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We investigate rogue-wave solutions in a three-component coupled nonlinear Schrödinger equation. With
certain requirements on the backgrounds of components, we construct a multi-rogue-wave solution that exhibits
a structure like a four-petaled flower in temporal-spatial distribution, in contrast to the eye-shaped structure in
one-component or two-component systems. The results could be of interest in such diverse fields as Bose-Einstein
condensates, nonlinear fibers, and superfluids.
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I. INTRODUCTION

A rogue wave (RW) is localized in both space and time
and seems to appear from nowhere and disappear without
a trace [1,2]. It is one of the most fascinating phenomena
in nature and has been observed recently in nonlinear optics
[3] and water wave tanks [4]. The studies of RW in single-
component systems have indicated that the rational solution
of the nonlinear Schrödinger equation (NLS) can be used to
describe the phenomenon well [5–8].

A variety of complex systems, such as Bose-Einstein
condensates, nonlinear optical fibers, etc., usually involve
more than one component [9]. Recent studies are extended to
RWs in two-component systems [9–12]. Some new structures
such as dark RW have been presented numerically [11] and
analytically [12]. Moreover, it was found that two RWs can
emerge in the coupled system which are quite distinct from
the high-order RW in a one-component system [12]. In the
two-component coupled systems, the interaction between a
RW and other nonlinear waves is also a hot topic of great
interest [9,10,12]. It was shown that a RW attracts a dark-bright
wave in Ref. [9].

In the present paper, we further extend the investigation to
a three-component coupled system, considering the number
of the modes coupled in complex systems is usually more
than two. With certain requirements on the backgrounds of
components, we construct a new rational solution that can be
used to describe the dynamics of single RWs, double RWs, and
triple RWs in the system. A structure like a four-petaled flower
is found in the coupled system: there are two humps and two
valleys around a center in the temporal-spatial distribution,
which is quite distinct from the well-known eye-shaped one
presented before. We discuss the possibility of observing them
in nonlinear fibers.

This paper is organized as follows. In Sec. II, we present
exact vector RW solutions and the explicit conditions under
which they could exist. Their dynamics are discussed in detail.
In Sec. III, the possibility of observing them in a three-mode
nonlinear optic fiber is discussed. The conclusions are made
in Sec. IV.
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II. EXACT VECTOR ROGUE-WAVE SOLUTIONS

It is well known that coupled NLS equations are often used
to describe the interactions among the modes in nonlinear
optics, components in BEC, etc. We begin with the well-known
three-component coupled NLS, which can be written as

i
∂ψ1

∂t
+ ∂2ψ1

∂x2
+ 2[|ψ1|2 + |ψ2|2 + |ψ3|2]ψ1 = 0,

i
∂ψ2

∂t
+ ∂2ψ2

∂x2
+ 2[|ψ1|2 + |ψ2|2 + |ψ3|2]ψ2 = 0, (1)

i
∂ψ3

∂t
+ ∂2ψ3

∂x2
+ 2[|ψ1|2 + |ψ2|2 + |ψ3|2]ψ3 = 0,

where ψj (j = 1,2,3) represent the wave envelopes, t

is the evolution variable, and x is a second independent
variable. Equation (1) has been solved to get the vector
soliton solution of the trivial background using the Horita
bilinear method in Ref. [13]. Performing the Darboux
transformation from a trivial seed solution with ψ3 = 0, one
could get the bright-bright solitons in Ref. [14]. It has been
reported that solitons could collide inelastically, and there
are shape-changing collisions for a coupled system which are
different from an uncoupled system [13]. However, it is not
possible to study a vector RW with a trivial background. Next,
we will solve it with nontrivial seed solutions. The nontrivial
seed solutions are derived as follows:

ψ10 = s1 exp
[
i2

(
s2

1 + s2
2 + s2

3

)
t + ik1x − ik2

1 t
]
, (2)

ψ20 = s2 exp
[
i2

(
s2

1 + s2
2 + s2

3

)
t + ik2x − ik2

2 t
]
, (3)

