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Electromagnetic field of a charge moving in a cold magnetized plasma
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The present paper addresses the electromagnetic field generated by a point charge or a small charged particle
bunch moving with constant velocity in a cold magnetized plasma, along the external magnetic field. Attention
is focused on the case of ultrarelativistic motion. The field surrounding the point charge is investigated both
analytically and numerically. In the analytical study, we obtain rigorous decomposition of the field into quasistatic
and wave components. Beating behavior in the far-field zone and harmonic behavior in the vicinity of the charge
trajectory are found using suitable approximate approaches. The transverse component of the electric field exhibits
a strong (inversely proportional) singularity on the charge trajectory, while the longitudinal components of both
the electric and magnetic fields exhibit a weaker (logarithmic) singularity. An efficient numerical approach is
developed to calculate the field for arbitrary parameters. An efficient algorithm for calculating the fields of small
bunches with different forms is also presented, using a thin charged disk and a charged cylinder as representative
examples.
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I. INTRODUCTION

S. I. Vavilov and P. A. Cherenkov pioneered the study of the
radiation processes from the movement of charged particles in
materials in the 1930s [1]. Subsequent research has resulted
in the mastery of Vavilov-Cherenkov radiation (VCR) and its
application in many areas of physics [2–7]. Another important
radiation phenomenon, transition radiation, has also been
predicted, analyzed, and put into practice [8,9]. Over the past
few years, increasing attention has been given to radiation from
charged particles moving in metamaterials. Metamaterials
are artificial periodic structures considered to be “effective”
media [10–18]. A series of interesting effects has been noted
in these cases, such as reversed VCR in a left-handed medium
[10–12] and reversed Cherenkov-transition radiation excited
by a charge flying into the medium [13,14]. Intriguing effects
are also known to occur in a so-called “wire metamaterial,”
where VCR can be “nondivergent” [17,18].

The radiation of moving charges in complex “traditional”
media can also produce unusual phenomena, but these prob-
lems have not been analyzed sufficiently in the scientific
literature up to now. In this paper, a cold magnetized plasma
is considered to be an anisotropic gyrotropic medium [19]
(from the point of view of macroscopic electrodynamics).
The radiation processes in such a medium play an important
role in accelerator physics, radioscience, cosmic ray physics,
and other areas. Studies on VCR in such a medium were
initiated in the 1950s [20–23] and have not yet abated [24,25].
Results have been presented in reviews and monographs [4–6],
but attention has mainly focused on analyzing the particular
energetic characteristics of radiation, without considering the
structure of the field. There are related papers [15,16] on
uniaxial anisotropic media and less closely related papers
[2,26–29] on isotropic media, including left-handed media.
The main goal of this paper is to study the structure of the
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field surrounding a charge moving in a gyrotropic anisotropic
medium, which has not been analyzed previously.

The paper is organized as follows. Section II presents
known integral expressions for the field components of the
charge moving in an arbitrary anisotropic gyrotropic medium,
along the main axis of the medium. General properties of
these expressions and various equivalent forms are discussed.
Section III is devoted to charge movement in a cold magne-
tized plasma, along the external magnetic field. The specific
frequency dispersion is utilized, and the field is decomposed
into quasistatic and wave components. The wave component
is analyzed using two approximations in the far-field zone
and in the vicinity of the charge trajectory. In Sec. IV, an
exact numerical approach is presented along with the most
successful numerical results for both point charge and two
types of bunches. Appendices A and B contain mathematical
details of the two approximations discussed in Sec. III.

II. ANALYTICAL RESULTS

A. General expressions for the field components

We consider the electromagnetic field of a point charge q

moving with constant velocity υ in a medium described by the
dielectric permittivity tensor

ε̂ =

⎛
⎜⎝

ε1 −iε2 0

iε2 ε1 0

0 0 ε3

⎞
⎟⎠ (1)

and magnetic permeability μ = 1. Here, ε1, ε2, and ε3 are
assumed to be frequency dependent, i.e., frequency dispersion
is taken into account. The ε2 component causes gyrotropy,
while the inequality of components ε1 and ε3 creates uniaxial
anisotropy. We assume that the charge moves along the optical
axis, which coincides with the z axis of the cylindrical frame
of reference, ρ, ϕ, z. Thus, the charge and current densities
have the form

ρq = qδ(ρ)δ(z − υt), �j = υρq�ez. (2)
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Expressions for the electromagnetic field components, based
on Maxwell’s equations, can be easily obtained using the
Fourier transform [21]. Omitting tedious calculations, we write
these expressions in the following form:

⎧⎪⎨
⎪⎩

Eρ

Eϕ

Ez

⎫⎪⎬
⎪⎭ =

∫ +∞

−∞

⎧⎪⎨
⎪⎩

eρ(ω)

eϕ(ω)

ez(ω)

