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An asymptotic approach is utilized in order to obtain a unified description of the propagated field dynamics
due to an input Gaussian-modulated harmonic wave of arbitrary initial pulse width in a linear, causally dispersive
gain medium, described by the single resonance Lorentz model. The asymptotic method of analysis is applied
on the unified, exact integral representation of the propagated field, which is characterized by a unified complex
phase function that depends upon the input field and gain medium parameters as well as upon the propagation
distance in the medium. In order to apply the asymptotic method, an analysis of the evolution of the saddle point
locations, which depend upon the dispersive properties of the gain medium, the temporal width, and the carrier
frequency of the input Gaussian pulse as well as upon the propagation distance and of the topography of the real
part of the unified phase function in the complex ω plane, must be performed. Upon the subsequent numerical
application of the asymptotic method, the predictions of the unified asymptotic approach are found to be in
exceptional agreement with the respective results of a purely numerical experiment for all considered initial pulse
widths and lead to a unified model of Gaussian pulse propagation in a gain Lorentzian medium. According to this
model, the propagated field is composed of pulse components, each being due to the asymptotic contribution of a
respective relevant saddle point of the unified phase function. The instantaneous angular frequency of oscillation
and the stationary point(s) of the envelope of each such pulse component are then obtained from the real and
imaginary parts, respectively, of the corresponding relevant saddle point as it evolves in the complex ω plane.
This theoretical approach may then yield particularly useful physical insights into attosecond pulse propagation.
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I. INTRODUCTION

A stream of research advances, most notably in the past
decade, has enabled the reproducible generation, characteriza-
tion, control, and shaping of ultrashort pulses of electromag-
netic radiation and paved the way for a new research discipline,
commonly referred to as attosecond science [1]. Its onset may
be traced back to 2001 when the first attosecond light flashes
were produced [2]. Successive developments in this discipline
[3,4] led to the production of light flashes with duration less
than 100 attoseconds (as) [5] using femtosecond laser tech-
nology capable of generating pulses in which the electric field
performs a single oscillation [6]. Such developments enabled
the real-time study of elementary particles and processes
at an intra-atomic level which necessitate technologies with
discriminatory capabilities at subfemtosecond time scales; in
the offing are a host of important applications in physics, solid
state physics, chemistry, biology, and medicine.

Recently, it became possible to synthesize wave forms of
light pulses which consist of less than a full oscillation [7]. The
advent of such pulses emphasizes the theoretical problem of
providing an accurate description of their dynamical evolution
as they propagate through and interact with a dispersive
medium. Efforts to address this problem have concentrated on
linear [8,9] as well as on nonlinear [10,11] media and systems.
A number of these efforts [10–18] utilize the fundamental
assumption concerning the slow variation of the pulse envelope
in order to analytically describe the propagation characteristics
of ultrashort and/or ultrawideband pulses; an unspecified
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degree of approximation is characteristic of the descriptions
afforded by these efforts. An alternative means of investigating
this pulse propagation problem is to use rigorously valid
asymptotic approaches. The origin of such efforts may be
traced back to the seminal work of Sommerfeld [19] and
Brillouin [20] which resulted in the discovery of two, so-called,
forerunners or precursors. More recently, Oughstun and his
co-workers [8,9] resorted to modern asymptotic techniques in
order to obtain a uniformly valid evaluation of the integral
representation of the propagated field due to instantaneous
rise and/or fall time or exponentially varying envelope input
pulses in various linear, causally dispersive attenuative media
and provided [21] a physical explanation of the resultant
ultrashort pulse dynamics. Moreover, they concluded [22] that
there exists a critical distance separating the complementary
ranges of increased accuracy of approaches that are based upon
either the slowly varying envelope approximation or that resort
to asymptotic techniques. A variety of numerical techniques
have also been employed in order to assess the accuracy of
the predictions of ultrashort and/or ultrawideband pulse dy-
namics in temporally dispersive media and systems [23]. The
first experimental verification of the asymptotic description
appeared in 1969 [24] when the Sommerfeld and Brillouin
precursors were observed at microwave frequencies, while
more recently [25] they were observed in the optical domain.

Of particular importance in optics is the case of Gaus-
sian pulse propagation in a dispersive medium. Garrett and
McCumber [12] investigated this problem in a linear dis-
persive, absorbing or amplifying, medium. They showed that
the propagating pulse remains very nearly Gaussian, with its
peak amplitude traveling at the classical group velocity even
when it is superluminal (i.e., greater than the vacuum speed of
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light) or negative and argued that this is due to the action of
the dispersive medium on the early frequency components of
the input Gaussian envelope. Crisp [13,14] investigated the
propagation of small area coherent input pulses through a
resonant medium. He showed that, as the propagation distance
in an attenuative medium increases, the area of the propagating
pulse decays exponentially to zero and its center of gravity
moves with a velocity that may become superluminal. In an
amplifying medium an input Gaussian pulse experiences sig-
nificant asymmetric broadening and slows down. It was argued
that the asymmetric energy absorption from, or radiation to, the
pulse explains the superluminal values of the group velocity
in an attenuative medium [12] as well as related experimental
findings [26] in an amplifying medium. Chu and Wong [27]
experimentally observed pulse propagation in a linear disper-
sive and absorptive medium at group velocities, even when
they are superluminal, become infinite or even negative. Hoc
et al. [28] have instead relied on approximations of the
exact Wigner equation and asymptotic techniques in order
to examine this propagation problem in a linear, homogeneous
dispersive and absorptive medium. The investigations of
Varoquaux et al. [16] regarding smoothly varying input pulses
in a Lorentz medium showed that the propagating field may
consist of two parts: the precursors and the main signal. They
concluded that the propagating field due to an input Gaussian
pulse does not contain any precursors and its peak travels
with the classical group velocity. Christov [17] studied the
propagation of an input pulse whose spectrum is significantly
broader than the absorption band of a low density Lorentz
medium and showed that the medium dispersion results
in severe pulse distortion and the appearance of intensity
oscillations. Vainshtein [15] reviewed the propagation of
slowly varying envelope input pulses in linear, homogeneous,
absorptive or amplifying, dispersive media. In particular, the
dynamics of the main or principal part of the propagating field
was examined from the ray point of view, the wave point of
view, and the energy point of view. Tanaka et al. [29] utilized
asymptotic techniques in order to investigate Gaussian wave
propagation in an absorptive Lorentz medium. They examined
the velocity of the wave packet and showed that it decreases
in the absorption band in contrast to the group velocity
which becomes infinite. They further argued that reported
superluminal velocities [27] characterize the early part of the
flight and are due to the distortion of the packet as it propagates
in the anomalous dispersion region of the medium; subluminal
velocities appear as the propagation distance increases. Finally,
Balictsis and Oughstun [30–33] resorted to modern asymptotic
methods [9,34–36] in order to provide a complete description
of the propagated field due to an input Gaussian-modulated
harmonic wave in a linear, causally dispersive, and absorptive
Lorentz medium. This asymptotic description is uniformly
valid for all initial pulse widths and reduces to the opposite
limiting descriptions that are valid either in the ultrashort pulse
regime or in the slowly varying envelope pulse regime; it
was completely verified upon comparison with two different,
numerical experiments [9,37,38]. These results were finally
shown to be a special case of a new, model of Gaussian pulse
propagation in a linear, causally dispersive, and absorptive
Lorentz-type medium.

Recently, Safian et al. [39] utilized the classical steepest
descent approach [9,20] in order to describe the propa-
gated field in a linear, causally dispersive, active Lorentzian
medium, ignoring saturation and related nonlinear effects.
Their theoretical and numerical investigations of an input
unit-step function modulated harmonic field showed that the
Sommerfeld precursor does not appear in active media, while
the transient and the main parts of the propagating field are
almost indistinguishable. Their cursory, and strictly numerical,
consideration of an input Gaussian-modulated harmonic signal
resulted in superluminal velocities for the propagated field
envelope. Superluminal propagation of Gaussian input pulses,
in a linear inverted two-level atomic medium, has been
theoretically considered by Chiao [18] and was observed
experimentally [40,41]. The intriguing problem in dispersive
wave theory concerning the propagation velocities of light
continues to attract significant research interest [8,9].

Here, a modern asymptotic method of analysis [9,34]
is applied in order to obtain a unified description of the
propagated field due to an input Gaussian-modulated harmonic
signal of arbitrary initial pulse width in a linear, causally
dispersive gain Lorentzian medium. In particular, the classical
[39], as well as the unified, exact integral formulations of
the canonical problem of interest are described in the next
section. The following section presents the unified model of
Gaussian pulse propagation in a gain Lorentzian medium,
which results from the unified asymptotic approach. The
next section compares the results of the unified asymptotic
analysis with the corresponding results of both the classical
asymptotic approach as well as the numerical experiment,
completely verifying this model of Gaussian pulse propagation
in a gain Lorentzian medium, and provides a discussion of the
observed propagated field dynamics. The final section provides
the conclusions of the research reported here. Appendix A
is a study of the dynamical evolution of the saddle points
of the unified phase function, while Appendix B presents
the mathematical proof of the unified model of Gaussian
pulse propagation in a gain Lorentzian medium, and, finally,
Appendix C presents an analysis of the real part of the unified
phase function along the real frequency axis which is then
utilized in order to obtain an approximate, heuristic evaluation
of the propagated field. In the ensuing, nonlinear and saturation
effects in gain media are considered to be negligible.

II. FORMULATION OF THE CANONICAL PROBLEM

A. Classical, exact integral formulation of Gaussian pulse
propagation in a linear, causally dispersive medium

The propagated field due to an input, Gaussian-modulated
harmonic wave in the positive z direction of a linear,
homogeneous, isotropic, temporally dispersive, nonhysteretic
medium filling the semi-infinite space z � 0 (where there are
no charge or current sources) is given exactly by the integral
representation [9,30–33,39]

A(z,t) = 1

2π
Re

{
i

∫ +∞

−∞
Ũ (ω − ωc) exp

[
z

c
φ(ω,θ ′)

]
dω

}
(1)
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for all z � 0, where the scalar function A(z,t) may represent
either the scalar potential, or the amplitude of any orthogonal
component of the electric field, magnetic field, Hertz vector,
or vector potential (henceforth, the notation Re{·} represents
the real part, while the notation Im{·} represents the imaginary
part of the quantity inside the curly brackets).

Here, the complex spectral amplitude function

Ũ (ω − ωc) = exp[−i(ωt0 + ψ)]ũ(ω − ωc)

= exp(−iψ)

{√
πT exp(−iωct0)

× exp

[
−T 2(ω − ωc)2

4

]}
(2)

has been introduced, where ũ(ω),

ũ(ω) =
∫ +∞

−∞
u(t)eiωtdt =

∫ +∞

−∞
exp

[
−
(

t − t0

T

)2]
eiωtdt

= √
πT exp

(
−T 2ω2

4

)
exp(iωt0), (3)

denotes the temporal spectrum of the input Gaussian envelope
which is centered around the instant t0 > 0, with a full width
given by 2T , while ωc denotes the constant applied carrier
frequency and the constant phase term ψ is chosen to be π/2
for a cosine wave or zero for a sine wave.

The complex phase function appearing in Eq. (1) is given
by

φ(ω,θ ′) = i
c

z
[k̃(ω)z − ω(t − t0)] = iω[n(ω) − θ ′], (4)

where

θ ′ = θ − ct0

z
= c

z
(t − t0) (5)

is an appropriate, nondimensional, space-time parameter. In
Eq. (4), k̃(ω) = [ωn(ω)]/c is the complex wave number,
n(ω) = √

ε(ω) is the complex index of refraction of the
dispersive medium whose relative magnetic permeability is
μ = 1 and whose relative complex dielectric permittivity is
given by ε(ω), and where c is the vacuum speed of light.

