G(n) to calculate observables, and the variety of data
that we calculate in relation to entanglement.

The first step in using G(n) is normalizing the function,
since Wang-Landau sampling converges G(a) − G(a + 1) for
all a, but not the absolute magnitude of either. By examining
the partition function at infinite temperature we see that

Z(β = 0) =
∞∑

n=0

βng(n) = g(0), (14)

ln[Z(β = 0)] = S(β = 0) = G(0), (15)

where S(β = 0) is the entropy at infinite temperature. In a
simulation employing spin-1/2 particles, at infinite tempera-
ture each spin is independent and the entropy is

S(β = 0) = Ns ln(2), (16)

with Ns as the number of spins. In the modified simulation
with α layers, spins not in the region are duplicated (n − 1)
times and act as independent degrees of freedom. In this (more
general) case, the entropy is

Sα(A,β = 0) = [Ns + (α − 1)(Ns − NA)] ln(2), (17)

where NA is the number of spins in region A. Using these
formulas we can normalize G(n) for any of the simulations by
subtracting a constant amount from all elements of G(n) such
that G(0) has the correct value.

In addition, if we know the energy at infinite temperature
we can gather information about G(1). This is because if we
look at the calculation of the energy it can be written as

E = −
∑

n neG(n)βn−1∑
n eG(n)βn

+ C, (18)

lim
β→0

E = −eG(1)−G(0) + C, (19)

where C is the sum of all constants subtracted from the
Hamiltonian in the SSE formalism. This gives us a second
check for any model in which the high temperature limit of the
energy is known.

Using Eq. (7) and the normalized G(n) we get the equation
for the partition function,

ln[Z(β)] = ln

[ ∑
n

βneG(n)

]
. (20)

Although such a calculation does not pose any problems
analytically, computing such a large term using fixed precision
data types is a small challenge. To calculate it, first we use a
second function G′(β,n) defined as

G′(β,n) = G(n) + n ln(β). (21)

Using this function the log of the partition function can be
written as

ln[Z(β)] = ln

[ ∑
n

eG′(β,n)

]
. (22)
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Finally, we factor the entire equation by K = max
n

{G′(β,n)}
to get

ln[Z(β)] = ln[K] + ln

[∑
n

eG′(β,n)−K

]
. (23)

By doing this, the series can be reexponentiated, summed,
and the natural logarithm taken of the result without the risk of
numerical overflow. Other calculations, such as the energy, use
a similar trick to prevent the very large values of the partition
function from causing problems in computation.

The method so far allows calculation of estimators derived
from G(n) but gives no estimate on the quality of the data.
To determine the method’s accuracy (without comparing to
known results) we use the fact that, even using the 1/t

optimization, the initial noise of the simulation is only proven
to asymptotically converge. By using multiple independent
simulations we can estimate any observable F [G(n)] as

〈F [G(n)]〉 = 1

N

N∑
i=1

F [Gi(n)], (24)

� 〈F [G(n)]〉 = 1√
N

([
1

N

N∑
i=1

(F [Gi(n)])2

]

−
[

1

N

N∑
i=1

F [Gi(n)]

]2)1/2

, (25)

where 〈· · · 〉 represents the statistical average of a quantity over
the simulation and Gi(n) represents the function generated
from the ith simulation. The standard deviation of the mean of
〈F [G(n)]〉 is represented by � 〈F [G(n)]〉 but does not include
systematic errors introduced by features such as the cutoff. We
denote the estimator as 〈F [G(n)]〉 to distinguish our statistical
estimate for the observable to the analytically exact F [G(n)]
if we had precise knowledge of G(n).

The noise in G(n) might make it tempting to estimate
F [G(n)] as

〈F [G(n)]〉 = F [〈G(n)〉], (26)

〈G(n)〉 = 1

N

N∑
i=1

Gi(n). (27)

We have tested that calculating the estimate of the observables
by Eq. (24) gives very similar results to Eq. (26), but it does not
lend itself easily to calculating the confidence of the estimate.
Comparison of G(n) from different simulations shows that the
deviation from the mean is highly correlated—that is to say
if Gi(n) is larger than average that Gi(n + k) is also likely
to be larger than average for small k. This error is clarified
by examining the distribution discrete first derivative of Gi(n)
in Fig. 2. That the first derivative is the quantity that has a
random uncorrelated distribution rather than the function itself
can be understood by understanding that it is the ratio between
adjacent elements, g(n + 1)/g(n) or G(n + 1) − G(n), that
the Wang-Landau simulation converges for all n and through
this the algorithm is able to reconstruct G(n).