⎫⎪⎬
⎪⎭ exp

(
iω

ζ

υ

)
dω,

(3)⎧⎪⎨
⎪⎩

Hρ

Hϕ

Hz

⎫⎪⎬
⎪⎭ =

∫ +∞

−∞

⎧⎪⎨
⎪⎩

hρ(ω)

hϕ(ω)

hz(ω)

⎫⎪⎬
⎪⎭ exp

(
iω

ζ

υ

)
dω,

where

⎧⎪⎨
⎪⎩

eρ(ω)

eϕ(ω)

ez(ω)

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

e(e)
ρ (ω) − e(o)

ρ (ω)

e(e)
ϕ (ω) − e(o)

ϕ (ω)

e(e)
z (ω) − e(o)

z (ω)

⎫⎪⎪⎬
⎪⎪⎭ ,

(4)⎧⎪⎨
⎪⎩

hρ(ω)

hϕ(ω)

hz(ω)

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

h(e)
ρ (ω) − h(o)

ρ (ω)

h(e)
ϕ (ω) − h(o)

ϕ (ω)

h(e)
z (ω) − h(o)

z (ω)

⎫⎪⎬
⎪⎭ ,

e(o,e)
ρ = −iq

2βc3

ω2so,eH
(1)
1 (ρso,e)

ε1
(
s2
e − s2

o

) (
ε1 − 1

β2
− c2s2

o,e

ω2

)
, (5)

e(o,e)
ϕ = − q

2βc3
ω2ε2

so,eH
(1)
1 (ρso,e)

ε1
(
s2
e − s2

o

) , (6)

e(o,e)
z = q

2c2

ω

ε1
(
s2
e − s2

o

)H (1)
0 (ρso,e)

[
ω2

c2

(
ε2

1 − ε2
2 − 2ε1

β2
+ 1

β4

)

+ s2
o,e

(
1

β2
− ε1

)]
, (7)

h(o,e)
ρ = q

2β2c3
ω2ε2

so,eH
(1)
1 (ρso,e)

ε1
(
s2
e − s2

o

) , (8)

h(o,e)
ϕ = iq

2c3

ω2so,eH
(1)
1 (ρso,e)

ε1
(
s2
e − s2

o

)
×
(

ε2
2 − ε2

1 + c2ε1s
2
o,e

ω2
+ ε1

β2

)
, (9)

h(o,e)
z = iq

2βc2
ωε2

s2
o,eH

(1)
0 (ρso,e)

ε1
(
s2
e − s2

o

) . (10)

Here, c is the velocity of light, β = υ/c, ζ = z − υt , and
H

(1)
0,1(ξ ) is the Hankel function. The squared orthogonal wave

vectors s2
o,e are solutions of the dispersion equation

k4
ρ

ω2

c2
ε1 − k2

ρ

[(
ω2

c2
ε1 − k2

z

)
(ε1 + ε3)

ω2

c2
− ε2

2
ω4

c4

]

− ω2ε3

c2

[
ε2

2
ω4

c4
−
(

k2
z − ε1ω

2

c2

)2
]

= 0 (11)

with respect to k2
ρ , given that the longitudinal wave vector

component is kz = ω/υ:

s2
o,e = −B ±

√
B2 − 4ε1C

2ε1
, (12)

B = ω2

c2

[
ε2

2 −
(

ε1 − 1

β2

)
(ε1 + ε3)

]
, (13)

C = ω4ε3

c4

[(
ε1 − 1

β2

)2

− ε2
2

]
, (14)

where the lower sign corresponds to the index “o” and the
upper sign corresponds to the index “e.” The elements ε1,2,3 are
complex when there are losses in the medium so the orthogonal
components so,e of the wave vector must be determined (at real
frequencies) by the rule

so,e(ω) =
√

s2
o,e(ω), Im so,e(ω) > 0. (15)

This rule guarantees the exponential decay of the waves in (3)
with increasing ρ. A medium with negligible losses can be
considered as a limiting case.

Equation (11) can also be written in more common
equivalent form with respect to the refractive index n = cω−1k

(see, for example, Ref. [21])

ω2

c2
(ε1 sin2 θ + ε3 cos2 θ )

× [
n2 − n2

o(θ )
][

n2 − n2
e(θ )

] = 0, (16)

where θ is the angle between the main crystal axis (z axis) and
the wave vector �k, and no,e are the refractive indexes of the
ordinary and extraordinary waves, respectively,

n2
o,e = [(

ε2
1 − ε2

2

)
sin2 θ + ε1ε3(1 + cos2 θ )