Equation (1) constitutes the classical, exact integral expres-
sion of the propagated field. Moreover, the function Ũ (ω −
ωc), defined in Eq. (2), is the classical spectral amplitude
function, while the function φ(ω,θ ′), which is defined in
Eq. (4), is the classical phase function. The input Gaussian
envelope is considered to extend over all time, and in order
for the integral appearing in Eq. (3) to converge at t = ±∞,
the original contour of integration C may be taken to be
the real frequency axis, as shown in Eq. (1). Any other
contour in the complex ω plane that is homotopic to the
real frequency axis can also be used in Eq. (1) as a valid
integration path [42]. Although the spectral function ũ(ω),
given in Eq. (3), represents the Fourier spectrum of the
input Gaussian envelope, it may also be regarded as being
the Laplace transform of the same envelope to an excellent

FIG. 1. (Color online) The dynamical field
evolution due to an input unit-amplitude
Gaussian-modulated harmonic (sine) wave with
initial pulse width 2T = 0.2 fs and carrier fre-
quency ωc = 1.0 × 1015 s−1, at a propagation
distance z = 1.0 μm in a single resonance
Lorentz-type dispersive and gain medium. In
both diagrams, the solid line (online denoted
in black) represents the field amplitude AH (z,t)
evaluated using the Hosono code. Moreover, the
squares (online denoted in black) denote (abso-
lute) field amplitude maxima. In (a) the solid line
(online denoted in red) represents the amplitude
of the pulse component AU1(z,t) due to the
asymptotic contribution of the saddle point SPU1

evaluated using the unified asymptotic theory.
The triangles (online denoted in red) denote the
respective (absolute) pulse amplitude maxima.
In (b) the solid line (online denoted in magenta)
represents the amplitude of the pulse component
AU5(z,t) due to the asymptotic contribution of
the saddle point SPU5 evaluated using the unified
asymptotic theory. The triangles (online denoted
in magenta) denote the respective (absolute)
pulse amplitude maxima.
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degree of approximation provided that one chooses t0 > 0 to
be sufficiently larger than the initial pulse width 2T . The time
behavior of the input Gaussian envelope is then exponentially
small for all t < 0.

B. Unified, exact integral formulation of Gaussian pulse
propagation in a linear, causally dispersive medium

In order to obtain an asymptotic approximation of the
propagated field which is uniformly valid not only in
the space-time parameter θ ′ but also in the input pulse
and dispersive medium parameters, the classical integral
formulation of Gaussian pulse propagation is rewritten as

A(z,t) = 1

2π
Re

{
i

∫
C

ŨU exp

[
z

c
�U (ω,θ ′)

]
dω

}
(6)

for all z � 0, where the complex spectral amplitude ŨU is
independent of ω and is given by

ŨU = √
πT exp[−i(ωct0 + ψ)], (7)

and where the complex phase function �U (ω,θ ′) also
appearing here is given by

�U (ω,θ ′) = φ(ω,θ ′) − cT 2

4z
(ω − ωc)2; (8)

in Eq. (8), φ(ω,θ ′) is the classical phase function given by
Eq. (4) and n(ω) is the refractive index of the dispersive

medium. In Eqs. (6) and (8) the dimensionless, real space-time
parameter θ ′ is the same as given by Eq. (5). The contour of
integration C appearing in Eq. (6) may be taken to be either the
real frequency axis, as is the case in the classical integral rep-
resentation of the propagated field, or any other contour in the
complex ω plane that is homotopic to the real frequency axis.

Henceforth, Eq. (6) constitutes the unified, exact integral
expression of the propagated field; an analogous expression
forms the basis for the asymptotic analysis of Gaussian pulse
propagation in an absorptive dielectric medium [9,31–33].
The frequency independent spectral amplitude ŨU , which is
defined in Eq. (7), is the unified spectral amplitude, and the
phase function �U (ω,θ ′), which is defined in Eq. (8), is the
unified phase function. It is evident from Eq. (8) that the unified
phase function depends not only upon the dispersive properties
of the medium, as displayed by the first term on the right-hand
side, but also upon the temporal width 2T and carrier frequency
ωc of the input Gaussian pulse as well as upon the propagation
distance z in the dispersive medium, as displayed by the
second term on the right-hand side. When the unified integral
formulation of Gaussian pulse propagation is used as the
starting point in the asymptotic analysis, the obtained unified
asymptotic description of the propagated field will reduce to
the respective classical asymptotic description in the limit as
the initial pulse width approaches zero from above and/or as the
propagation distance in the dispersive medium tends to infinity;
in general it will be different from the classical asymptotic

FIG. 2. The dynamical evolution of the prop-
agated field evaluated using (a) the Hosono
code [AH (z,t)], (b) the classical nonuniform
asymptotic theory [

∑4
k=1 ACk(z,t)], and (c) the

unified asymptotic theory [
∑5

k=1 AUk(z,t)], due
to an input unit-amplitude Gaussian-modulated
harmonic (sine) wave with initial pulse width
2T = 0.2 fs and carrier frequency ωc = 1.0 ×
1015 s−1, at a propagation distance z = 1.0 μm
in a single resonance Lorentz-type dispersive and
gain medium. The squares in the top diagram, the
cross in the middle diagram, and the triangles
in the bottom diagram denote (absolute) field
amplitude maxima. In the middle diagram the
(total) field amplitude is due to the (algebraic sum
of the) asymptotic contributions of the relevant
saddle points SPCk , k = 1,2, . . . ,4, of the clas-
sical phase function. In the bottom diagram the
(total) field amplitude is due to the (algebraic sum
of the) asymptotic contributions of the relevant
saddle points SPUk , k = 1,5, of the unified phase
function.
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description. Indeed, the implementation of each asymptotic
approach is critically dependent upon the phase function
appearing in the corresponding integral representation of the
propagated field, and when 2T approaches zero from above
and/or when z tends to infinity, �U (ω,θ ′) reduces to φ(ω,θ ′).
Notice also that in the limit as 2T approaches zero from above,
Ũ (ω − ωc) reduces to ŨU .

C. Single resonance Lorentz-type dispersive and gain medium

The problem considered here refers to the case of a gain
medium occupying the half space z � 0. In particular, a
single resonance Lorentz-type dielectric model with negative
oscillator strength is chosen to represent an inverted two-level
atomic medium. Ignoring the effect of inhomogeneous line
broadening, the index of refraction is given by [18,39]

n(ω) =
(

1 + b2

ω2 − ω2
0 + i2δω

)1/2

, (9)

where ω0 is the resonance frequency depicting the frequency
difference between the two atomic levels, b2 is the square of
the plasma frequency of this medium, and δ is the resonance
linewidth. Hereafter, use is made of the medium parameter
values utilized in Ref. [39], viz., ω0 = 4.0 × 1015 s−1, b2 =
1.0 × 1030 s−2, and δ = 0.2 × 1015 s−1. The Lorentz-type

active model is a causal model [43], with the index of refraction
in Eq. (9) satisfying the Kramers-Krönig relations [39].

For the chosen gain medium, n(ω) is a holomorphic
function in the entire complex ω plane except at the two
(inner) branch points ω′

± = ±[ω2
1 − δ2]1/2 − iδ where n(ω)

vanishes, and also at the two (outer) branch points ω± =
±[ω2

0 − δ2]1/2 − iδ where n(ω) becomes infinite, with ω2
1 =

ω2
0 − b2. The line segments ω−ω′

− and ω′
+ω+ are, respectively,

the left and right branch cuts of n(ω).

III. THE UNIFIED MODEL OF GAUSSIAN PULSE
PROPAGATION IN A LORENTZ-TYPE DISPERSIVE

AND GAIN MEDIUM

The methodology that must be followed in order to obtain
an analytic evaluation of the unified integral formulation of
Gaussian pulse propagation in a gain Lorentzian medium,
utilizing modern asymptotic methods, constitutes the unified
asymptotic approach and essentially follows the general
procedure utilized in the case of a dispersive and absorptive
dielectric medium [9,31–33].

For fixed, but otherwise arbitrary, values of the initial
pulse width 2T and carrier frequency ωc of the input
Gaussian-modulated harmonic wave, and at a sufficiently
large, but otherwise arbitrary, fixed propagation distance z in a
single resonance Lorentz-type gain medium, the unified phase

FIG. 3. (Color online) The instantaneous angular frequency of oscillation of the propagated field due to an input unit-amplitude Gaussian-
modulated harmonic (sine) wave with initial pulse width 2T = 0.2 fs and carrier frequency ωc = 1.0 × 1015 s−1, at a propagation distance
z = 1.0 μm in a single resonance Lorentz-type dispersive and gain medium. In all diagrams, the squares (online denoted in black) denote
the Hosono code evaluated oscillation frequency. In (a) the triangles (online denoted in red) denote the unified asymptotic theory evaluated
oscillation frequency and is due to the asymptotic contribution of the saddle point SPU1. Moreover, the solid line (online denoted in red)
represents the real part of the respective saddle point SPU1. In (b) the triangles (online denoted in magenta) denote the unified asymptotic theory
evaluated oscillation frequency and is due to the asymptotic contribution of the saddle point SPU5. Moreover, the solid line (online denoted
in magenta) represents the real part of the respective saddle point SPU5. In (c) the crosses (online denoted in black) denote the instantaneous
frequency of oscillation evaluated from the classical nonuniform asymptotic theory. In (d) the triangles (online denoted in black) denote the
instantaneous frequency of oscillation evaluated from the unified asymptotic theory.

013304-5



CONSTANTINOS M. BALICTSIS PHYSICAL REVIEW E 87, 013304 (2013)

�U (ω,θ ′) is a function not only of the complex frequency ω

but also of the real space-time parameter θ ′. Therefore, the
unified asymptotic approach begins with a determination of
the evolution of the saddle points of �U (ω,θ ′) as a function
of θ ′, in the complex ω plane. According to the study of the
saddle point dynamics in Appendix A, for the considered single
resonance Lorentz gain medium, �U (ω,θ ′) has five saddle
points, SPUk , k = 1,2, . . . ,5, which are isolated and of first
order for all values of θ ′, irrespective of the characteristics of
the input Gaussian pulse and the distance of propagation in this
dispersive medium [henceforth, the term ωSPUk

(θ ′) will also be
used to interchangeably denote the location of the saddle point
SPUk of �U (ω,θ ′) as it evolves with θ ′ in the complex ω plane].
Subsequently, an evaluation of the real part of the unified phase
function XU (ω,θ ′) at each of the saddle points determines
their relative dominance (i.e., the level of exponential decay
associated with each one of them) for each value of θ ′. This
is then followed by an examination of the isotimic contours of
XU (ω,θ ′) in order to deduce for each of the saddle points of
�U (ω,θ ′) the regions in the complex ω plane where XU (ω,θ ′)
attains values that are less than its value at the respective
saddle point, for a given value of θ ′. The knowledge acquired
in the preceding steps concerning the dynamics of the saddle
points SPUk , k = 1,2, . . . ,5, of �U (ω,θ ′) is a prerequisite
in order to proceed with the remaining steps in the unified
asymptotic approach. In particular, the next step is to apply
Cauchy’s residue theorem [42] in order to deform the original
integration path C appearing in the unified, exact integral

expression (6) of the propagated field into a new path P (θ ′)
which passes through all relevant saddle points of �U (ω,θ ′)
for a given value of θ ′. As θ ′ varies continuously in its domain
θ ′ ∈ (−∞, +∞), the deformed path P (θ ′) is required to move
continuously in the complex ω plane so as to pass through all
the relevant saddle points of �U (ω,θ ′) for any given value of
θ ′ in such a manner that it may be divisible into a superposition
of paths PUl(θ ′), each being an Olver-type path with respect
to a single relevant saddle point SPUl which it must only
cross. Since the constant unified spectral amplitude ŨU is
holomorphic everywhere in the complex ω plane, this step
in the unified asymptotic approach allows the original contour
integral A(z,t), which is taken along C, to be written as a
superposition of deformed contour integrals IUl(z,θ ′), each of
which has the same integrand as A(z,t) but is taken along the
respective component path PUl(θ ′) of P (θ ′), in the form