ψ30 = s3 exp
[
i2

(
s2

1 + s2
2 + s2

3

)
t + ik3x − ik2

3 t
]
, (4)

where sj (j = 1,2,3) are arbitrary real constants and denote
the backgrounds in which localized nonlinear waves emerge.
k1, k2, and k3 denote the wave vectors of the plane wave
background in the three components, respectively. From a
physical viewpoint, the relative wave vector value is important.
One of the three components can be seen as a reference to
define the wave vectors of the other two. Then, we can set k2 =
0 without losing generality. To derive the rational solutions, we
find that there are some requirements for the amplitude of each
component, and the difference of their wave vectors should be
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FIG. 1. (Color online) The evolution plot of a single RW in a coupled system (a) for one RW in the ψ1 component, (b) for one RW in the ψ2

component, (c) for one RW in the ψ3 component, and (d) for the whole density of the three components. It is seen that the density distribution
shapes of RWs in ψ1 and ψ3 are different from the eye shape. The coefficients are A1 = 0,A2 = 1,A3 = 0, and A4 = 0. H and L in the color
bar denote high and low values of density, respectively. This holds for all figures.

related to the amplitude in a certain way. The conditions under
which one can get vector RWs with no other type of waves are

k1 = −k3, k3 =
√

2

2
s1, (5)

s2 =
√

2

2
s1, s3 = s1. (6)

With the given conditions and s1 = 1, the generic form of
vector RWs could be given as

ψ1 =
(

1 − H1(x,t)

G1(x,t)

)
exp

[
i
9t

2
− i

x√
2

]
, (7)

ψ2 =
(

1 − H2(x,t)

G2(x,t)

)
exp [5it]√

2
, (8)

ψ3 =
(

1 − H3(x,t)

G3(x,t)

)
exp

[
i
9t

2
+ i

x√
2

]
, (9)

where Hj (x,t) and Gj (x,t) are given in the Appendix. It is
seen that they are all rational forms. In the expressions, Aj

(j = 1,2,3,4) are arbitrary real parameters. The rational
solution can be seen as a vector RW solution, which can be
verified by the following RW plots. There are mainly three
cases for the generalized vector RW solution.

Single vector rogue wave. When A3 = 0,A4 = 0, there is
one RW in each component, as shown in Fig. 1. Interestingly,
we find that there is a novel shape for the vector RW solution.
The density distribution shapes of the localized waves in ψ1

and ψ3 are quite different from the well-known eye-shaped
one. There are two humps and two valleys around a center, and
the center’s value is almost equal to that of the background,
as shown in Figs. 1(a) and 1(c). This structure can be called
a four-petaled structure in temporal-spatial distribution. The
maximum value of the hump is two times the background’s
intensity, and the minimum value of the valley is almost zero.
Moreover, the humps or valleys in ψ1 correspond to the valleys
or humps in ψ3. However, the density distribution in ψ2 is
identical to the eye-shaped RW in a single-component system
for which there are one hump and two valleys, as shown in
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FIG. 2. (Color online) The evolution plot of a double vector RW in a coupled system (a) for the RWs in the ψ1 component, (b) for the RWs
in the ψ2 component, and (c) for the RWs in the ψ3 component. The coefficients are A1 = 0,A2 = 40,A3 = 8, and A4 = 0. (d), (e), and (f)
show the evolution of RWs in ψ1, ψ2, and ψ3, respectively. The coefficients are A1 = 150,A2 = 40,A3 = 8, and A4 = 0.

Fig. 1(b). The maximum value of the hump is nine times the
background’s intensity. Therefore, the whole density is still the
well-known eyes shape, as shown in Fig. 1(d). The novel shape
should come from the cross-phase modulation effects since
the shape cannot be observed in scalar RWs [5,8]. For two-
component coupled systems, it has been found numerically
that there are dark RWs in one component of the coupled
system in Ref. [11]. The dark RW has been given exactly in
our previous paper in Ref. [12]. Based on these results, we
expect that there should be some novel structures in coupled
systems with more than three modes.

Double vector rogue wave. When A4 = 0, there are two
vector RWs appearing in the temporal-spatial distribution,
shown in Fig. 2. When A1 � 0, there are two vector RWs
emerging at a certain time, as shown in Figs. 2(a)–2(c). It
is seen that the structures of the two RWs in each mode are
similar, and only their sizes are different. The four-petaled
RWs emerge in ψ1,3 and the eye-shaped ones emerge in ψ2

component. The humps or valleys in ψ1 correspond to the
valleys or humps in ψ3. When A1 � 0, the two distinct RWs
emerge at different times, as shown in Figs. 2(d)–2(f). There
is a rotation on the x-t distribution plane for the two RWs.
Varying the parameter A1,3, one can observe the interactions
between the two RWs.