±
√

sin4 θ
(
ε2

1 − ε2
2 − ε1ε3

)2 + 4ε2
2ε

2
3 cos2 θ

]
× [2(ε1 sin2 θ + ε3 cos2 θ )]−1, (17)

where the upper sign corresponds to the index “o” and the
lower sign corresponds to the index “e.” Using (12), one can
find the angles θo,e between �ko,e = �eρso,e + �ezω/υ and the z

axis:

tan θo,e = υso,e/ω. (18)

Expressions (12) may be transformed as follows:

s2
o,e = ω2

[
n2

o,e(θo,e)β2 − 1
]
/υ2, (19)

i.e., the function so corresponds to an ordinary wave and the
function se corresponds to an extraordinary wave. Therefore,
the summands with indexes “o” and “e” in formulas (4)–(10)
correspond to ordinary and extraordinary waves. Note that
each expression in (19) formally coincides with an expression
for the orthogonal component of the wave vector in an isotropic
medium [14,15,29].

B. Alternative expressions for the field components

General properties of the integrands can be obtained from
(12)–(15). The integrals in (3) may be simplified by restricting
the integration interval to only positive frequencies. It is well
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known that if Fourier transform f (ω) of the real function F (t)
is given by

f (ω) = 1

2π

∫ +∞

−∞
F (t) exp (iωt) dt,

then f (−ω̄) = f (ω), where the overbar indicates the complex
conjugate. Because all field components are necessarily real,
one obtains

eρ,ϕ,z(−ω̄) = eρ,ϕ,z(ω), (20)

hρ,ϕ,z(−ω̄) = hρ,ϕ,z(ω). (21)

Based on (20) and (21), it can be shown that∫



f (ω) exp

(
iω

ζ

υ

)
dω = 2Re

∫

+

f (ω) exp

(
iω

ζ

υ

)
dω,

(22)

where 
 is an arbitrary contour that is symmetrical with respect
to the imaginary axis, 
+ is the part of 
 in the half-plane
Reω > 0, and f (ω) can correspond to any of the functions in
(4). When 
 is the real axis, the integrals in (3) reduce to{

Eρ,ϕ,z

Hρ,ϕ,z

}
= 2Re

∫ +∞

0

{
eρ,ϕ,z(ω)

hρ,ϕ,z(ω)

}
exp

(
iω

ζ

υ

)
dω. (23)

The integrands in (23) contain both ordinary and extraordinary
waves, in which case only positive frequencies are relevant
for calculating the field. When there are no losses, the parts
of the real positive semiaxis where Im so = 0 or Im se = 0
correspond to propagating waves of one type or another.

Further simplifications are achieved by using the relation-
ship between functions so and se. We assume that medium (1)
has some losses. Because ε1(−ω̄) = ε1(ω), iε2(−ω̄) = iε2(ω),
and ε3(−ω̄) = ε3(ω) [30], we have, for functions (13) and (14),

B(−ω̄) = B(ω), C(−ω̄) = C(ω). (24)

Note that the inner radical in (12) can be defined arbitrarily
because (12) produces all solutions of (11) independently
by this definition. Let us define this radical by the rule
Im
√

B2(ω) − 4ε1(ω)C(ω) > 0 in the entire complex ω plane,
resulting in the following property:√

B2(−ω̄) − 4ε1(−ω̄)C(−ω̄) = −
√

B2(ω) − 4ε1(ω)C(ω).

(25)

Based on (24) and (25), the following property can be easily
proven:

s2
o (−ω̄) = s2

e (ω),

hence,

so(−ω̄) = ±se(ω). (26)

Because (15) must be fulfilled for both so(−ω̄) and se(ω), one
should choose the minus sign in (26) to yield

so(−ω̄) = −se(ω) or se(−ω̄) = −so(ω). (27)

Property (27) facilitates obtaining an alternative representation
for the field components, which include only one of the
functions so,e. Using (27) and the properties of the Hankel

function H
(1)
0 (−z̄) = −H

(1)
0 (z), H

(1)
1 (−z̄) = H

(1)
1 (z) [31], one

obtains

e(o)
ρ,ϕ,z(−ω̄) = e

(e)
ρ,ϕ,z(ω), h(o)

ρ,ϕ,z(−ω̄) = h
(e)
ρ,ϕ,z(ω). (28)

Using (28), for an arbitrary contour 
, which is symmetrical
with respect to the imaginary axis, we obtain∫




f (ω) exp (iωζ/υ) dω

= ∓2Re
∫




f (o,e)(ω) exp (iωζ/υ) dω, (29)

where f (ω) corresponds to any of the functions in (4) and
f (o,e)(ω) are the summands of f (ω). For the particular case
of integration over the real axis, one obtains the following
equivalent forms of the integrals (3):{

Eρ,ϕ,z

Hρ,ϕ,z

}
= ∓2Re

∫ +∞

−∞

{
e(o,e)
ρ,ϕ,z(ω)

h(o,e)
ρ,ϕ,z(ω)

}
exp

(
iω

ζ

υ

)
dω, (30)

where the upper sign corresponds to the index “o” while
the lower sign corresponds to the index “e.” Representation
(30) contains only one of the functions so,e, but unlike (23),
integration is performed over the entire real axis. Note that
the positive and negative semiaxes play different roles in (30):
Positive frequencies correspond to waves of one type, while
negative frequencies correspond to waves of another type. For
example, if we choose the upper-sign term from (30) (with
only “extraordinary” integrands), then positive frequencies
correspond to extraordinary waves, while negative frequencies
correspond to ordinary waves.