A(z,t) =
∑

l

IUl(z,θ
′)

=
∑

l

(
1

2π
Re

{
i

∫
PUl (θ ′)

ŨU exp

[
z

c
�U (ω,θ ′)

]
dω

})
,

(10)

for any given value of θ ′. The final, crucial step in the
unified asymptotic approach for Gaussian pulse propagation
of arbitrary initial pulse width is to apply Olver’s asymptotic
method [34] to each of the deformed contour integrals IUl(z,θ ′)
appearing in Eq. (10), which yields an asymptotic description

FIG. 4. (Color online) The dynamical field
evolution due to an input unit-amplitude
Gaussian-modulated harmonic (sine) wave with
initial pulse width 2T = 0.2 fs and carrier fre-
quency ωc = 4.0 × 1015 s−1, at a propagation
distance z = 1.0 μm in a single resonance
Lorentz-type dispersive and gain medium. In
both diagrams, the solid line (online denoted
in black) represents the field amplitude AH (z,t)
evaluated using the Hosono code. Moreover, the
squares (online denoted in black) denote (abso-
lute) field amplitude maxima. In (a) the solid line
(online denoted in red) represents the amplitude
of the pulse component AU1(z,t) due to the
asymptotic contribution of the saddle point SPU1

evaluated using the unified asymptotic theory.
The triangles (online denoted in red) denote the
respective (absolute) pulse amplitude maxima.
In (b) the solid line (online denoted in magenta)
represents the amplitude of the pulse component
AU5(z,t) due to the asymptotic contribution of
the saddle point SPU5 evaluated using the unified
asymptotic theory. The triangles (online denoted
in magenta) denote the respective (absolute)
pulse amplitude maxima.
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of the propagated field that is uniformly valid for all θ ′ and is
given by the general expression

A(z,t) =
∑

l

AUl(z,t)

=
∑

l

(
1

2π
Re

{
i2 exp

[
z

c
�U

(
ωSPUl

,θ ′)](πc

z

)1/2

× ŨU

2
[− 1

2!
d2�U (ωSPUl

,θ ′)
dω2

]1/2

[
1 + O

(
1

z

)]})
(11)

for sufficiently large values of the propagation distance z in
the considered single resonance Lorentz gain medium. Notice
that in Eqs. (10) and (11) the summation over l extends only
over those saddle points SPUl of �U (ω,θ ′) that are relevant
at the particular value of θ ′ considered. Each term AUl(z,t),
which results from the application of Olver’s method to the
respective term IUl(z,θ ′) in Eq. (10), is then given by

AUl(z,t) = 1

2π
Re

{
i2 exp

[
z

c
�U

(
ωSPUl

,θ ′)](πc

z

)1/2

× ŨU

2
[− 1

2!
d2�U (ωSPUl

,θ ′)
dω2

]1/2

[
1 + O

(
1

z

)]}
. (12)

Since the dynamics of the saddle points of �U (ω,θ ′) depend
not only upon the medium parameters but also upon the input

field parameters and the propagation distance in the dispersive
medium, the unified asymptotic approach must be performed
each time one of these parameters changes value.

This unified asymptotic approach is shown in Appendix B to
lead to a unified model of Gaussian pulse propagation in a gain
Lorentzian medium, which states that the dynamical evolution
of the propagated field A(z,t) due to an input Gaussian-
modulated harmonic wave of arbitrary initial pulse width 2T

at a fixed, but otherwise arbitrary, propagation distance z in a
linear, causally dispersive gain medium described by the single
resonance Lorentz model expression (9) is given by

A(z,t) =
m∑

l=1

AUl(z,t), m � 5, (13)

and is composed of the pulse components AUl(z,t) given in
Eq. (12), each of which is due to the asymptotic contribution of
a respective relevant saddle point ωSPUl

(θ ′) of the unified phase
function �U (ω,θ ′) appearing in the unified, exact integral
expression (9) for A(z,t). The propagation characteristics of
each such pulse component of the propagated field may be
obtained from the dynamics of the respective relevant saddle
point. In particular:

(I) The evolution with time of the instantaneous angular
frequency of oscillation ωIFOUl

(θ ′) of AUl(z,t) is given by
Eq. (B12), viz., ωIFOUl

(θ ′) = Re{ωSPUl
(θ ′)} + 
1Ul

(θ ′), where

1Ul

(θ ′) is given by Eqs. (B9)–(B11). Therefore, ωIFOUl
(θ ′) is

FIG. 5. The dynamical evolution of the prop-
agated field evaluated using (a) the Hosono
code [AH (z,t)], (b) the classical nonuniform
asymptotic theory [

∑4
k=1 ACk(z,t)], and (c) the

unified asymptotic theory [
∑5

k=1 AUk(z,t)], due
to an input unit-amplitude Gaussian-modulated
harmonic (sine) wave with initial pulse width
2T = 0.2 fs and carrier frequency ωc = 4.0 ×
1015 s−1, at a propagation distance z = 1.0 μm
in a single resonance Lorentz-type dispersive and
gain medium. The squares in the top diagram, the
cross in the middle diagram, and the triangles
in the bottom diagram denote (absolute) field
amplitude maxima. In the middle diagram the
(total) field amplitude is due to the (algebraic sum
of the) asymptotic contributions of the relevant
saddle points SPCk , k = 1,2, . . . ,4, of the clas-
sical phase function. In the bottom diagram the
(total) field amplitude is due to the (algebraic sum
of the) asymptotic contributions of the relevant
saddle points SPUk , k = 1,5, of the unified phase
function.
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given by the real part of the respective relevant saddle point
location Re{ωSPUl

(θ ′)} as it evolves in the complex ω plane,
when the term 
1Ul

(θ ′) becomes (asymptotically) negligible.
(II) The envelope of AUl(z,t) exhibits its stationary

point(s) when the relation in Eq. (B21) is satisfied,
viz., Im{ωSPUl

(θ ′)} = 
2Ul
(θ ′), where 
2Ul

(θ ′) is given by
Eqs. (B15)–(B17). The stationary point(s) of the envelope
of AUl(z,t) may occur when the trajectory followed by the
respective relevant saddle point ωSPUl

(θ ′) intersects the real
frequency axis in the complex ω plane, when the term 
2Ul

(θ ′)
becomes (asymptotically) negligible.
(III) If the trajectory followed in the complex ω plane by the
relevant saddle point ωSPUl

(θ ′) intersects the real frequency
axis, this occurs at the location of a stationary point of the
real part of the unified phase function along this axis [i.e., at
the location of a local maximum or minimum of the function
XU (ωr )].

IV. DISCUSSION

In order to demonstrate the accuracy and range of validity
of the unified asymptotic approach compared to the classical
asymptotic approach, Figs. 1–11 illustrate the dynamical evo-
lution of the pulse component(s), the respective (total) propa-
gated field and their corresponding instantaneous frequencies
of oscillation pertaining to four different cases characterized

by a different set for the input Gaussian-modulated sine
field parameters, and the propagation distance in the single
resonance Lorentz-type gain medium. Figures 1–3 constitute
the first case, where the initial pulse width 2T = 0.2 fs,
the applied carrier frequency ωc = 1.0 × 1015 s−1, and the
propagation distance z = 1.0 μm correspond to an input
ultrashort Gaussian pulse with carrier frequency below the
amplification band of the gain medium, such that the sine
wave at the input plane z = 0 approximately completes only
0.032 oscillations under the full width at the e−1 maximum
points of the input Gaussian envelope. In Figs. 4–6, which
constitute the second case, the applied carrier frequency has
increased to ωc = 4.0 × 1015 s−1, which lies near the center
of the medium’s amplification band, while the initial pulse
width and the propagation distance remain the same as those
utilized in the first case; here, the sine wave at the input
plane approximately completes only 0.127 oscillations. In the
third case, depicted in Figs. 7 and 8, the initial pulse width is
broadened to 2T = 20.0 fs while the applied carrier frequency
and the propagation distance are those utilized in the first
case; here, the sine wave at the input plane approximately
completes 3.183 oscillations. Finally, in the fourth case,
depicted in Figs. 9–11, the propagation distance is shortened to
z = 0.75 μm while the remaining input Gaussian-modulated
sine field parameters remain the same as those utilized in
the first case; the sine wave at the input plane approximately

FIG. 6. (Color online) The instantaneous angular frequency of oscillation of the propagated field due to an input unit-amplitude Gaussian-
modulated harmonic (sine) wave with initial pulse width 2T = 0.2 fs and carrier frequency ωc = 4.0 × 1015 s−1, at a propagation distance
z = 1.0 μm in a single resonance Lorentz-type dispersive and gain medium. In all diagrams, the squares (online denoted in black) denote
the Hosono code evaluated oscillation frequency. In (a) the triangles (online denoted in red) denote the unified asymptotic theory evaluated
oscillation frequency and is due to the asymptotic contribution of the saddle point SPU1. Moreover, the solid line (online denoted in red)
represents the real part of the respective saddle point SPU1. In (b) the triangles (online denoted in magenta) denote the unified asymptotic theory
evaluated oscillation frequency and is due to the asymptotic contribution of the saddle point SPU5. Moreover, the solid line (online denoted
in magenta) represents the real part of the respective saddle point SPU5. In (c) the crosses (online denoted in black) denote the instantaneous
frequency of oscillation evaluated from the classical nonuniform asymptotic theory. In (d) the triangles (online denoted in black) denote the
instantaneous frequency of oscillation evaluated from the unified asymptotic theory.
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completes only 0.032 oscillations. An examination of the four
cases in pairs illustrates the dependence of the propagated field
dynamics on the applied carrier frequency ωc (first and second
cases), the initial pulse width 2T (first and third cases), and
the propagation distance z (first and fourth cases). For each of
these four cases, there is a corresponding diagram in Figs. 12
and 13 which illustrates the respective saddle point dynamics,
as well as a corresponding diagram in Figs. 14 and 15 which
illustrates the respective behavior of the real part of the unified
phase function along the real frequency axis.

In each of the four cases depicted in Figs. 1–11, the
results of a numerical implementation of the algorithm that
was originally proposed by Hosono [37] and later improved
upon by Wyns et al. [38] are used as a comparison with the
corresponding descriptions of the propagated field dynamics
afforded by the unified as well as the classical asymptotic
approaches, as it was done in the case of an absorptive
Lorentzian dielectric [9,30–33]. Hereafter, this purely numeri-
cal experiment is referred to as the “Hosono code” (throughout,
the parameter values a = 15, k = 5 × 104, and m = 250
[38] have been utilized). A numerical implementation of
the asymptotic method of Olver [34] is also utilized in
each respective case in order to evaluate the classical, exact
integral expression (1) of the propagated field, employing
exact, numerically determined saddle point locations and

exact expressions for the derivatives of the classical phase
function at these saddle points, and is referred to as the
“classical nonuniform asymptotic theory.” The results of this
classical asymptotic approach are included here in order
to demonstrate the improvements afforded by the unified
asymptotic approach; the classical nonuniform asymptotic
theory is nonuniform in certain θ ′ intervals [39]. A numerical
implementation of the general expressions (11) and (12)
which result from an application of Olver’s method [34] to
the unified, exact integral expression (6) of the propagated
field is referred to here as the “unified asymptotic theory,”
and is also respectively implemented in each of the four
cases. In this numerical implementation, exact, numerically
determined saddle point locations and exact expressions for
the derivatives of the unified phase function at them are also
utilized. This is because the saddle point locations appear
in the exponential terms of the propagated field expressions
(11) and (12) and small errors in the analytical description
of these locations can produce a large error in the unified
asymptotic description of the propagated field in Gaussian
pulse propagation [31–33]. Since the five saddle points of
the unified phase function remain isolated and are all of first
order for all values of θ ′ in the chosen single resonance
Lorentz-type gain medium, the unified asymptotic theory
results in a description of the propagated field dynamics that is