Triple vector rogue wave. When A4 �= 0, there are
three distinct vector RWs appearing in the temporal-spatial

distribution, as shown in Fig. 3. When A4A2 < 0 and
|A2| � |A4|, there are three vector RWs emerging very
clearly at a certain time, as shown in Figs. 3(a)–3(c). Their
structures in each component are similar, with different sizes.
The humps and valleys in ψ1 still correspond to the valleys and
humps in ψ3 component. There are three eye-shaped RWs in
ψ2. When A4A2 > 0 and |A2| � |A4|, the three RWs emerge
clearly at different times, as shown in Figs. 3(d)–3(f). The
RW seems to have variable velocity. Varying the parameters,
we can investigate the interaction between these vector RWs
conveniently. For example, making A2 approach A4, we can
observe the interaction of the three RWs, such as in Fig. 4,
which shows that a RW’s shape can be changed greatly
through interacting with others. Two RWs almost fuse to one
valley in the ψ3 component with the condition, as shown in
Fig. 4(c).

It should be noted that the distribution shapes of the double
and triple RWs in the whole temporal-spatial distribution are
very distinct from the high-order RW in a one-component
system presented in [8,15,16]. In the one-component systems,
it is not possible to observe just two RWs appearing in the
whole temporal-spatial distribution, even for high-order RWs.
Three RWs can emerge in the temporal-spatial distribution
for a second-order scalar RW [15], but their distribution
shapes are different from the triple vector RWs obtained
here.
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FIG. 3. (Color online) The evolution plot of triple vector RWs in a coupled system (a) for the RWs in the ψ1 component, (b) for the RWs
in the ψ2 component, and (c) for the RWs in the ψ3 component. The coefficients are A1 = 0,A2 = 20,A3 = 0, and A4 = −1. (d), (e), and (f)
show the evolution of RWs in ψ1, ψ2, and ψ3, respectively. The coefficients are A1 = 0,A2 = 20,A3 = 0, and A4 = 1.

III. APPLICATION TO A NONLINEAR OPTIC
FIBER SYSTEM

The coupled system discussed above can be used to describe
many physical systems, such as a three-component BEC,
multimode optical transmission, and so on [17–21]. As an
example, here we discuss a possible way to observe the vector
RWs in a three-mode nonlinear optic fiber system.

For nonlinear optic fibers, the coordinates x and t above de-
note the retarded time and propagation distance, respectively.
The second derivative coefficients in Eq. (1) correspond to
group velocity dispersion (GVD) effects, and the nonlinear
coefficients correspond to self-phase modulation and cross-
phase modulation effects [18]. Recently, a scalar RW has
been realized with an anomalous GVD regime in a one-mode
nonlinear fiber [3]. Therefore, one could introduce three-mode
optical signals into a nonlinear fiber in the anomalous GVD
regime, marked by ψj (j = 1,2,3), to observe the vector RW
presented here. When the operation wavelength of each mode
is nearly 1.55 μm, the GVD coefficient will be −20 ps2 km−1

in the anomalous regime, and the Kerr coefficients are nearly
1.1 W−1 km−1, corresponding to the self-focusing effect in the
fiber [22]. The unit in x direction will be denoted as 0.23 ps,
and the one in t will be denoted as 0.55 km. The backgrounds
on which the vector RW can be exited can be given by Eqs. (5)
and (6). Explicitly, the background power intensity of ψ1 is

set to be 30 W, the background power of ψ2 is 15 W, and
the background power of ψ3 is 30 W. The frequency k2 of ψ2

is set to be c μm ps−1

1.55 μm (c is the velocity of light in the fiber),

and the frequencies of ψ1 and ψ3 are k1 = k2 − √
15 ps−1

and k3 = k2 + √
15 ps−1. Then the initial optical signals can

be given by the presented vector RW solution, Eqs. (7)–(9),
including density and phase forms. Under the corresponding
conditions, single, double, and triple vector RWs could be
observed in the nonlinear fiber. For example, the single vector
RW can be obtained with A3 = 0,A4 = 0. From the above
studies, we can know that the maximum intensity value in
ψ1,3 is 60 W, and the maximum intensity in ψ2 is 135 W.