Let us investigate the behavior of integrands in (30) for
|ω| → ∞. Because ε1(ω) and ε3(ω) tend to unity while ε2(ω)
tends to zero [30], one obtains from (12)–(15) that

s2
o,e −−−−→

|ω|→∞
−ω2(1 − β2)

β2c2
,

(31)

so,e −−−−→
|ω|→∞

i

√
1 − β2

βc
ωsgn(Reω).

Using asymptotic expressions for the Hankel functions H
(1)
0,1(ξ )

as |ξ |→∞ [31], one can extract the exponential term from the
integrands in (30):{

e(o,e)
ρ,ϕ,z(ω)

h(o,e)
ρ,ϕ,z(ω)

}
exp

(
iω

ζ

υ

)

∼
|ω|→∞

exp

[
−ρ

√
1 − β2

βc
ωsgn(Reω) + iω

ζ

βc

]
. (32)

As follows from (32), the integrands in (30) vanish at |ω| → ∞
in the following sectors of the complex ω plane:

Im ω > −|Reω|ρ
√

1 − β2

ζ
for ζ > 0,

Im ω < |Reω|ρ
√

1 − β2

|ζ | for ζ < 0.

. (33)

Moreover, the asymptotes of the steepest descent path (SDP)
can be easily found using (32). These asymptotes lie in the
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sectors given by (33) and are determined by the expression

Im ω = |Reω|ζ/(ρ
√

1 − β2), (34)

which is similar to the results for an isotropic medium [14,15,
29] and an anisotropic nongyrotropic medium [16].

III. THE CASE OF A COLD MAGNETIZED PLASMA

A. General expressions

A model for a cold electron plasma in an external magnetic
field is utilized here. The frequency dependence of the
components of the permittivity tensor in such a medium is
described by the following expressions [19]:

ε1(ω) = 1 − ω2
p(ω + iν)

ω
[
(ω + iν)2 − ω2

h

] ,
ε2(ω) = −ω2

pωh

ω
[
(ω + iν)2 − ω2

h

] , (35)

ε3(ω) = 1 − ω2
p

ω2 + iων
,

where ω2
p = 4πNe2/m is the plasma frequency (N is the

electron density and e and m are the electron charge and
the electron mass, respectively), ωh = |e|Hext/(mc) is a
“gyrofrequency” (Hext is the external magnetic field), and ν

is the effective collision frequency. The following analytical
calculations are performed for the case where the medium
has no losses (ν = 0) but an infinitely small value of ν can
be used, if needed, to determine the branches of the radicals
and the positional relationship of the integration path and the
singularities. Using (12) and (35), the functions s2

o,e(ω) can be
presented in the form

s2
o,e =

[
(1 − β2)

(
−ω4 + ω2ω2

� − ω2
pω2

h

2

)
+ β2ω4

p − β2ω2ω2
p

∓ βω2
pωh

√
ω2 − ω2

c

]
(βc)−2

(
ω2 − ω2

�

)−1
, (36)

where the upper sign corresponds to the index “o” and the
lower sign corresponds to the index “e” and

ω� =
√

ω2
p + ω2

h, ω2
c = ω2

p − ω2
h

(1 − β2)2

4β2
. (37)

As seen from (37),

sgnω2
c = sgn(β − β0), β0 ≡

√
ω2

p + ω2
h − ωp

ωh

. (38)

The branch point ωc = √
ω2

c may thus be determined as
follows:

ωc > 0 for β > β0, Im ωc > 0 for β < β0. (39)

B. Properties of the s±(ω) functions in the complex plane

The integrals in (30) can be calculated using complex
function theory. For this the behavior of these integrands
should be investigated over the complex ω plane. The first step
is to determine the radical

√
ω2 − ω2

c to fulfill the requirement

0

intint
/ 2

/ 2
Re

Im

cc

0

0

Im

Re

c

c

intint

00

0

FIG. 1. (Color online) The cut Cint of the radical
√

ω2 − ω2
c in the

complex ω plane and the initial integration path 
0 for β < β0 (top)
and β > β0 (bottom). The digits indicate the argument of the radical.