FIG. 7. The dynamical evolution of the prop-
agated field, evaluated using (a) the Hosono
code [AH (z,t)], (b) the classical nonuniform
asymptotic theory [

∑4
k=1 ACk(z,t)], and (c) the

unified asymptotic theory [
∑5

k=1 AUk(z,t)], due
to an input unit-amplitude Gaussian-modulated
harmonic (sine) wave with initial pulse width
2T = 20.0 fs and carrier frequency ωc = 1.0 ×
1015 s−1, at a propagation distance z = 1.0 μm
in a single resonance Lorentz-type dispersive and
gain medium. Since the classical nonuniform
asymptotic theory is completely inaccurate, only
the square in the top diagram and the triangle
in the bottom diagram denote the respective
(absolute) field amplitude maxima. In the middle
diagram the (total) field amplitude is due to
the (algebraic sum of the) asymptotic contribu-
tions of the relevant saddle points SPCk , k =
1,2, . . . ,4, of the classical phase function. In
the bottom diagram the (total) field amplitude is
due to the asymptotic contribution of the single
relevant saddle points SPU1 of the unified phase
function.
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uniformly valid with respect to θ ′. In the ensuing, the Gaussian
envelope of the input pulse is chosen to be centered at the
time t0 = 3.035T and is considered to extend over all time. In
addition, the Hosono code, as well as the unified asymptotic
theory, have been used to compute the propagated field
dynamics over the θ ′ interval −5.0 � θ ′ � +15.0, and when
necessary their respective results are depicted over this entire
interval; where depicted, the classical nonuniform asymptotic
theory is invoked in the θ ′ interval +1.0005 � θ ′ � +15.0
in order to compute the propagated field dynamics. Finally,
throughout, the instantaneous oscillation frequency of each
depicted propagated field is evaluated numerically from each
successive positive half oscillation of the respective propagated
field amplitude and is assigned at the θ ′ midpoint of the
corresponding half oscillation along the θ ′ axis.

Attention is now turned to the first case depicted in
Figs. 1–3. Figure 1(a) illustrates the amplitude of the (total)
propagated field AH (z,t) evaluated using the Hosono code;
the squares denote the (absolute) field amplitude maxima
in the vicinity of θ ′ = +1.0 [depicted by the ordered pair
(θ ′

HAmax
,AHAmax )] as well as for θ ′ � +1.0 [depicted by the

ordered pair (θ ′
HBmax

,AHBmax )]. Superimposed in Fig. 1(a) is
the pulse component AU1(z,t) of the propagated field, which
is evaluated using the unified asymptotic theory and is due
to the asymptotic contribution of the saddle point SPU1 of
�U (ω,θ ′) which is relevant in the asymptotic analysis for all
values of θ ′. The triangles in Fig. 1(a) denote the (absolute)
maxima of AU1(z,t) in the vicinity of θ ′ = +1.0 [i.e., the

ordered pair (θ ′
U1Amax

,AU1Amax )] as well as for θ ′ � +1.0 [i.e.
the ordered pair (θ ′

U1Bmax
,AU1Bmax )]. Figure 3(a) illustrates the

numerically determined time evolution of the instantaneous
angular frequency of oscillation of each of the propagated
fields denoted in Fig. 1(a). In particular, the squares represent
the instantaneous oscillation frequency ωIFOH

(θ ′) of the (total)
propagated field AH (z,t), evaluated using the Hosono code.
The triangles that are also superimposed in Fig. 3(a) denote
the instantaneous oscillation frequency ωIFOU1 (θ ′) of the pulse
component AU1(z,t), which is evaluated using the unified
asymptotic theory. Finally, the solid line in Fig. 3(a) denotes
the real part of the respective relevant saddle point SPU1.

Figure 1(b) illustrates the pulse component AU5(z,t) of
the propagated field, which is evaluated using the unified
asymptotic theory and is due to the asymptotic contribution
of the saddle point SPU5, superimposed upon the (total)
propagated field AH (z,t) evaluated using the Hosono code;
the denoted triangles and squares depict respective (absolute)
field amplitude maxima. Although AU5(z,t) is illustrated for
all values of θ ′ ∈ [−5.0,+15.0], it should only be taken into
account for values of θ ′ in the interval θ ′ � +0.994 since
the respective saddle point SPU5 of �U (ω,θ ′) is relevant in
the asymptotic analysis only in this θ ′ interval. Figure 3(b)
illustrates the evolution with time of the instantaneous angular
frequency of oscillation of each of the propagated fields
denoted in Fig. 1(b), together with the (absolute) real part
of the respective relevant saddle point SPU5 which is depicted
by the solid line in this diagram.

FIG. 8. (Color online) The instantaneous an-
gular frequency of oscillation of the propagated
field due to an input unit-amplitude Gaussian-
modulated harmonic (sine) wave with initial
pulse width 2T = 20.0 fs and carrier frequency
ωc = 1.0 × 1015 s−1, at a propagation distance
z = 1.0 μm in a single resonance Lorentz-type
dispersive and gain medium. In both diagrams
the squares (online denoted in black) denote the
Hosono code evaluated oscillation frequency. In
(a) the crosses (online denoted in black) denote
the instantaneous frequency of oscillation eval-
uated from the classical nonuniform asymptotic
theory. In (b) the triangles (online denoted in red)
denote the unified asymptotic theory evaluated
oscillation frequency and is due to the asymptotic
contribution of the saddle point SPU1. Moreover,
the solid line (online denoted in red) represents
the real part of the respective saddle point SPU1.
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Figure 2(a) illustrates the (total) propagated field AH (z,t)
evaluated using the Hosono code. This is included here in
order to obtain a direct comparison with Fig. 2(b) which
illustrates the (total) propagated field evaluated from the
classical nonuniform asymptotic theory and is due to the
asymptotic contributions of the relevant saddle points SPCk ,
k = 1,2, . . . ,4, of the classical phase function, and with
Fig. 2(c) which illustrates the (total) propagated field evaluated
from the unified asymptotic theory using Eqs. (11) and (12)
and is due to the contributions of the relevant saddle points
SPU1 and SPU5 of �U (ω,θ ′).

Finally, in Fig. 3(c) the crosses illustrate the time evolution
of the instantaneous angular frequency of oscillation of
the (total) propagated field due to the classical nonuniform
asymptotic theory as depicted in Fig. 2(b), superimposed
upon the corresponding instantaneous oscillation frequency
denoted with squares of the (total) propagated field evaluated
from the Hosono code as depicted in Fig. 2(a). Similarly, in
Fig. 3(d) the triangles illustrate the evolution with time of the
instantaneous angular frequency of oscillation of the (total)
propagated field due to the unified asymptotic theory which
is depicted in Fig. 2(c), superimposed upon the corresponding
instantaneous oscillation frequency denoted with squares of
the (total) propagated field evaluated from the Hosono code.

Similar considerations apply for the remaining cases de-
picted in Figs. 4–11. Notice that, in the second case (illustrated
in Figs. 4–6) and in the fourth case (illustrated in Figs. 9–11),
again the respective two saddle points SPU1 and SPU5 of
�U (ω,θ ′) are relevant in the asymptotic analysis of the (total)

propagated field evaluated from the unified asymptotic theory.
However, in the third case (illustrated in Figs. 7 and 8) only
the single saddle point SPU1of �U (ω,θ ′) is relevant in the
asymptotic analysis of the (total) propagated field evaluated
from the unified asymptotic theory.

An inspection of the top and bottom diagrams in Figs. 2, 5,
and 10 illustrates that for ultrashort Gaussian input pulses the
results of the unified asymptotic theory are in excellent agree-
ment with the respective experimental results of the Hosono
code for all values of θ ′, except in the immediate neighborhood
about θ ′ = +1.0 when the propagated field travels nearly at
the vacuum speed of light. Notice that the Hosono code breaks
down for values of θ ′ < 0.0; a detailed numerical study of
the range of applicability of the Hosono code in ultrashort
and/or ultrawideband dispersive pulse propagation problems
is presented in Ref. [38]. As illustrated in Fig. 7, when the
input Gaussian pulse is broadened, the agreement between the
results of the unified asymptotic theory and the respective
experimental results of the Hosono code is excellent also
for values of θ ′ � +1.0. Moreover, as illustrated in the top
and middle diagrams of Figs. 2, 5, and 10, for ultrashort
Gaussian input pulses the results of the classical nonuniform
asymptotic theory are also in excellent agreement with the
experimental results of the Hosono code and, therefore, with
the respective results of the unified asymptotic theory, for all
values of θ ′ > +1.0. However, as illustrated in the top and
middle diagrams of Fig. 7, when the input Gaussian pulse
is broadened, the classical nonuniform asymptotic theory is
incapable of providing an accurate description of the prop-

FIG. 9. (Color online) The dynamical
field evolution due to an input unit-amplitude
Gaussian-modulated harmonic (sine) wave
with initial pulse width 2T = 0.2 fs and carrier
frequency ωc = 1.0 × 1015 s−1, at a propagation
distance z = 0.75 μm in a single resonance
Lorentz-type dispersive and gain medium. In
both diagrams, the solid line (online denoted in
black) represents the field amplitude AH (z,t)
evaluated using the Hosono code. Moreover,
the squares (online denoted in black) denote
(absolute) field amplitude maxima. In (a) the
solid line (online denoted in red) represents the
amplitude of the pulse component AU1(z,t) due
to the asymptotic contribution of the saddle point
SPU1 evaluated using the unified asymptotic
theory. The triangles (online denoted in red)
denote the respective (absolute) pulse amplitude
maxima. In (b) the solid line (online denoted
in magenta) represents the amplitude of the
pulse component AU5(z,t) due to the asymptotic
contribution of the saddle point SPU5 evaluated
using the unified asymptotic theory. The
triangles (online denoted in magenta) denote the
respective (absolute) pulse amplitude maxima.
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FIG. 10. The dynamical evolution of the
propagated field, evaluated using (a) the Hosono
code [AH (z,t)], (b) the classical nonuniform
asymptotic theory [

∑4
k=1 ACk(z,t)], and (c) the

unified asymptotic theory [
∑5

k=1 AUk(z,t)], due
to an input unit-amplitude Gaussian-modulated
harmonic (sine) wave with initial pulse
width 2T = 0.2 fs and carrier frequency
ωc = 1.0 × 1015 s−1, at a propagation distance
z = 0.75 μm in a single resonance Lorentz-type
dispersive and gain medium. The squares in the
top diagram, the cross in the middle diagram,
and the triangles in the bottom diagram denote
(absolute) field amplitude maxima. In the
middle diagram the (total) field amplitude is
due to the (algebraic sum of the) asymptotic
contributions of the relevant saddle points SPCk ,
k = 1,2, . . . ,4, of the classical phase function.
In the bottom diagram the (total) field amplitude
is due to the (algebraic sum of the) asymptotic
contributions of the relevant saddle points SPUk ,
k = 1,5, of the unified phase function.

agated field as opposed to the accurate description provided
by the Hosono code and the unified asymptotic theory. The
high level of agreement between the unified asymptotic theory
and the Hosono code is also evidenced from the diagrams
in Figs. 3(d), 6(d), 8(b), and 11(d), which illustrate the
respective instantaneous angular oscillation frequencies of
the (total) propagated fields. Moreover, as shown in the
diagrams of Figs. 3(c), 6(c), 8(a), and 11(c), which illustrate
the instantaneous oscillation frequencies evaluated using the
classical nonuniform asymptotic theory and the Hosono code,
the classical asymptotic approach is capable of providing an
accurate description of the propagated field dynamics in a gain
Lorentzian medium only for ultrashort Gaussian input pulses.

Attention is next turned to each of the four cases illustrated
in Figs. 1–11, combined with the corresponding diagram in
Figs. 12 and 13 which illustrates the respective saddle point
dynamics, as well as the corresponding diagram in Figs. 14
and 15 which illustrates the respective behavior of the real part
of the unified phase function along the real frequency axis.