IV. CONCLUSION

In summary, we investigate rogue-wave solutions in a three-
component coupled nonlinear Schrödinger equation using the
Darboux transformation method. We find some novel spatial
temporal structures for single, double, and triple vector RWs
in the coupled system. The corresponding conditions for their
emergence are presented explicitly. The coupled system can
be used to describe three-component BECs, multimode optical
transmission, and so on. As an example, we have discussed the
possible way to observe the vector RWs in the physical system
of three-mode nonlinear optic fibers.
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FIG. 4. (Color online) The interaction plot of a triple RW in the coupled system (a) for the RWs in the ψ1 component, (b) for the RWs
in the ψ2 component, (c) for the RWs in the ψ3 component, and (d) for the whole density of the three components. The coefficients are
A1 = 0,A2 = 1,A3 = 1, and A4 = 1.
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APPENDIX: THE EXPLICIT EXPRESSIONS
FOR H j (x,t) AND G j (x,t)

The expressions of Hj (x,t) and Gj (x,t) in Eqs. (7)–(9) are

H1 = (8 − 8i)
√

2A2
4 t6 − (48 − 24i)

√
2A2

4 t5 + B14 t4

+B13 t3 + B12 t2 + B11 t + B10

+
√

2(1 − i)A2
4 x6 + 6

[√
2A3A4(1 − i) − A2

4

]
x5

+C14(t) x4 + C13(t) x3 + C12(t) x2 + C11(t) x,

G1 = 8
√

2A2
4 t6 − 24

√
2A2

4 t5 + D14 t4

+D13 t3 + D12 t2 + D11 t + D10

+
√

2A2
4 x6 + 6

√
2A3A4 x5

+E14(t) x4 + E13(t) x3 + E12(t) x2 + E11(t) x,

H2 = 16A2
4 t6 − (48 + 48i)A2

4 t5 + B24 t4 + B23 t3

+B22 t2 + B21 t + B20

+ 2A2
4 x6 + 12A3A4 x5 + C24(t) x4

+C23(t) x3 + C22(t) x2 + C21(t) x,

G2 = 8A2
4 t6 − 24A2

4 t5 + D24 t4

+D23 t3 + D22 t2 + D21 t + D20

+A2
4 x6 + 6A3A4 x5 + E24(t) x4

+E23(t) x3 + E22(t) x2 + E21(t) x,

H3 = (8 + 8i)
√

2A2
4 t6 − 24i

√
2A2

4 t5 + B34 t4 + B33 t3

+B32 t2 + B31 t + B30

+ (1 + i)
√

2A2
4 x6 + 6[(1 + i)

√
2A3 − A4]A4 x5

+C34(t) x4 + C33(t) x3 + C32(t) x2 + C31(t) x,

G3 = 8
√

2A2
4 t6 − 24

√
2A2

4 t5 + D34 t4

+D33 t3 + D32 t2 + D31 t + D30

+
√

2A2
4 x6 + 6

√
2A3A4 x5 + E34(t) x4

+E33(t) x3 + E32(t) x2 + E31(t) x.
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The expressions for Bji , Dji , Cji(t), and Eji(t) are given as
follows:

B14 = (12 − 12i)
[
3
√

2A2
3 − 4

√
2A2A4 − (9 + i)A3A4

+ (13 + 7i)
√

2A2
4

]
,

B13 = 24i
{
(3 + 6i)

√
2A2

3 − (2 + 12i)A3A4

−
√

2A4[(4 + 8i)A2 + (7 − 10i)A4]
}
,

B12 = (36 + 36i)
[−2i

√
2A2

2 + 2i
√

2A1A3

− (1 − 5i)A2A3 + (4 − 5i)
√

2A2
3

+ (1 − 5i)A1A4 − (4 − 4i)
√

2A2A4

− (5 − i)A3A4 + (2 + 4i)
√

2A2
4

]
,

B11 = 72
[
(−2 + i)

√
2A2

2 + (2 − i)
√

2A1A3

+ (2 + i)A2A3 − (1 + 2i)
√

2A2
3 − (2 + i)A1A4

+ (2 + 2i)
√

2A2A4 − 2A3A4 +
√

2A2
4

]
,

B10 = (36 − 36i)
{√

2A2
1 + (1 + i)