given by (25). The branch points ±ωc, connected by the cut
Cint, allows determining the radical by the requirement√

ω2 − ω2
c → ω for |ω| → ∞. (40)

For β > β0, the branch points ±ωc are real and Cint lies on
the real axis, while for β < β0, the branch points ±ωc are
imaginary and Cint lies on the imaginary axis (see Fig. 1). It
is easy to prove that the initial integration path 
0 can bypass
both the upper and the lower banks of Cint. Indeed, let us
start from the initial representation (3) and consider integral
over the closed contour around Cint (in the case β > β0 for
definiteness):

�F =
∫ ωc

−ωc

top bank

f (ω) exp

(
iω

ζ

υ

)
dω

+
∫ −ωc

ωc

bottom bank

f (ω) exp

(
iω

ζ

υ

)
dω, (41)

where f (ω) corresponds to any of the functions in (4). For β >

β0, the values of the radical
√

ω2 − ω2
c at the top bank (t.b.)

and at the bottom bank (b.b.) are connected by the formulas√
ω2 − ω2

c

∣∣
b.b.

= −
√

ω2 − ω2
c

∣∣
t.b.

,

so,e(ω)|b.b. = se,o(ω)|t.b.,
(42)

f (o)(ω)|b.b. = −f (e)(ω)|t.b.,

f (ω)|b.b. = f (ω)|t.b.,

and, therefore, �F = 0, proving the statement. Moreover, as
was just demonstrated, the integrands in (3) have no singularity
on Cint and the integration path 
0 can “jump” from the upper
bank to the lower one at any arbitrary point withinCint. Similar
relationships can be found for β < β0, for the left bank (l.b.)

013109-4



ELECTROMAGNETIC FIELD OF A CHARGE MOVING IN A . . . PHYSICAL REVIEW E 87, 013109 (2013)

and for the right bank (r.b.):

so,e(ω)|l.b. = se,o(ω)|r.b.,

f (o)(ω)|l.b. = −f (e)(ω)|r.b., (43)

f (ω)|l.b. = f (ω)|r.b..

Thus, the integration path 
0 can bypass Cint both from below
and above or “jump” from the left bank to the right one at
any arbitrary point within the cut. Because (29) is valid for an
arbitrary 
, which is symmetrical with respect to the imaginary
axis, representation (30) is also valid for the integration path

0 passing Cint from above or from below.

Formula (36) shows that the two other candidates for
singularities in the functions so,e(ω) are the branch points
ω = ±ω� , where the denominator of (36) tends to zero. The
next step is to determine the roots of the numerator in (36):

(1 − β2)
(−ω4 + ω2ω2

� − ω2
pω2

h/2
)+ β2ω4

p

− β2ω2ω2
p ∓ βω2

pωh

√
ω2 − ω2

c = 0. (44)

Expression (44) is a transcendental equation that cannot be
solved directly, so we will use a trick to solve it. Let us start with
the successive approximation method for ωh � ωp, ωh � ω

as a small parameter. In the zeroth-order approximation (ωh =
0), equation (44) can be written as

ω4(β2 − 1) − ω2
(
2β2ω2

p

)+ β2ω4
p = 0 (45)

with roots

[ω(0)]2 = ω2
p, [ω(0)]2 = − β2ω2

p

1 − β2
. (46)

Let us find the first-order correction to [ω(0)]2 = ω2
p using the

following ansatz:

[ω(1)]2 = ω2
p + αω2

h.

Substituting this expression into (44) and taking into account
terms ∼ω2

h, one obtains an equation for α

−2ω2
pα ± 2βω2

p

√
α + (1 − β2)2

4β2
+ ω2

p(1 − β2) = 0,

with the following solutions:

α1 = 0, α2 = 1.

Thus, in the first-order approximation, the roots of (44) are
[ω(1)

1 ]2 = ω2
p and [ω(1)

2 ]2 = ω2
� . By using the ansatz [ω(2)]2 =

ω2
p + αω2

h + ηω4
h, one finds that the correction of order ηω4

h

equals zero. This result hints that the roots found thus far are
the exact roots. Indeed, direct substitution shows that ω = ωp

and ω = −ω� are exact roots of (44) with the plus sign, while
ω = −ωp and ω = ω� are exact roots of (44) with the minus
sign.