Consider, initially, the first case illustrated in Figs. 1–
3, along with the corresponding diagrams appearing in
Figs. 12(a) and 14(a). The pulse component AU1(z,t)
[AU5(z,t)] of the propagated field A(z,t), which is illustrated
in the diagram of Fig 1(a) [Fig. 1(b)], is due to the asymptotic
contribution of the saddle point ωSPU1 (θ ′) [ωSPU5 (θ ′)] which is
relevant for all θ ′ (θ ′ � +0.994). According to the diagram

of Fig. 3(a) [Fig. 3(b)], the evolution with time of the
instantaneous angular frequency of oscillation ωIFOU1 (θ ′)
[ωIFOU5 (θ ′)] of this pulse component is given almost exactly
by the (absolute) real part of the respective relevant saddle
point location Re{ωSPU1 (θ ′)} [Re{ωSPU5 (θ ′)}] as it evolves with
time in the complex ω plane. This is in accordance with,
thus verifying, part (I) of the unified model of Gaussian
pulse propagation in a Lorentz-type dispersive and gain
medium. According to the diagram of Fig. 1(a) [Fig. 1(b)],
the two peak amplitudes of the pulse component AU1(z,t)
[AU5(z,t)] of the propagated field occur at the respective two
space-time parameter points θ ′

U1Amax
∼= +1.086 and θ ′

U1Bmax
∼=

+4.418 (θ ′
U5Amax

∼= +0.995 and θ ′
U5Bmax

∼= +4.464). Accord-
ing to Eq. (B21) the space-time points of peaks of the envelope
of the pulse component AU1(z,t) [AU5(z,t)] of the propagated
field occur at θ ′

U1Astnrmax

∼= +0.994 and θ ′
U1Bstnrmax

∼= +4.419
(θ ′

U5Astnrmax

∼= +0.995 and θ ′
U5Bstnrmax

∼= +4.420), which is also
in accordance with, thus verifying part (II) of the unified model
of Gaussian pulse propagation in a Lorentz-type dispersive
and gain medium. According to Fig. 12(a), the trajectory
followed in the complex ω plane by the relevant saddle point
ωSPU1 (θ ′) [ωSPU5 (θ ′)] intersects the real frequency axis at the
real frequency value(s) ωrcU1 = +0.397 × 1016 s−1 (ωrcU5,1 =
−0.397 × 1016 s−1 and ωrcU5,2 = −0.136 × 1016 s−1), which
is in excellent agreement with the local stationary points of the
real part of the unified phase function along the real frequency
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FIG. 11. (Color online) The instantaneous angular frequency of oscillation of the propagated field due to an input unit-amplitude Gaussian-
modulated harmonic (sine) wave with initial pulse width 2T = 0.2 fs and carrier frequency ωc = 1.0 × 1015 s−1, at a propagation distance
z = 0.75 μm in a single resonance Lorentz-type dispersive and gain medium. In all diagrams, the squares (online denoted in black) denote
the Hosono code evaluated oscillation frequency. In (a) the triangles (online denoted in red) denote the unified asymptotic theory evaluated
oscillation frequency and is due to the asymptotic contribution of the saddle point SPU1. Moreover, the solid line (online denoted in red)
represents the real part of the respective saddle point SPU1. In (b) the triangles (online denoted in magenta) denote the unified asymptotic theory
evaluated oscillation frequency and is due to the asymptotic contribution of the saddle point SPU5. Moreover, the solid line (online denoted
in magenta) represents the real part of the respective saddle point SPU5. In (c) the crosses (online denoted in black) denote the instantaneous
frequency of oscillation evaluated from the classical nonuniform asymptotic theory. In (d) the triangles (online denoted in black) denote the
instantaneous frequency of oscillation evaluated from the unified asymptotic theory.

axis that are illustrated in the diagram of Fig. 14(a) and are
attained at the real frequency values ωmx1 = 0.397 × 1016 s−1

(ωmx2 = −0.397 × 1016 s−1 and ωmn1 = −0.136 × 1016 s−1);
this is accordance with, and thus verifying, part (III) of the
unified model of Gaussian pulse propagation in a Lorentz-type
dispersive and gain medium.

Similar findings may readily be evidenced upon examining
the higher applied carrier frequency case, i.e., the second
case illustrated in Figs. 4–6 together with the diagrams in
Figs. 12(b) and 14(b). Notice that, here, the space-time points
of peaks of the envelope of the pulse component AU1(z,t)
[AU5(z,t)] of the propagated field occur at θ ′

U1Astnrmax

∼= +0.992
and θ ′

U1Bstnrmax

∼= +4.419 (θ ′
U5Astnrmax

∼= +0.997 and θ ′
U5Bstnrmax

∼=
+4.420). Similar conclusions are deduced upon examining
the broader input pulse case, i.e., the third case illustrated in
Figs. 7 and 8 together with the diagrams in Figs. 13(a) and
15(a). Here, the space-time point of the envelope peak in the
pulse component AU1(z,t) of the propagated field occurs at
θ ′
U1Astnrmax

∼= +0.961. Finally, similar findings are evidenced
upon examining the shorter propagation distance case, i.e.,
the fourth case illustrated in Figs. 9–11 when compared with
the diagrams in Figs. 13(b) and 15(b). Here, the space-time
points of envelope peaks in the pulse component AU1(z,t)
[AU5(z,t)] of the propagated field occur at θ ′

U1Astnrmax

∼= +0.992
and θ ′

U1Bstnrmax

∼= +3.045 (θ ′
U5Astnrmax

∼= +0.993 and θ ′
U5Bstnrmax

∼=
+3.046).

Figures 1–11, together with Figs. 12 and 13, and Figs. 14
and 15, verify that the unified model of Gaussian pulse prop-
agation in a Lorentz-type linear, causally dispersive and gain
medium is in complete agreement with the observed dynamical
evolution of the propagated field. This model extends the
model of Gaussian pulse propagation of arbitrary initial pulse
width which was shown to be uniformly valid in the case
of a Lorentz-type dispersive and absorptive medium [9,33].
Moreover, the unified model of Gaussian pulse propagation
is in agreement with the classical asymptotic description
of ultrashort Gaussian pulse propagation in a Lorentz-type
dispersive active medium, reducing to this classical description
in the appropriate limit.

An inspection of Figs. 1–11 shows that, for the considered
gain medium and for an ultrashort Gaussian input pulse, as
depicted in the first (Figs. 1–3), second (Figs. 4–6), and fourth
(Figs. 9–11) cases, the (total) propagated field A(z,t), as well
as its respective pulse components AUl(z,t), l ∈ N , are each
composed of a transient structure, which evolves in the vicinity
of the space-time point θ ′ ∼= +1.0 traveling at nearly the
vacuum speed of light, followed by a deformed Gaussian pulse
structure. The transient structure in A(z,t) is likely a remnant
of the input ultrashort Gaussian pulse; such a spiked structure
appears present at the onset of the numerically evaluated
propagated field that is due to an input delta-function pulse
in a single resonance Lorentz-type dispersive and absorptive
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FIG. 12. (Color online) Dynamical evolu-
tion of the saddle points SPUk , k = 1,2, . . . ,5,
of the unified phase function �U (ω,θ ′) in the
complex ω plane, for an input unit-amplitude
Gaussian-modulated harmonic (sine) wave with
initial pulse width 2T = 0.2 fs at a propaga-
tion distance z = 1.0 μm in the single reso-
nance Lorentz-type dispersive and gain medium.
In (a) the applied carrier frequency is ωc =
1.0 × 1015 s−1, while in (b) the applied carrier
frequency is ωc = 4.0 × 1015 s−1. In both di-
agrams, the arrow at each path indicates the
direction of motion of the respective saddle point
as θ ′ increases over the domain θ ′ ∈ [−5.0,

+ 15.0].

medium [38]. As the applied carrier frequency of the input
Gaussian pulse is increased through, and then above, the am-
plification band of the gain medium the respective amplitude of
this transient structure is increased, and then decreased, while
its peak occurs at smaller values of the space-time parameter θ ′,
traveling with higher velocities. Moreover, in the considered
gain medium, the deformed Gaussian pulse structure in A(z,t)
exhibits similar behavior as the applied carrier frequency is
increased. For such an ultrashort Gaussian input pulse, the
instantaneous oscillation frequencies of the (total) propagated
field A(z,t), as well as of its respective pulse components
AUl(z,t), l ∈ N , evolve in the spectral range between the
applied carrier frequency and the amplification band of the
gain medium, as the space-time parameter increases away
from the value θ ′ ∼= +1.0. Moreover, the pulse components
AUl(z,t), l ∈ N comprising the respective (total) propagated
field A(z,t) are seen to be of comparable amplitudes and are
phase shifted with respect to each other. As the input Gaussian
pulse is broadened significantly, the (total) propagated field
A(z,t) becomes compact. In this case, only a deformed
Gaussian pulse structure due to the asymptotic contribution of
a single relevant saddle point prevails and its peak travels with
velocity that may become greater than the vacuum speed of
light [12,14,18,39,41]. Indeed, in Figs. 7(a) and 7(c) the peak
amplitude of the (total) propagated field travels with the super-

luminal velocity υUAmax = c
θ ′
UAmax

∼= υHAmax = c
θ ′
HAmax

∼= 1.223c

in the gain Lorentzian medium. Notice that for this particular
case, according to Eq. (B21), the peak (stationary point) of
the envelope of the pulse component AU1(z,t), as well as of
the (total) propagated field, travels with velocity υUAstnrmax

=
c

θ ′
UAstnrmax

= υU1Astnrmax
= c

θ ′
U1Astnrmax

∼= 1.041c, which is also su-

perluminal. Notice also that according to the approximate,
heuristic analysis in Appendix C, the peak in the envelope of
the pulse component AR1(z,t) travels with velocity υpeakR1

=
c

θpeakR1

∼= 0.963c which is subluminal and smaller than the

peak envelope velocity predicted by the unified asymptotic
theory; in case the term 
2Ul

(θ ′) becomes negligible when the
trajectory followed by the corresponding relevant saddle point
of �U (ω,θ ′) intersects the real frequency axis, which marks
the space-time point when the peak (stationary point) of the
envelope of the respective single pulse component occurs, then
υUAstnrmax

approaches the velocity υpeakR1
. As the input Gaussian

pulse is broadened significantly, the instantaneous frequency
of oscillation of the (total) propagated field A(z,t), as well
as of its single pulse component, is increasingly concentrated
about the applied carrier frequency. Finally, as the propagation
distance in the gain Lorentzian medium is increased, the
propagated field also becomes compact; eventually, however,
material nonlinearities need to be considered.
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FIG. 13. (Color online) Dynamical evolu-
tion of the saddle points SPUk , k = 1,2, . . . ,5,
of the unified phase function �U (ω,θ ′) in the
complex ω plane, for an input unit-amplitude
Gaussian-modulated harmonic (sine) wave. In
(a) the initial pulse width is 2T = 20.0 fs,
the applied carrier frequency is ωc = 1.0 ×
1015 s−1, and the propagation distance is z =
1.0 μm in the single resonance Lorentz-type
dispersive and gain medium. In (b) the initial
pulse width is 2T = 0.2 fs, the applied car-
rier frequency is ωc = 1.0 × 1015 s−1, and the
propagation distance is z = 0.75 μm in this
single resonance Lorentz-type dispersive and
gain medium. Note that in the top diagram
two of the five saddle points are exceedingly
close to the left branch cut ω−ω′

−, whereas two
additional saddle points are exceedingly close
to the right branch cut ω′

+ω+. In both diagrams,
the arrow at each path indicates the direction
of motion of the respective saddle point as θ ′

increases over the domain θ ′ ∈ [−5.0, +15.0].