√
2A2

2

+ 2A2A3 + (1 − i)
√

2A2A4

− (1 + i)A1[A2 +
√

2A3 + (1 − i)A4]
}
,

C14(t) = (9 − 9i)
√

2A2
3 + 6

√
2A4[(2 − 2i)A2 + A4]

− 30A3A4 − (12 − 6i)
√

2A2
4 t + (6 − 6i)

√
2A2

4 t2,

C13(t) = 12
{−3A2

3 + A2[(3 − 3i)
√

2A3 − 4A4]

+ 2
√

2A3A4 + (1 − i)A4(
√

2A1 + 2A4)
}

+ 24A4[(−2 + i)
√

2A3 + (2 + i)A4]t

+ 24[(1 − i)
√

2A3 − (3 − 2i)A4]A4 t2,

C12(t) = 36
[
(1 − i)

√
2A2

2 + (1 − i)
√

2A1A3 − 3A2A3

+
√

2A2
3 − A1A4 + (2 − 2i)A3A4 − i

√
2A2

4

]
+ 36

[
(−2 + i)

√
2A2

3 + (4 + 2i)A3A4 − 2i
√

2A2
4

]
t

+ (36 − 36i)
[√

2A2
3 − (5 + i)A3A4

+ (3 + 2i)
√

2A2
4

]
t2

− (48 − 24i)
√

2A2
4 t3 + (12 − 12i)

√
2A2

4 t4,

C11(t) = −72
{
A2

2 + A1[(−1 + i)
√

2A2 + A3 +
√

2A4]

−
√

2A2A3 + iA3[(1 + i)A3 +
√

2A4]
}

+ 72
{
(−2 + i)

√
2A2A3 + (2 + i)A2

3 − 2i
√

2A3A4

+ [(2 − i)
√

2A1 − 2A4]A4
}
t

− 72i
{
(1 + i)

√
2A2A3 + (1 + 5i)

√
2A3A4

− (2 + 3i)A2
3 + A4[(−1 − i)

√
2A1 + (2 − 3i)A4]

}
t2

+ 48A4[(−2 + i)
√

2A3 + (6 − i)A4]t3

+ 24[(1 − i)
√

2A3 − (5 − 4i)A4]A4 t4,

D14 = 12
[
3
√

2A2
3 − 8A3A4 +

√
2A4(−4A2 + 9A4)

]
,

D13 = −24
[
3
√

2A2
3 − 4A3A4 +

√
2A4(−4A2 + A4)

]
,

D12 = 36
(
2
√

2A2
2 − 2

√
2A1A3 + 3

√
2A2

3 + 4A1A4

− 2A3A4 − 2A2(2A3 +
√

2A4)
]
,

D11 = −72
√

2
(
A2

2 − A1A3
)
,

D10 = 18
(
2
√

2A2
1 + 2

√
2A2

2 + 4A2A3 + 2
√

2A2
3

+ 2
√

2A2A4 + 6A3A4 + 3
√

2A2
4

)
,

E14(t) = 3
√

2
[
3A2

3 + A4(4A2 + 3A4)
]

− 6
√

2A2
4 t + 6

√
2A2

4 t2,

E13(t) = 12{A4[
√

2A1 + 3(
√

2A3 + A4)]