Because two roots of (44) have just been found exactly, the
other roots can also be found. For this purpose, let us substitute
variables in (44):√

ω2 − ω2
c ≡ u ⇒ ω2 = u2 + ω2

c . (47)

Recall that from the definition of
√

ω2 − ω2
c (40), the signs of u

and ω are equal in the region of reality for u. The left-hand side

of (44) is a fourth-degree polynomial in u, with two known
roots. The residual two roots can be found as usual to obtain

s2
o = − (1 − β2)(u + u1)(u + u3)(u + u4)

β2c2(u + u2)
,

(48)

s2
e = − (1 − β2)(u − u1)(u − u3)(u − u4)

β2c2(u − u2)
,

where

u1,2 = ωh(1 ∓ β2)

2β
, (49)

u3,4 = ωhβ

2
∓ 1

β

√
ω2

h

4
− ω2

pβ2

1 − β2
. (50)

The numerators in (48) have only three roots, while the
denominators have only one root, due to cancellation of
identical multipliers in the numerator and the denominator
of the original expression. Note that u = uj for ω = ωj

(j = 1,2,3,4), where

ω1 = ωp, ω2 = ω�, (51)

ω3,4 = ωh

2
∓
√

ω2
h

4
− ω2

pβ2

1 − β2
. (52)

It should be stressed that although we started with the method
of successive approximations, we have obtained the exact
roots of (44) in the end, which can be easily proven by direct
substitution.

The radical in (50) and (52) is real at

β � β1 ≡ ωh√
ω2

h + 4ω2
p

, (53)

and it is imaginary for β > β1 (it can be easily shown that
β1 > β0 at arbitrary values of ωp and ωh). Let us define this
radical in the following way:

Im

√
ω2

h

4
− ω2

pβ2

1 − β2
> 0 for β > β1,

(54)

Re

√
ω2

h

4
− ω2

pβ2

1 − β2
� 0 for β � β1.

For β > β1, the branch points ω3 and ω4 are complex, with
ω4 lying in the upper half-plane, ω3 lying in the lower half-
plane, and Reω3,4 = ωh/2. For β = β1, ω3 = ω4 = ωh/2. For
β < β1, the branch points ω3 and ω4 are real with 0 < ω3 <

ωh/2 and ω4 > ωh/2. From (48), the function s2
e (ω) always

has two zeros, ω = ω1 = ωp and ω = ω4, and one pole at
ω = ω2 = ω� . The function s2

o (ω) always has two zeros, ω =
−ω1 = −ωp and ω = −ω4, and one pole at ω = −ω2 = −ω� .
The third zero is more complicated because it depends on the
charge velocity. For β > β1, the function s2

e (ω) has a zero
at ω = ω3, while the function s2

o (ω) has a zero at ω = −ω3.
For β < β1, a certain velocity β ′ (β0 < β ′ < β1) exists such
that u3 = 0 for β = β ′, u3 < 0 for β < β ′, and u3 > 0 for
β ′ < β < β1 (a cumbersome expression for β ′ derived using
symbolic computer calculation is not given here). Therefore,
in addition to the aforementioned poles and zeros, the function
s2
e has a zero at ω = −ω3 for β < β ′ and a zero at ω = ω3 for
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β ′ < β < β1. Similarly, the function s2
o has a zero at ω = ω3

for β < β ′ and a zero at ω = −ω3 for β ′ < β < β1. For β =
β ′, the branch point ω3 coincides with ωc. The zeros and poles
of the function s2

e (ω) are situated symmetrically with respect
to those of the function s2

o (ω) with respect to the imaginary
axis. For β → 0, one obtains ω3 → 0 and ω4 → ωh.

C. The case of ultrarelativistic velocities

We now consider the case where the charge velocity β

is so high that the inequality β > β1 is fulfilled at arbitrary
values of ωp and ωh. For definiteness, we will refer to this
case as the case of ultrarelativistic velocities [we can be sure
that the inequality β > β1 is fulfilled at γ ≡ (1 − β2)−1/2 �
1]. Because the functions so,e(ω) are determined by the rule
given in (15), cuts may be taken in segments where Im so,e =
0. Figure 2 shows the positional relationship of the original
integration path, the branch points, and the cuts of function
se(ω) [the cuts and singularities of so(ω) can be obtained by
reflecting those of se(ω) with respect to the imaginary axis].

It has been shown above that the cutCint has no effect on the
calculation of the field. This fact is illustrated in Fig. 2, where
the initial contour 
0 can pass the cutCint from above or below.
It is more significant that the function se(ω) has a cut on the real

4

Re

intint

2
h

Im

3

p

C

C

W

0

0

0

2
h

p

3

Re

4

intint

Im

0

FIG. 2. (Color online) Branch points (ωp , ω� , ω3, and ω4) and
cuts of the function se(ω) on the complex ω plane for β > β1. The
contour 
0 is the original integration path, which is transformed to

C+ (for analytical manipulation) or 
+ (for numerical calculation)
in the domain ζ > 0 (in front of the charge) and to 
C− + 
W− (for
analytical manipulations) or 
− (for numerical calculations) in the
domain ζ < 0 (behind the charge). The numbers 0 and π indicate the
argument of se on the corresponding cut banks.

axis between the branch points ωp and ω� , where Im se(ω) =
0. By being situated on the positive semiaxis, the cut corre-
sponds to the radiated extraordinary waves. It can be shown
by a limiting process from the case with losses that the initial
contour 
0 should pass the upper bank of this cut where se > 0.