V. CONCLUSIONS

The unified asymptotic approach is employed and yields a
complete, accurate, uniformly valid description of the propa-
gated field dynamics due to an input Gaussian-modulated har-
monic wave of arbitrary initial pulse width in a linear, causally
dispersive gain Lorentzian medium. This asymptotic approach
applies Olver’s asymptotic method [9,34] on the unified exact,
integral expression (6) of the propagated field, which is
obtained from an appropriate rearrangement of its classical
integral counterpart (1) and is characterized by a unified
complex phase function �U (ω,θ ′) that depends upon the input
field and gain medium parameters as well as upon the propa-
gation distance in the medium; this dependence of �U (ω,θ ′)
necessitates that the unified asymptotic approach must be
employed each time one of these parameters changes value.

The unified asymptotic approach is uniformly valid for
all values of the space-time parameter θ ′. Moreover, it is
uniformly valid in the propagation distance z, the gain medium
parameters, as well as in the applied carrier frequency ωc and
initial width 2T of the input Gaussian pulse. Therefore, the
resultant unified asymptotic description of the propagated field
dynamics is valid for arbitrarily short or long initial pulses.
Moreover, in the limit of an input ultrashort Gaussian pulse,
this unified description reduces to the limiting description
afforded by the classical asymptotic approach while in the

opposite limit it reduces to approaches that employ the slowly
varying envelope approximation. More importantly, the unified
asymptotic approach leads to the unified model of Gaussian
pulse propagation in a gain Lorentzian medium which extends
the model that was shown to be uniformly valid for Gaussian
pulse propagation of arbitrary initial pulse width in the case
of a Lorentz-type dispersive and absorptive medium [9,33].
According to this model, the propagated field A(z,t) is
composed of pulse components AUl(z,t), each being due to the
asymptotic contribution of a respective relevant saddle point
ωSPUl

(θ ′) of �U (ω,θ ′). The instantaneous angular frequency
of oscillation ωIFOUl

(θ ′) and the stationary point(s) of the
envelope of each such pulse component are then obtained from
the real and imaginary parts, respectively, of the corresponding
relevant saddle point as it evolves in the complex ω plane.
Therefore, this unified model directly relates the dynamics of
the relevant saddle points of �U (ω,θ ′) with the propagated
field dynamics.

In the case of an ultrashort Gaussian input pulse, each
pulse component and the respective (total) propagated field
is composed of a transient structure, which evolves in the
vicinity of the space-time point θ ′ ∼= +1.0 traveling at nearly
the vacuum speed of light, followed by a deformed Gaussian
pulse structure. In such an input pulse case, the instantaneous
oscillation frequencies of each pulse component as well
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FIG. 14. (Color online) Behavior of the real
part of the unified phase function XU (ωr ) (online
denoted in black), the real part of the classical
phase function XC(ωr ) (online denoted in blue),
and the real part of the phase term that is due to
the spectrum of the input pulse XG(ωr ) (online
denoted in red), along the real frequency axis,
for an input unit-amplitude Gaussian-modulated
harmonic (sine) wave with initial pulse width
2T = 0.2 fs at a propagation distance z =
1.0 μm in the single resonance Lorentz-type
dispersive and gain medium. In (a) the applied
carrier frequency is ωc = 1.0 × 1015 s−1, while
in (b) the applied carrier frequency is ωc =
4.0 × 1015 s−1.

as of the respective (total) propagated field evolve in the
spectral range between the applied carrier frequency and the
amplification band of the gain medium. As the input Gaussian
pulse is broadened, the propagated field A(z,t) becomes
compact. In this case, only a deformed Gaussian structure
prevails and its peak travels with velocity that may become
greater than the vacuum speed of light [12,14,18,39,41]. The
instantaneous frequency of oscillation of the propagated field,
is then increasingly concentrated about the applied carrier
frequency.

APPENDIX A: DYNAMICS OF THE SADDLE POINTS
OF THE UNIFIED PHASE FUNCTION IN THE

COMPLEX ω PLANE

In a single resonance Lorentz-type dispersive and gain
medium, the unified phase function �U (ω,θ ′) appearing in
the unified integral formulation of Gaussian pulse propagation
given in Eqs. (6)–(8), is stationary at its saddle points so that
their exact locations in the complex ω plane are given by the
roots of the general equation

d�U (ω,θ ′)
dω

=
{
i[n(ω) − θ ′] + iω

dn(ω)

dω

}

+
[
−cT 2

2z
(ω − ωc)

]
= 0. (A1)

When the first derivative of the refractive index is substituted
into Eq. (A1), the exact saddle point equation becomes(

ω2 − ω2
1 + i2δω

ω2 − ω2
0 + i2δω

)
−
[

ωb2(ω + iδ)(
ω2 − ω2

0 + i2δω
)2

]

=
[
θ ′ − i

cT 2

2z
(ω − ωc)

](
ω2 − ω2

1 + i2δω

ω2 − ω2
0 + i2δω

)1/2

. (A2)

It is straightforward to show that the expression (A2) has five,
in general, complex-valued roots, so that five saddle points
are involved in the procedure for the asymptotic evaluation
of the unified integral expression of the propagated field.
According to Eq. (A2), the dynamical evolution in the complex
ω plane of the five saddle points of �U (ω,θ ′) depends
not only upon the medium parameters but also upon the
carrier frequency ωc and the initial pulse width 2T of the
input Gaussian-modulated harmonic wave, as well as upon
the propagation distance z in the causally dispersive gain
medium.

As it is difficult to determine accurate analytic expressions
for the roots of the exact saddle point equation (A2), attention
is initially restricted to an analytic determination of the saddle
point locations in certain limiting cases. Notice that the
roots of Eq. (A2), i.e., the saddle point locations, appear in
the exponents of the propagated field expressions (11) and
(12), which necessitates that, when derived analytically, the
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FIG. 15. (Color online) Behavior of the real
part of the unified phase function XU (ωr ) (online
denoted in black), the real part of the classical
phase function XC(ωr ) (online denoted in blue),
and the real part of the phase term that is
due to the spectrum of the input pulse XG(ωr )
(online denoted in red), along the real frequency
axis, for an input unit-amplitude Gaussian-
modulated harmonic (sine) wave. In (a) the
initial pulse width is 2T = 20.0 fs, the applied
carrier frequency is ωc = 1.0 × 1015 s−1, and
the propagation distance is z = 1.0 μm in the
single resonance Lorentz-type dispersive and
gain medium. In (b) the initial pulse width is
2T = 0.2 fs, the applied carrier frequency is
ωc = 1.0 × 1015 s−1, and the propagation dis-
tance is z = 0.75 μm in this single resonance
Lorentz-type dispersive and gain medium.

respective expressions for the saddle point locations must be
extremely accurate in order for the unified asymptotic ap-
proach to accurately describe the propagated field in Gaussian
pulse propagation. Equation (A2) is then rewritten as

(
ω2 − ω2

1 + i2δω

ω2 − ω2
0 + i2δω

)1/2

−
[

ωb2(ω + iδ)(
ω2 − ω2

1 + i2δω
)1/2(

ω2 − ω2
0 + i2δω

)3/2

]

+
[
i
cT 2

2z
(ω − ωc)

]
= θ ′, (A3)

which shows that, as 2T approaches zero from above and/or as
z approaches infinity, the third term appearing on the left-hand
side of Eq. (A3) is negligible compared to the remaining two
terms. In this case, the dynamical evolution of four of the five
saddle points of the unified phase function are approximately
obtained from the equation describing the dynamical evolution
of the four saddle points of the classical phase function [39],
to which Eq. (A3) reduces to. In this particular case, and in
the limit as θ ′ tends to −∞, four saddle points of �U (ω,θ ′)
emanate from the vicinity of the four branch points ω′

± and
ω± of n(ω), in the complex ω plane. In the limit as θ ′ tends

to +∞, four saddle points of �U (ω,θ ′) also approach these
four branch points of n(ω) [39]. On the other hand, as 2T

approaches infinity and/or as z approaches zero from above,
the first two terms appearing on the left-hand side of Eq. (A3)
are negligible compared to the third term, except at the four
branch points of n(ω). In this case, the dynamical evolution of
one of the five saddle points of the unified phase function may
approximately be obtained from the relation

i
cT 2

2z
(ω − ωc) = −cT 2ωi

2z
+ i

cT 2

2z
(ωr − ωc) = θ ′. (A4)

Therefore, in the limit as θ ′ tends to −∞, one saddle point
asymptotically approaches the line ω = ωc towards the point
ωc + i∞ in the complex ω plane. Moreover, in the limit as
θ ′ tends to +∞, one saddle point asymptotically approaches
the line ω = ωc towards the point ωc − i∞ in the complex ω

plane.
Figures 12 and 13, which depict the results of a numerical

solution of the exact saddle point equation (A2), illustrate
the dependence of the saddle point dynamics on the carrier
frequency ωc [compare the diagrams in Figs. 12(a) and 12(b)],
the initial pulse width 2T [compare the diagrams in Figs. 12(a)
and 13(a)], and the propagation distance z [compare the
diagrams in Figs. 12(a) and 13(b)]. In each figure, the saddle
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points SPUk , k = 1,2, . . . ,5, are numbered in a clockwise
fashion with SPU1 denoting the saddle point which originates
at ωc + i∞ in the complex ω plane as θ ′ tends to −∞ and
has the line ω = ωc as its asymptote. The arrow appearing
at the path traversed by a particular saddle point indicates
the direction of motion of this saddle point as the parameter
θ ′ increases over the domain θ ′ ∈ [−5.0, +15.0]. In each
figure the quantities θrcUk,m

and ωrcUk,m
, k,m ∈ N , denote the

real space-time parameter value and the real frequency value,
respectively, where the trajectory followed by the saddle point
SPUk intersects the real frequency axis; the first subscript
k ∈ N characterizes the saddle point SPUk , whereas the second
subscript m ∈ N , whenever present, characterizes successive
points where the trajectory followed by the respective saddle
point intersects the real frequency axis. This numerical study
verifies that, for a single resonance Lorentz-type dispersive
and gain medium, �U (ω,θ ′) has five saddle points whose
dynamical evolution in the complex ω plane exhibits a limiting
behavior which is in complete agreement with the preceding
analytic considerations.

APPENDIX B: DERIVATION OF THE UNIFIED MODEL OF
GAUSSIAN PULSE PROPAGATION IN A LORENTZ-TYPE

DISPERSIVE AND GAIN MEDIUM

By definition, at each of the isolated, first-order saddle
points, SPUk , k = 1,2, . . . ,5, of the unified phase function
�U (ω,θ ′), which are the only saddle points that may be

relevant in the asymptotic analysis for any given value of θ ′,
the set of equations [34]

d�U (ω,θ ′)
dω

∣∣∣∣
ω=ωSP

Uk

= 0 (B1)

and

d2�U (ω,θ ′)
dω2

∣∣∣∣
ω=ωSP

Uk

�= 0 (B2)

is always satisfied. Equation (B1) yields the set of equations
[42]

∂XU (ωr,ωi,θ
′)

∂ωr

∣∣∣∣
ω=ωSP

Uk

= ∂YU (ωr,ωi,θ
′)

∂ωi

∣∣∣∣
ω=ωSP

Uk

= 0

(B3)

and

∂XU (ωr,ωi,θ
′)

∂ωi

∣∣∣∣
ω=ωSP

Uk

= −∂YU (ωr,ωi,θ
′)

∂ωr

∣∣∣∣
ω=ωSP

Uk

= 0

(B4)

for any given value of θ ′; the saddle points SPUk are contained
in the domain D of the complex ω plane where �U (ω,θ ′) is
analytic. At each of the isolated, first-order relevant saddle
points SPUk , k = 1,2, . . . ,5, the second derivative of the
unified phase function appearing in Eqs. (11) and (12) may
be written as

d2�U (ωSP
Uk

,θ ′)

dω2
≡ d2�U (ω,θ ′)

dω2

∣∣∣∣
ω=ωSP

Uk

=
[
∂2XU (ωr,ωi,θ

′)
∂ω2

r

+ i
∂2YU (ωr,ωi,θ

′)
∂ω2

r

]
ω=ωSP

Uk

�= 0, (B5)

and is nonzero for any given value of θ ′.
Consider the θ ′ interval 
θUl when the pulse compo-

nent AUl(z,t) of the propagated field A(z,t) is due to the
asymptotic contribution of the relevant saddle point ωSPUl

(θ ′)
of �U (ω,θ ′). In this θ ′ interval the instantaneous frequency
of oscillation ωIFOUl

(θ ′) of AUl(z,t) may be obtained from
the time derivative of the oscillatory phase term in Eq. (12)
as [9,20,33]

−ωIFOUl
(θ ′) = d

dt

(
z

c
YU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)

− 1

2

{
arg

[
d2�U

(
ωSPUl

(θ ′),θ ′)
dω2

]
+ π

})

= d

dθ ′
[
YU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]

− 1

2

d

dt

{
arg

[
d2�U

(
ωSPUl

(θ ′),θ ′)
dω2

]}
. (B6)

Hereafter, the notation ωr
SPUl

(θ ′) ≡ Re{ωSPUl
(θ ′)} represents

the real part, while the notation ωi
SPUl

(θ ′) ≡ Im{ωSPUl
(θ ′)}

represents the imaginary part of the relevant saddle point
ωSPUl

(θ ′). The first term on the right-hand side of Eq. (B6)
is given by

d

dθ ′
[
YU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]

= ∂YU

(
ωr

SPUl
,ωi

SPUl
,θ ′)

∂θ ′ = −ωr
SPUl

(θ ′) = −Re
{
ωSPUl

(θ ′)
}
,

(B7)

where use was made of the relations (B3) and (B4) and of the
expression for the imaginary part of the unified phase function
given in Eq. (C4).