+ 3
√

2A2A3} − 24
√

2A3A4 t

+ 24(
√

2A3 − 2A4)A4 t2,

E12(t) = 18
(
2
√

2A2
2 + 2

√
2A1A3 + 2

√
2A2

3 + 2
√

2A2A4

+ 6A3A4 + 3
√

2A2
4

) − 36
√

2A2
3 t

+ 36
(√

2A2
3 − 4A3A4 + 2

√
2A2

4

)
t2

− 24
√

2A2
4 t3 + 12

√
2A2

4 t4,

E11(t) = 36
[
2
√

2A1A2 + 2A2
3 + 3

√
2A3A4 + 3A2

4

+ 2A2(
√

2A3 + A4)
] + 72

√
2(−A2A3 + A1A4) t

+ 72
[√

2A2A3 − 2A2
3 + 2

√
2A3A4

−A4(
√

2A1 + A4)
]
t2 + 48A4(−

√
2A3 + 2A4) t3

+ 24(
√

2A3 − 4A4)A4 t4,

B24 = 24
{
3A2

3 − 4
√

2A3A4

+A4[−4A2 + (4 + 5i)A4]
}
,

B23 = −48
{
(3 + 3i)A2

3 − (2 + 2i)
√

2A3A4

−A4[(4 + 4i)A2 + (4 + i)A4]
}
,

B22 = 72
[
2A2

2 − 2A1A3 − 2
√

2A2A3

+ 3iA2
3 + 2

√
2A1A4 + (2 − 4i)A2A4

−
√

2A3A4 + (2 − 5i)A2
4

]
,

B21 = −72
[
(2 + 2i)A2

2 − (2 + 2i)A1A3 − (3 + i)A2
3

+ (4 + 2i)A2A4 − (2 + i)
√

2A3A4 + 2A2
4

]
,

B20 = 72
[
A2

1 + iA2(A2 +
√

2A3 + 2A4)

+ (1 − i)A1(A3 +
√

2A4)
]
,

C24(t) = 6
{
3A2

3 + A4[4A2 + (2 + i)A4]
}

− (12 + 12i)A2
4 t + 12A2

4 t2,

C23(t) = 12
[
2A1A4 + (4 + 2i)A3A4 + (1 + 2i)

√
2A2

4

+ 6A2A3
] − (48 + 48i)A3A4 t

+ 48A4(A3 −
√

2A4) t2,

C22(t) = 36
[
2A2

2 + 2A1A3 + (1 + i)A2
3 + 2A2A4

+ (1 + 2i)
√

2A3A4 + 2iA2
4

]
+ 72

[
(−1 − i)A2

3 + A2
4

]
t

+ 72
[
A2

3 − 2
√

2A3A4 + (1 + i)A2
4

]
t2

− (48 + 48i)A2
4 t3 + 24A2

4 t4,
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C21(t) = 72{A1[2A2 + (1 − i)A4] + iA3(
√

2A3 + 2A4)

+A2[(1 + i)A3 +
√

2A4]}
− 72{−A4

[
(2 + 2i)A1 + 2A3 + (2 + i)

√
2A4

]
+ (2 + 2i)A2A3} t + 72[2A2A3 − 2

√
2A2

3

+ (2 + 2i)A3A4 − A4(2A1 +
√

2A4)]t2

+ (96 + 96i)A4(−A3 +
√

2A4) t3

+ 48A4(A3 − 2
√

2A4) t4,

D24 = 12
[
3A2

3 − 4
√

2A3A4 + A4(−4A2 + 9A4)
]
,

D23 = −24
[
3A2

3 − 2
√

2A3A4 + A4(−4A2 + A4)
]
,

D22 = 36
[
2A2

2 − 2A1A3 + 3A2
3 + 2

√
2A1A4

−
√

2A3A4 − 2A2(
√

2A3 + A4)
]
,

D21 = 72
(−A2

2 + A1A3
)
,

D20 = 18
[
2A2

1 + 2A2
2 + 2A2

3 + 3
√

2A3A4

+ 3A2
4 + 2A2(

√
2A3 + A4)

]
,

E24(t) = 9A2
3 + 3A4(4A2 + 3A4) − 6A2

4 t + 6A2
4 t2,

E23(t) = 6[6A2A3 + A4(2A1 + 6A3 + 3
√

2A4)]

− 24A3A4 t + 24A4(A3 −
√

2A4) t2,

E22(t) = 18
(
2A2

2 + 2A1A3 + 2A2
3 + 2A2A4

+ 3
√

2A3A4 + 3A2
4

) − 36A2
3 t

+ 36
(
A2

3 − 2
√

2A3A4 + 2A2
4

)
t2

− 24A2
4 t3 + 12A2

4 t4,

E21(t) = 18
(
4A1A2 + 4A2A3 + 2

√
2A2

3 + 2
√

2A2A4

+ 6A3A4 + 3
√

2A2
4

) + 72(−A2A3 + A1A4) t

+ 36
[
2A2A3 − 2

√
2A2

3 − A4(2A1 +
√

2A4)