From (33), the integration path in (30) can be complemented
by a semicircle of an infinite radius in the upper half-plane for
ζ > 0 (in front of the charge) and in the lower half-plane
for ζ < 0 (behind the charge). Following this manipulation,
the field can be expressed as an integral over the contours
encircling the cuts: 
C+ in front of charge and 
C− + 
W−
behind the charge (Fig. 2). These integrals can be rewritten
as integrals over the single cut bank. After a series of
transformations, we obtain{

Eρ,ϕ,z

Hρ,ϕ,z

}
=
{

EC
ρ,ϕ,z + EW

ρ,ϕ,z

HC
ρ,ϕ,z + HW

ρ,ϕ,z

}
, (55)

⎧⎪⎨
⎪⎩

EW
ρ

EW
ϕ

EW
z

⎫⎪⎬
⎪⎭ = �(−ζ )

∫ ω�

ωp

⎧⎪⎪⎨
⎪⎪⎩

ẽρJ1(ρse) sin
(

ωζ

υ

)
ẽϕJ1(ρse) cos

(
ωζ

υ

)
ẽzJ0(ρse) cos

(
ωζ

υ

)
⎫⎪⎪⎬
⎪⎪⎭ dω, (56)

⎧⎪⎨
⎪⎩

HW
ρ

HW
ϕ

HW
z

⎫⎪⎬
⎪⎭ = �(−ζ )

∫ ω�

ωp

⎧⎪⎪⎨
⎪⎪⎩

h̃ρJ0(ρse) cos
(

ωζ

υ

)
h̃ϕJ1(ρse) sin

(
ωζ

υ

)
h̃zJ0(ρse) sin

(
ωζ

υ

)
⎫⎪⎪⎬
⎪⎪⎭ dω, (57)

⎧⎪⎨
⎪⎩

EC
ρ

EC
ϕ

EC
z

⎫⎪⎬
⎪⎭ =

∫ +i∞

ω4

⎧⎪⎪⎨
⎪⎪⎩

Im
[
ẽρJ1(ρse) exp

(
iω|ζ |

υ

)
dω
]

Re
[
ẽϕJ1(ρse) exp

(
iω|ζ |

υ

)
dω
]
sgnζ

Re
[
ẽzJ0(ρse) exp

(
iω|ζ |

υ

)
dω
]
sgnζ

⎫⎪⎪⎬
⎪⎪⎭ ,

(58)

⎧⎪⎨
⎪⎩

HC
ρ

HC
ϕ

HC
z

⎫⎪⎬
⎪⎭ =

∫ +i∞

ω4

⎧⎪⎪⎨
⎪⎪⎩

Re
[
h̃ρJ1(ρse) exp

(
iω|ζ |

υ

)
dω
]
sgnζ

Im
[
h̃ϕJ1(ρse) exp

(
iω|ζ |

υ

)
dω
]

Im
[
h̃zJ0(ρse) exp

(
iω|ζ |

υ

)
dω
]

⎫⎪⎪⎬
⎪⎪⎭ ,

(59)

where

ẽρ = qc

ω2
pωh

se

(
ω2 − ω2

h

)
√

ω2 − ω2
c

(
s2
e + ω2

υ2
− ω2

c2
ε1

)
, (60)

ẽz = qβ

ω2
pωh

ω
(
ω2 − ω2

h

)
√

ω2 − ω2
c

[
s2
e

(
ε1 − 1

β2

)

+ ω2

c2

(
ε2

2 − ε2
1 + 2ε1

β2
− 1

β4

)]
, (61)

ẽϕ = −βh̃ρ = −qωse/
(
c

√
ω2 − ω2

c

)
, (62)

h̃ϕ = qcβ

ω2
pωh

se

(
ω2 − ω2

h

)
√

ω2 − ω2
c

[
ε1s

2
e + ω2

c2

(
ε2

2 − ε2
1 + ε1

β2

)]
,

(63)

h̃z = −qs2
e

/√
ω2 − ω2

c , (64)

and �(−ζ ) is the Heaviside step function. The integration is
performed over the upper cut bank (where se > 0) in (56) and

013109-6



ELECTROMAGNETIC FIELD OF A CHARGE MOVING IN A . . . PHYSICAL REVIEW E 87, 013109 (2013)

90

180

270

0 zk

xk

ok

ek

ek

es

c

FIG. 3. (Color online) Wave vectors for the ordinary ko and
extraordinary ke waves at ωh/ωp = 0.5 (ω� = 1.12ωp) and ω =
1.06ωp .