The second term on the right-hand side of Eq. (B6) is given
by

1

2

d

dt

{
arg

[
d2�U

(
ωSPUl

(θ ′),θ ′)
dω2

]}
= 
1Ul

(θ ′), (B8)

and is always finite. Here, the term 
1Ul
(θ ′) is given by


1Ul
(θ ′) = N
1Ul

(θ ′)

D
1Ul
(θ ′)

, (B9)
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where

N
1Ul
(θ ′) = d

dθ ′

[
∂2YU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul
(θ ′)

]
∂2XU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul

− d

dθ ′

[
∂2XU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul
(θ ′)

]
∂2YU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul

(B10)

and

D
1Ul
(θ ′) = 2z

c

∣∣∣∣d2�U

(
ωSPUl

,θ ′)
dω2

∣∣∣∣
2

. (B11)

Substitution of Eqs. (B7) and (B8) into Eq. (B6) yields

ωIFOUl
(θ ′) = Re

{
ωSPUl

(θ ′)
}+ 
1Ul

(θ ′), (B12)

where 
1Ul
(θ ′) = O(1/z) as z → +∞. When the term 
1Ul

(θ ′) becomes (asymptotically) negligible in comparison to
Re{ωSPUl

(θ ′)}, then the evolution with time of the instantaneous angular frequency of oscillation ωIFOUl
(θ ′) is given by the

real part of the respective relevant saddle point location Re{ωSPUl
(θ ′)} as it evolves in the complex ω plane. This then proves part

(I) of the unified model of Gaussian pulse propagation in a gain Lorentzian medium.
In this θ ′ interval the envelope of the pulse component AUl(z,t) exhibits its stationary point(s) when its first derivative with

respect to time vanishes, so that

d

dt

{∣∣∣∣∣d
2�U

(
ωSPUl

(θ ′),θ ′)
dω2

∣∣∣∣∣
−1/2

exp

[
z

c
XU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]}

= d

dt

[∣∣∣∣∣d
2�U

(
ωSPUl

(θ ′),θ ′)
dω2

∣∣∣∣∣
−1/2]

exp

[
z

c
XU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]

+
∣∣∣∣∣d

2�U

(
ωSPUl

,θ ′)
dω2

∣∣∣∣∣
−1/2

d

dt

{
exp

[
z

c
XU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]} = 0. (B13)

The first, first-order time derivative appearing on the right-hand side of Eq. (B13) is given by

d

dt

[∣∣∣∣∣d
2�U

(
ωSPUl

(θ ′),θ ′)
dω2

∣∣∣∣∣
−1/2]

= −
∣∣∣∣∣d

2�U

(
ωSPUl

,θ ′)
dω2

∣∣∣∣∣
−1/2


2Ul
(θ ′), (B14)

and is always finite. Here, the term 
2Ul
(θ ′) is given by


2Ul
(θ ′) = N
2Ul

(θ ′)

D
2Ul
(θ ′)

, (B15)

where

N
2Ul
(θ ′) = d

dθ ′

[
∂2XU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul
(θ ′)

]
∂2XU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul

+ d

dθ ′

[
∂2YU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul
(θ ′)

]
∂2YU (ωr,ωi,θ

′)
∂ω2

r

∣∣∣∣∣
ω=ωSP

Ul

(B16)

and

D
2Ul
(θ ′) = 2z

c

∣∣∣∣∣d
2�U

(
ωSPUl

,θ ′)
dω2

∣∣∣∣∣
2

. (B17)

The second, first-order time derivative appearing on the right-hand side of Eq. (B13) is given by

d

dt

{
exp

[
z

c
XU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]} = exp

[
z

c
XU

(
ωr

SPUl
,ωi

SPUl
,θ ′)]∂XU

(
ωr

SPUl
,ωi

SPUl
,θ ′)

∂θ ′ ,

(B18)

where use was made of the relations (B3) and (B4).
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Substitution of the expression for the real part of the unified
phase function, which is given in Eq. (C3), into Eq. (B18)
yields

d

dt

{
exp

[
z

c
XU

(
ωr

SPUl
(θ ′),ωi

SPUl
(θ ′),θ ′)]}

= exp

[
z

c
XU

(
ωr

SPUl
,ωi

SPUl
,θ ′)]ωi

SPUl
(θ ′)

= exp

[
z

c
XU

(
ωr

SPUl
,ωi

SPUl
,θ ′)]Im

{
ωSPUl

(θ ′)
}
. (B19)

Substitution of Eqs. (B14) and (B19) into Eq. (B13) then yields{∣∣∣∣∣d
2�U

(
ωSPUl

,θ ′)
dω2

∣∣∣∣∣
−1/2

exp

[
z

c
XU

(
ωr

SPUl
,ωi

SPUl
,θ ′)]}

× [−
2Ul
(θ ′) + Im{ωSPUl

(θ ′)}] = 0. (B20)

The stationary point(s) of the envelope of the pulse component
AUl(z,t) occur when

Im
{
ωSPUl

(θ ′)
} = 
2Ul

(θ ′), (B21)

where 
2Ul
(θ ′) = O(1/z) as z → +∞. When the term


2Ul
(θ ′) becomes (asymptotically) negligible, the term

Im{ωSPUl
(θ ′)} becomes vanishingly small, in which case the

stationary point(s) of the envelope of AUl(z,t) occur when
the trajectory followed by the respective relevant saddle
point ωSPUl

(θ ′) intersects the real frequency axis in the
complex ω plane. This then proves part (II) of the unified
model of Gaussian pulse propagation in a gain Lorentzian
medium.

Let θrcUl
= θstnrUl

denote the value of θ ′ in the interval 
θUl

when the trajectory followed in the complex ω plane by the
relevant saddle point ωSPUl

(θ ′) of �U (ω,θ ′) intersects the real
frequency axis at the real frequency denoted by ωrcUl

= ωstnrUl
,

so that

ωstnrUl
≡ ωSPUl

(
θstnrUl

)
. (B22)

From Eqs. (B3), (C2), and (C7) one readily obtains

∂XU (ωr,ωi,θ
′)

∂ωr

∣∣∣∣
ω=ωSP

Ul
(θstnr

Ul
)=ωstnr

Ul

= ∂XU (ωr )

∂ωr

∣∣∣∣
ωr=ωstnr

Ul
=ωSP

Ul
(θstnr

Ul
)

= 0. (B23)

According to the second equality in Eq. (B23), the intersection
point ωstnrUl

= ωSPUl
(θstnrUl

) is a stationary point (i.e., either a
local maximum or a local minimum) of the real part of the
unified phase function along the real frequency axis, i.e., it is a
stationary point of the function XU (ωr ). This then proves part
(III) in the unified model of Gaussian pulse propagation in a
gain Lorentzian medium.

APPENDIX C: ANALYSIS OF THE REAL PART OF THE
UNIFIED PHASE FUNCTION ALONG THE REAL

FREQUENCY AXIS AND APPROXIMATE, HEURISTIC
EVALUATION OF GAUSSIAN PULSE PROPAGATION

IN A GAIN LORENTZIAN MEDIUM

For an input Gaussian-modulated harmonic wave of ar-
bitrary initial pulse width propagating in a single resonance
Lorentz-type dispersive and gain medium, it is easy to show
that the unified phase function �U (ω,θ ′) appearing in Eq. (6) is
not symmetric about the imaginary frequency axis and must be
determined separately in any desired region of the complex ω

plane. However, both �U (ω,θ ′) and the refractive index n(ω)
are analytic everywhere in the complex ω plane except at the
four branch points ω′

± and ω± of n(ω). In the gain medium,
the expression of �U (ω,θ ′) given in Eq. (8) may be separated
into its real and imaginary parts as

�U (ω,θ ′) = i(ωr + iωi)[nr (ωr,ωi) − θ ′ + ini(ωr,ωi)] − cT 2

4z
[(ωr − ωc) + iωi]

2 (C1)

= −
{
ωrni(ωr,ωi) + ωi[nr (ωr,ωi) − θ ′] + cT 2

4z

[
(ωr − ωc)2 − ω2

i

]}

+ i

{
ωr [nr (ωr,ωi) − θ ′] − ωini(ωr,ωi) − cT 2

2z
ωi(ωr − ωc)

}
, (C2)

so that the real part of �U (ω,θ ′) is given by

Re{�U (ω,θ ′)} ≡ XU (ωr,ωi,θ
′) = −

{
ωrni(ωr,ωi) + ωi[nr (ωr,ωi) − θ ′] + cT 2

4z

[
(ωr − ωc)2 − ω2

i

]}
, (C3)

and its imaginary part is given by

Im{�U (ω,θ ′)} ≡ YU (ωr,ωi,θ
′) = ωr [nr (ωr,ωi) − θ ′] − ωini(ωr,ωi) − cT 2

2z
ωi(ωr − ωc). (C4)

In Eqs (C1)–(C4), ωr = Re{ω} and ωi = Im{ω}, while the terms nr (ωr,ωi) and ni(ωr,ωi) denote the real and imaginary parts,
respectively, of n(ω).

The refractive index may be expressed in the form

n(ω) =
[

1 + b4 + 2b2
(
ω2

r − ω2
i − ω2

0 − 2δωi

)
(
ω2

r − ω2
i − ω2

0 − 2δωi

)2 + 4ω2
r (ωi + δ)2

]1/4

exp

[
i
ζ (ωr,ωi)

2

]
, (C5)
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where the function ζ (ωr,ωi) appearing in the argument of n(ω) is given by

ζ (ωr,ωi) = arctan

[
−2ωrb

2(ωi + δ)(
ω2

r − ω2
i − ω2

0 − 2δωi

)2 + b2
(
ω2

r − ω2
i − ω2

0 − 2δωi

)+ 4ω2
r (ωi + δ)2

]
(C6)

and is chosen to lie in the interval −π � ζ (ωr,ωi) < π . In
a causal medium, the real part of the index of refraction
Re{n(ω)} is symmetric while its imaginary part Im{n(ω)} is
antisymmetric about the imaginary frequency axis [43]; it is
sufficient to examine the behavior of n(ω) in the right half of
the complex ω plane alone [39].