III. RESULTS FOR MUTUAL INFORMATION

The Wang-Landau technique outlined above is particularly
suited for studying finite-temperature properties of the Rényi

entanglement entropies. It is important to note that, at finite
temperature, the Rényi entropies in general no longer obey the
property that Sα(ρA) = Sα(ρB), since each quantity picks up
volume contributions to its scaling from thermal mixing as the
temperature is increased from T = 0. The analogous quantity
that is studied at finite temperatures is therefore the mutual
information (MI),

Iα = Sα(ρA) + Sα(ρB) − Sα(ρA∪B), (28)

which is designed to cancel the volume contributions affecting
each Rényi entropy at T > 0, resulting in a symmetric quantity
that reduces to Iα = 2Sα(ρA) = 2Sα(ρB) at T = 0 assuming
Sα(ρ) = 0 at zero temperature (which is not true if there is
ground-state degeneracy). In QMC simulations, the MI can
be calculated for a given region A and its complement (B)
using three simulations—two if A and B are congruent. In
previous work [15] the calculation for the Rényi entropy was
done using thermodynamic integration, extending Eq. (17) to
finite temperature by integrating energy, similar to how one
would calculate thermodynamic entropy in classical systems:

Sα(ρA) = −Sα(A,β = 0) + αS(β = 0)

+
∫ β

0
〈E〉A,β ′ dβ ′ − α

∫ β

0
〈E〉β ′ dβ ′, (29)

where 〈E〉A,β ′ (〈E〉β ′ ) is the energy of the modified simulation
cell (normal simulation) at inverse temperature β ′. Using this
integration technique, the MI was studied using QMC simu-
lation in the context of the anisotropic Heisenberg (or XXZ)
model [19]. To calculate results using Eq. (29) simulations
were run at many temperatures to provide the value of 〈E〉A,β ′

over a sufficiently wide range and fine temperature mesh
to perform numerical integration. By studying the finite-size
scaling, the form of which is model dependent, of the α-Rényi
entropies, the authors discovered that any critical behavior
manifest at a finite-temperature phase transition Tc is manifest
as approximate crossings of the MI (for different lattice sizes)
at Tc and αTc [19]. In this paper, we calculate the MI using
Eq. (28), generating the Rényi entropy using Eqs. (5) and (23).

We first examine the behavior of the MI in the 2D square-
lattice XXZ model,

H = J
∑
〈ij〉

(
�Sz

i S
z
j + Sx

i Sx
j + S

y

i S
y

j

)
, (30)

using our Wang-Landau algorithm of the previous section,
and compare its performance to the conventional integration
technique [19]. In addition to the 2D anisotropic Heisenberg
model of Ref. [19] (� = 4), we examine the 2D Heisenberg
model (� = 1). To test an extended Wang-Landau method,
we use the 2D transverse field Ising model [33] in the regime
where the transverse field is weak and it has a finite temperature
phase to an Ising-like ground state. The Hamiltonian for this
model is typically written as

H = −J
∑
〈ij〉

σ z
i σ z

j − 

∑

i

σ x
i , (31)

where σ z and σx are Pauli spin operators with eigenvalues ±1,
and we study the model at 
 = J = 1. Finally, we examine the
three-dimensional (3D) Heisenberg model on a cubic lattice
[34], which also has a finite-temperature transition.
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FIG. 3. (Color online) I2/l, where l is the boundary length, for
the 2D Heisenberg model with L = 12, comparing the integration
of importance sampling and the Wang-Landau algorithm. Notice
the sharp anomalous behavior in the Wang-Landau algorithm for
temperatures slightly below the cutoff, here chosen to be T = 0.2.
This means we can only guarantee results down to that temperature,
but not that they necessarily diverge there.