+ 4A3A4
]
t2 + 48A4(−A3 +

√
2A4) t3

+ 24A4(A3 − 2
√

2A4) t4,

B34 = (12 + 12i)
{
3
√

2A2
3 − (9 − i)A3A4

+ 2
√

2A4[−2A2 + (4 − i)A4]
}
,

B33 = −24i
[
3
√

2A2
3 − 6A3A4 +

√
2A4(−4A2 + 3A4)

]
,

B32 = (36 + 36i)
[
2
√

2A2
2 − 2

√
2A1A3 − (5 − i)A2A3

+ (2 − i)
√

2A2
3 + (5 − i)A1A4 − (1 − i)A3A4

]
,

B31 = −72i
[√

2A2
2 − A2A3 + A1(−

√
2A3 + A4)

]
,

B30 = (36 + 36i)A1[
√

2A1 − (1 − i)A2],

C34(t) = (3 + 3i)
[
3
√

2A2
3 + 4

√
2A2A4 − (5 − 5i)A3A4

]
− 6i

√
2A2

4 t + (6 + 6i)
√

2A2
4 t2,

C33(t) = 12
[
(3 + 3i)

√
2A2A3 + (1 + i)

√
2A1A4

− 3A2
3 − 4A2A4

] − 24i(
√

2A3 − A4)A4 t

+ 24[(1 + i)
√

2A3 − (3 + 2i)A4]A4 t2,

C32(t) = 36
[
(1 + i)

√
2A2

2 + (1 + i)
√

2A1A3− 3A2A3 − A1A4
] − 36iA3(

√
2A3 − 2A4) t

+ (36 + 36i)
[√

2A2
3 − (5 − i)A3A4

+ (2 − i)
√

2A2
4

]
t2

− 24i
√

2A2
4t

3 + (12 + 12i)
√

2A2
4t

4,

C31(t) = 72
[
(1 + i)

√
2A1A2 − A2

2 − A1A3
]

− 72i
(√

2A2A3 − A2
3 −

√
2A1A4

)
t

+ 72
{
(1 + i)

√
2A2A3 + (3 + i)

√
2A3A4

− (3 + 2i)A2
3 − A4[(1 + i)

√
2A1 + A4]

}
t2

− 48i(
√

2A3 − 3A4)A4 t3

+ 24[(1 + i)
√

2A3 − (5 + 4i)A4]A4 t4,

D34 = 12
[
3
√

2A2
3 − 8A3A4 +

√
2A4(−4A2 + 9A4)

]
,

D33 = −24
[
3
√

2A2
3 − 4A3A4 +

√
2A4(−4A2 + A4)

]
,

D32 = 36
[
2
√

2A2
2 − 2

√
2A1A3 + 3

√
2A2

3 + 4A1A4

− 2A3A4 − 2A2(2A3 +
√

2A4)
]
,

D31 = −72
√

2
(
A2

2 − A1A3
)
,

D30 = 18
(
2
√

2A2
1 + 2

√
2A2

2 + 4A2A3 + 2
√

2A2
3

+ 2
√

2A2A4 + 6A3A4 + 3
√

2A2
4

)
,

E34(t) = 3
√

2
[
3A2

3 + A4(4A2 + 3A4)
]

− 6
√

2A2
4 t + 6

√
2A2

4 t2,

E33(t) = 12{3
√

2A2A3 + A4[
√

2A1 + 3(
√

2A3 + A4)]}
− 24

√
2A3A4 t + 24(

√
2A3 − 2A4)A4 t2,

E32(t) = 18
(
2
√

2A2
2 + 2

√
2A1A3 + 2

√
2A2

3 + 2
√

2A2A4

+ 6A3A4 + 3
√

2A2
4

) − 36
√

2A2
3 t

+ 36
(√

2A2
3 − 4A3A4 + 2

√
2A2

4

)
t2

− 24
√

2A2
4 t3 + 12

√
2A2

4 t4,

E31(t) = 36
[
2
√

2A1A2 + 2A2
3 + 3

√
2A3A4 + 3A2

4

+ 2A2(
√

2A3 + A4)
] + 72

√
2(−A2A3 + A1A4) t

+ 72
[√

2A2A3 − 2A2
3 + 2

√
2A3A4

−A4(
√

2A1 + A4)
]
t2

+ 48A4(−
√

2A3 + 2A4) t3

+ 24(
√

2A3 − 4A4)A4 t4.
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