Along the real frequency axis, the real part of the unified
phase function is given by

XU (ωr ) = XC(ωr ) + XG(ωr )

= [−ωrni(ωr )] +
[
−cT 2

4z
(ωr − ωc)2

]
, (C7)

where

XC(ωr ) = −ωrni(ωr ) (C8)

denotes the real part of the classical phase function evaluated
along the real frequency axis, and where

XG(ωr ) = −cT 2

4z
(ωr − ωc)2 (C9)

denotes the real part of the phase term that is due to the
spectrum of the input Gaussian pulse evaluated along the
same axis. According to Eq. (C7), along the real frequency
axis XU (ωr ) is independent of the space-time parameter θ ′; it
depends only upon the input field and gain medium parameters
as well as upon the propagation distance in the medium.
The behavior of XU (ωr ) may now be determined from the
behavior of the separate terms XC(ωr ) and XG(ωr ) appearing
in Eq. (C7).

The exact locations for the stationary (local maxima and
local minima) points of XU (ωr ) are specified by the relation

d�U (ωr,θ
′)

dωr

= ∂XU (ωr )

∂ωr

+ i
∂YU (ωr,θ

′)
∂ωr

= 0, (C10)

which, upon substitution of Eqs. (C3) and (C4) evaluated along
the real frequency axis, gives

∂XU (ωr )

∂ωr

= −ni(ωr ) − ωr

∂ni(ωr )

∂ωr

− cT 2

2z
(ωr − ωc) = 0

(C11)

and

∂YU (ωr,θ
′)

∂ωr

= ∂

∂ωr

[ωrnr (ωr )] − θ ′

= nr (ωr ) + ωr

∂nr (ωr )

∂ωr

− θ ′ = 0. (C12)

The desired, exact locations of the stationary points of XU (ωr )
are now given by the roots of Eq. (C11). When the analytic
expressions for the real [nr (ωr )] and imaginary [ni(ωr )] parts
of the index of refraction along the real frequency axis

are substituted in Eq. (C11), the resultant expression for
the exact locations of the stationary points of XU (ωr ) is
intractable analytically; however, it can be accurately solved
using numerical techniques. Figures 14 and 15, depict the
locations of the stationary points of XU (ωr ) for the same
input field and gain medium parameters as well as the same
propagation distances in the medium utilized in Figs. 12
and 13, and provide an illustration of the dependence of the
dynamics of these stationary points on the carrier frequency
ωc [compare the diagrams in Figs. 14(a) and 14(b)], the initial
pulse width 2T [compare the diagrams in Figs. 14(a) and
15(a)], and the propagation distance z [compare Figs. 14(a)
and 15(b)].

For the chosen single resonance Lorentz gain medium,
XU (ωr ) may exhibit at most five stationary points (up to three
local maxima ωmx1,2,3 and up to three local minima ωmn1,2,3 )
along the real frequency axis. In particular, for any applied
carrier frequency ωc � 0, XU (ωr ) always exhibits two local
maxima along the real frequency axis which, approximately,
occur at the real frequencies ω+

max and ω−
max where the term

XC(ωr ) attains its maximum values along this axis. In the limit
as the initial pulse width 2T approaches zero from above and/or
as the propagation distance z tends to infinity these become
the only, total, maxima of XU (ωr ) along the real frequency
axis. In the opposite limit, as the initial pulse width 2T tends
to infinity and/or as the propagation distance z approaches
zero from above, XU (ωr ) exhibits a single total maximum
located at the applied carrier frequency ωr = ωc along the
real frequency axis. When the applied carrier frequency is
sufficiently above or below the (positive) resonance frequency
of the gain medium, XU (ωr ) exhibits a third local maximum
along the positive real frequency axis; this occurs in the interval
0 < ωr < ω+

max when ωc is sufficiently below ω+
max, while it

occurs in the interval ωr > ω+
max when ωc is sufficiently above

ω+
max. As the initial pulse width 2T increases and/or as the

propagation distance z decreases, this becomes the dominant
maximum of XU (ωr ).

In addition, XU (ωr ) may exhibit up to three local minima
along the real frequency axis. One local minimum occurs
in the frequency range ω−

max < ωr < ω+
max. When the applied

carrier frequency is sufficiently above or below the (positive)
resonance frequency of the gain medium, XU (ωr ) may exhibit
a second local minimum along the positive real frequency
axis; this occurs in the interval 0 < ωr < ω+

max when ωc

is sufficiently below ω+
max, while it occurs in the interval

ωr > ω+
max when ωc is sufficiently above ω+

max. As the initial
pulse width 2T increases and/or as the propagation distance
z decreases, the appearance of the second local minimum of
XU (ωr ) becomes increasingly likely. Conversely, as the initial
pulse width 2T decreases and/or as the propagation distance
z increases the appearance of the second local minimum is
less likely. However, in the limit as the initial pulse width
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2T approaches zero from above and/or as the propagation
distance z tends to infinity, XU (ωr ) attains three minima at
+∞, 0, and −∞ along the real frequency axis, since XG(ωr )
lies completely along this axis in this limiting case.

This analysis leads to an approximate, heuristic evaluation
of the unified integral expression (6) of the propagated field
A(z,t), when the contour of integration is taken to be the real
frequency axis. In this case, this unified integral expression
may be rewritten as

A(z,t) =
∑

k

IRk(z,θ ′)

=
∑

k

(
1

2π
Re

{
i

∫ uk

lk

ŨU exp

[
z

c
�U (ωr,θ

′)
]
dωr

})
,

(C13)

where each of the integration intervals comprising the real
frequency axis is suitably chosen to encompass a single one
of the (up to three) local maxima ωmxk

, k ∈ N of XU (ωr ).
Therefore, for any given value of the input field and gain
medium parameters as well as of the propagation distance
(up to three of) the denoted terms IRk(z,θ ′), k ∈ N appear
in Eq. (C13), for any value of the space-time parameter θ ′.
From the preceding considerations concerning the behavior
of XU (ωr ), it is expected that the dominant contribution to
the integral expression for A(z,t) will arise from the spectral
regions in the vicinity of the real frequencies ωmxk

, k ∈ N at
which XU (ωr ) attains its local maxima. It can be shown that
when the relation

XC

(
ωmxk

)
< −XG

(
ωmxk

)− 1

2

∂2XU

(
ωmxk

)
∂ω2

r

(
ωr − ωmxk

)2

(C14)

is satisfied, the integral expression (C13) may approximately
be evaluated by expanding each phase function appearing
in the exponent of each of the terms IRk(z,θ ′), k ∈ N in a
Taylor series about the respective single real frequency ωmxk

that lies in the corresponding integration interval, retaining
only the first three terms in each such expansion [which is
justified provided that the function XU (ωr ) is sharply peaked
about each of the frequencies where its local maxima occur]
and subsequently performing the denoted integration. Upon
performing this expansion, Eq. (C13) eventually yields

A(z,t) ∼=
∑

k

ARk(z,t)

=
∑

k

⎛
⎜⎝ 1

2π
Re

⎧⎪⎨
⎪⎩iŨU exp

[
z

c
�U (ωmxk

,θ ′)
]

×
⎡
⎣ π

− 1
2

d2�U (ωmxk
,θ ′)

dω2
r

c

z

⎤
⎦

1/2

× exp

⎡
⎢⎣
[

z
c

∂XU (ωmxk
,θ ′)

∂ωr

]2
2z
c

d2�U

(
ωmxk

,θ ′
)

dω2
r

⎤
⎥⎦
⎫⎪⎬
⎪⎭
⎞
⎟⎠ , (C15)

where k ∈ N . For the single resonance Lorentz-type dispersive
and gain medium of interest, the inequality in Eq. (C14)
appears to be satisfied at the local maxima points ωmxk

,
k ∈ N of XU (ωr ) for sufficiently broad input pulses and/or
at sufficiently small propagation distances. In the ensuing,
attention is restricted only to those cases where the inequality
in Eq. (C14) is satisfied at the local maxima points ωmxk

,
k ∈ N ; when this inequality is violated, one must resort to the
unified asymptotic approach in order to obtain the complete
uniformly valid description of the propagated field.

It follows from Eq. (C15) that the peak in the envelope
of each of the terms ARk(z,t) is approximately attained
when ∂YU (ωmxk

,θ ′)/∂ωr = 0, k ∈ N . Therefore, according to
Eq. (C12), the peak in the envelope of each of the terms
ARk(z,t) approximately occurs at the respective space-time
point

θpeakRk
= ∂

∂ωr

[
ωmxk

nr

(
ωmxk

)]
, (C16)

so that each peak in the envelope approximately travels with
the respective velocity

υpeakRk
= c

θpeakRk

=
{

∂

∂ωr

[
ωmxk

nr

(
ωmxk

)
c

]}−1

= υgroup
(
ωmxk

)
, (C17)

k ∈ N , which is equal to the classical group velocity at the
real frequency where the respective local maximum of XU (ωr )
occurs. Moreover, according to Eq. (C15), the respective fre-
quency of oscillation associated with the peak in the envelope
of each of the terms ARk(z,t) is approximately given by

ωpeakRk
= ωmxk

− ∂

∂θ ′

⎧⎨
⎩
[ ∂YU (ωmxk

,θ ′)
∂ωr

]2 ∂2YU (ωmxk
,θ ′)

∂ω2
r

2
∣∣ d2�U (ωmxk

,θ ′)
dω2

r

∣∣2
⎫⎬
⎭

θ ′=θpeakRk

∼= ωmxk
, (C18)

k ∈ N . From Eq. (C15), the peak in the envelope of each term
ARk(z,t) is approximately given by

ApeakRk
= 1

2π
Re

⎧⎪⎨
⎪⎩iŨU exp

[
z

c
�U

(
ωmxk

,θpeakRk

)]

×
⎡
⎣ π

− 1
2

d2�U (ωmxk
,θpeakRk

)
dω2

r

c

z

⎤
⎦

1/2
⎫⎪⎬
⎪⎭ , k ∈ N. (C19)

This approximate, heuristic analysis leads to the following
description of the dynamical evolution of the propagated field:
For a physically realizable input Gaussian-modulated har-
monic wave having a very large initial pulse width 2T and/or
at a very short propagation distance z in a single resonance
Lorentz-type dispersive and gain medium, the local maximum
of XU (ωr ) that is located closer to the applied carrier frequency
ωc � 0, i.e., the one that is located either at ωmx1 or ωmx2 , is
the most dominant local maximum of XU (ωr ) along the real
frequency axis. Therefore, in the propagated field expression
(C15), the dominant contribution to the propagated field arises
either from the term AR1(z,t) or from the term AR2(z,t). Notice
that for a physically realizable input Gaussian-modulated
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harmonic wave with arbitrary, but nonvanishing, initial pulse
width 2T and/or at an arbitrary, but finite, propagation distance
z, the relation XU (ωmx3 ) � XU (ωmx1 ),XU (ωmx2 ) is always
satisfied, so that the relation AR3(z,t) � AR1(z,t),AR2(z,t)
is also always satisfied. Therefore, for an input
Gaussian-modulated harmonic wave having a very large
initial pulse width 2T and/or at a very short propagation
distance z in the single resonance Lorentz-type dispersive
and gain medium, the propagated field is compact in that its
consists of a single Gaussian-shaped pulse component whose
dynamical evolution is described by the corresponding term
ARk(z,t), k = 1 or 2. In particular, the oscillation frequency

associated with the peak in the envelope of the propagated
field is very close to ωmxk

and, to a good approximation, this
peak envelope occurs at the space-time point θpeakRk

that is
given by Eq. (C16) so that it travels with the respective group
velocity that is given by Eq. (C17). As the initial pulse width
2T is decreased and/or as the propagation distance z in the
gain medium is increased, the real part of the unified phase
function at its local maxima points ωmxk

, k ∈ N along the real
frequency axis may violate the inequality in Eq. (C14) and the
unified asymptotic approach must be invoked in order to obtain
the complete uniformly valid description of the propagated
field.
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