To begin, we examine the dependence of the MI on the
cutoff error due to our knowledge of g(n) only up to some
large (finite) value of n. In the usual SSE QMC simulation
the number of operators, n, sampled is fluctuating, but for
a given β we can associate an upper bound on the number
of operators needed to faithfully represent the system, N .
This N can be used to choose an appropriate cutoff in the
Wang-Landau algorithm by using a short unmodified SSE
QMC simulation to determine the value N . Choosing to have
a hard cutoff in n corresponds to a cutoff in reliable data at
some β. This can be chosen to be slightly larger than the
N identified for the cutoff β in order to ensure that data
are still accurate at the β of interest—typically 1.2 to 1.4
times N . Results generated for temperatures above the cutoff
are accurate, but those below the cutoff exhibit anomalous
behavior, as effectively g(n) = 0 for n > N [or equivalently,
G(n) = −∞]. The result of attempting to generate results
below this cutoff is shown in Fig. 3.G(n) is a smooth function
for large enough n, so there is room for methods which generate
data using analytic extensions of G(n) to reduce the anomalous
behavior near the lower temperature bound, but in general
exactly knowing such an analytic form (for all n) would be
equivalent to having an analytical expression for the energy as
a function of temperature.

We now briefly examine the finite-size scaling of the MI
for several examples of � in the XXZ model. To begin,
recall that the anisotropic Heisenberg model (with � = 4)
undergoes a phase transition to a z-axis polarized antifer-
romagnetic ground state as the temperature is lowered. The
transition temperature was determined previously using the
fourth order binder cumulant of the staggered magnetization,
finding Tc = 2.235(2) [19]. The energy per spin and mutual
information I2 divided by boundary size l = 2L is shown in
Fig. 4. The mutual information per system size for different
L exhibits a universal scaling [19] manifest as approximate
crossings at Tc, and 2Tc (when using I2 from the second
Rényi entropy). The inset in Fig. 4 shows a closeup of the

FIG. 4. (Color online) The energy per spin and mutual informa-
tion divided by boundary length for the 2D XXZ model with � = 4.
Notice the crossings of the mutual information very close to Tc and
2Tc, marked with vertical lines. Different lines correspond to lattices
of size 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22 (from lowest to highest at
peak). The inset shows finite-size extrapolation of crossings of curves
from systems of size L and 2L (as a function of 1/L), and gives us
Tc = 2.20(2).

crossing, with the uncertainty of the data points calculated from
Eq. (25).

It is well known that the 2D isotropic Heisenberg model
(� = 1) has no finite-temperature phase transition. When
examining the mutual information, we do not see any fixed
crossing in the curves as a function of L, as shown in Fig. 5;
rather, the crossings move towards T = 0 for increasing L.

To test the extended broad histogram sampling algorithm
[27], we illustrate results from another Hamiltonian, the
transverse field Ising model. On the 2D square lattice the
classical Ising model has a transition temperature of Tc =
2J/ ln(1 + √

2) ≈ 2.269J from Onsager’s exact result [35].
When we add a small transverse field we expect that the
transition temperature will be slightly lowered, and as the
critical point of this model for the two-dimensional system
is 
c = 3.044J we are well within the Ising-like phase at

 = J [36]. Figure 6 shows the mutual information curves
for this model for a small set of sizes, showing crossings
around Tc ≈ 2.21, slightly below the nonperturbed result,
as expected. The inset shows a very tight error bound for
the data points when using the extended broad histogram
technique.

Finally, we examine the performance of this method in
higher dimensions using the 3D isotropic Heisenberg model.
Unlike the 2D case, the 3D Heisenberg model does have a
finite-temperature phase transition, occurring for � = 1 at
Tc = 0.946 [34]. In this case, the regions A and B used
to calculate the Rényi entanglement entropy consisted of a
periodic plane spanning the 3D simulation cell, cutting it
into two halves. MI results are illustrated in Fig. 7 for a
largest size of 10 × 10 × 10. In Fig. 7, the MI per surface
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FIG. 5. (Color online) The energy per spin and mutual infor-
mation divided by system size for the 2D Heisenberg model. This
model shows no fixed crossing in I2/l. Neighboring sizes cross
at progressively lower temperatures. Different lines correspond to
lattices of size 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22 (from lowest to
highest central peak). Crossings cannot be tracked, as for the larger
system sizes (i.e., L = 10 and L = 20) they do not cross at any low
temperature.

area of this plane exhibits crossings approaching the critical
temperature within error bars. Interestingly, finite-size effects
are magnified near 2Tc, when compared to the 2D transition
studied above. It would be interesting to develop a full scaling
theory for the 3D Heisenberg transition to examine these
effects in the MI, similar to what was done previously in two
dimensions [19].

FIG. 6. (Color online) The mutual information divided by system
size for the 2D transverse field Ising model using the extended broad
sampling approach at 
 = J = 1. The inset shows a closeup of the
lower crossing of mutual information at around T = 2.21, crossing
which we expect to occur at the transition temperature. Different lines
correspond to lattices of size 6, 8, 10, and 12 (from lowest to highest
central peak).

FIG. 7. (Color online) The mutual information divided by surface
area (still denoted l) for the 3D Heisenberg model. The crossings of
the mutual information occur very close to Tc and to a lesser extent
2Tc, marked with vertical lines. We believe the deviations would be
resolved with a proper finite-size scaling. Different lines correspond
to lattices of size 4, 6, 8, and 10 (from lowest to highest central peak).

IV. DISCUSSION

Although Wang-Landau simulations in themselves are not
new [21], the use of such noncanonical sampling techniques
in quantum Monte Carlo algorithms is still being explored.
In general, techniques like Wang-Landau simulations tend
to suffer from slower convergence for a specific parameter
(i.e., the energy at a specific temperature) when compared to
importance sampling techniques, but the trade-off is that the
Wang-Landau technique generates this result for all temper-
atures, something that would require many more simulations
using importance sampling. In the end, the decision of the type
of sampling to use should depend on the nature of the most
important observable.

The Wang-Landau technique can also be extended to
measure any quantity that could be measured using traditional
SSE. Instead of just simply having g(n), we now associate any
number of other observables (like magnetization) with each
g(n). By looking at the average value sampled for a given n,
when we reweight all the g(n) we can calculate these quantities
for any temperature. One difference between Wang-Landau
sampling and importance sampling here is that because all
energies are explicitly sampled, the simulation does not tend to
get stuck in local configurations, although there are certain rare
cases in which it can occur. This avoidance of local minimums
means that in systems with symmetry broken ground states,
like the 2D Ising model, we have a single simulation that is able
to access both ground states without the addition of explicit
cluster moves.

We have demonstrated that the Wang-Landau technique can
be successfully used along with a modified SSE formalism [15]
to generate the Rényi entanglement entropies, and associated
mutual information, over a wide range of temperatures. Using
the modified 1/t schedule we are able to reproduce results that
agree with previous temperature integration studies on simple
quantum models. Improvements using optimized ensembles
allow for a similar analysis once the density of states is
extracted.
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Such broad histogram techniques can also be extended
to work in other parameters of the Hamiltonian, such as
the size of the entangled region A in the replica trick. A
Wang-Landau sampling in this parameter would allow the
calculation of the entanglement entropy at a fixed temperature
without integration. In fact, the implementation by Humeniuk
[20] is suggestive of how one might include Monte Carlo
moves that change region size, a necessary element in such a
Wang-Landau method. As the accumulation of error is still a
concern, it is not trivially clear that integrating in energy or
integrating in region size leads to a smaller error for all cases.
This should be explored in the future.

Using our Wang-Landau method, we have obtained mutual
information results for the 2D anisotropic Heisenberg model,
reproducing the crossings at the critical temperature [19]. For
the isotropic case, no critical scaling of the mutual information
is observed, consistent with the lack of a finite-temperature

phase transition in the model. We have also implemented a
QMC simulation for the 2D transverse field Ising model, where
the mutual information again shows evidence of the expected
finite-temperature phase transition. Finally, we examine the
mutual information in a three-dimensional Heisenberg model,
and show that crossings occur near Tc.

ACKNOWLEDGMENTS

The authors thank P.-N. Roy, R. Singh, S. Trebst, and
A. Sandvik for valuable discussions, and the Quantum Con-
densed Matter Visitor’s Program at Boston University for
hospitality during a visit. This work was supported by NSERC
of Canada and the Vanier Canada Graduate Scholarship.
Simulations were performed on the computing resources of
SHARCNET.
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