(57) and over the right-hand cut bank (where se < 0) in (58)
and (59).

As mentioned above, only the extraordinary wave is
generated by the moving charge in the case under consid-
eration. This fact can be further illustrated if we use the
following expressions for the refractive indexes no,e(θ ) in a
cold magnetized plasma [19]:

n2
o,e = 1 − 2ω2

p

(
ω2 − ω2

p

)[
2
(
ω2 − ω2

p

)
ω2 − ω2

hω
2 sin2 θ

±
√

ω4ω4
h sin4 θ + 4ω2

hω
2
(
ω2 − ω2

p

)2
cos2 θ

]−1
.

Figure 3 shows the polar plot of ko(θ ) = ωno(θ )/c and
ke(θ ) = ωne(θ )/c versus θ at a certain frequency between ωp

and ω� . These curves can be interpreted at the same time as
the dependencies kxo,e(kz). For the field of moving charge,
kz = ω/υ > ω/c. Figure 3 shows that the curve ko(θ ) lies
entirely inside the circle k = ω/c so there is no real solution
for so. In contrast, the curve ke(θ ) lies entirely outside the circle
k = ω/c so a real solution for se exists at arbitrary velocity β.
The physical meaning of these conclusions is the following:
because ko < ω/c, the phase velocity of the ordinary wave, is
larger than c, υpho = ω/ko > c. Therefore, this is a fast wave
that cannot be excited by a charge moving slower than light. In
contrast, the phase velocity of the extraordinary wave is less
than c, υphe = ω/ke < c, indicating that the wave is slow and
is excited by the moving charge.

Based on (58), (59), and (60)–(64), one can analytically
estimate the region of significance of the quasistatic field.
Because the integration path is along the cut in the upper half-
plane, the term exp(iω|ζ |/υ) describes the exponential decay
of the integrands with increasing |ζ |. It is obvious that the main
contribution to the integral comes from the vicinity of point ω4

so the nonexponential term can be factored out of the integral.
The residual integral involving the exponent can be calculated
along the ray starting at ω4 and reaching Reω4 + i∞, parallel
to the imaginary axis. The quasistatic field components acquire
the exponential term exp(− Im ω4|ζ |/υ), which determines the
region of significance of the quasistatic field:

|ζ | < ζC ≡ βc/ Im ω4 ≈
γ�1

c/(ωpγ ). (65)

As will be shown below, the estimation by (65) is in good
agreement with the numerical results for the ultrarelativistic
case for values of γ ∼ 10 and larger. It should be noted that the
contour in the form of the ray from ω4 up to Reω4 + i∞ can
be utilized in numerical calculations of the quasistatic field.

Despite the fact that the decomposition given by (55) is
easy to understand, the numerical calculation of the wave
components by the formulas (56), (57), and (60)–(64) is
rather difficult for at least a number of components. As
shown in Sec. III D and Appendix A, the singular behavior
of the function se(ω) at ω → ω� leads to poor convergence
of the integrals for the wave components. We overcome this
difficulty in two ways. The first method consists of obtaining
approximate analytical expressions for the wave components
in the vicinity of the charge motion line (Sec. III D) or in
the far-field zone (Sec. III E). The second method consists of
developing a numerical approach suitable for calculating the
entire field for arbitrary parameters (Sec. IV).

D. Wave field in the vicinity of the charge motion line

Let us now investigate the behavior of the wave components
in (56) and (57) for small values of ρ. Henceforth, the approach
described in this section will be referred to as the “small ρ

approach.” The main difficulty with computing the integrals in
(56) and (57) is that the function se(ω), as given by (48), tends
to infinity as ω → ω� :

s2
e (ω) ≈

ω→ω�−0
σ 2

e /(ω� − ω), (66)

where

σ 2
e = ω2

pω2
h(1 + β2)/(2β2c2ω�). (67)

This behavior leads to the divergence of some of the field com-
ponents at ρ → 0. The detailed treatment of this divergence is
given in Appendix A. The following approximate expressions
have been obtained:

EW
ρ ≈

ρ→0
EW1

ρ

(
ρωp

c

)−1

,

{
EW

z

HW
z

}
≈

ρ→0

{
EW0

z

HW0
z

}
+
{

EW1
z

HW1
z

}
ln

(
ρωp

c

)
, (68)

{
EW

ϕ

HW
ρ,ϕ

}
≈

ρ→0

ρωp

c

[{
EW0

ϕ

HW0
ρ,ϕ

}
+
{

EW1
ϕ

HW1
ρ,ϕ

}
ln

(
ρωp

c

)]
, (69)

where the dominant contributions take the form

EW1
ρ = 2qω3

p

c2βω�

sin

(
ω�ζ

υ

)
, (70)

EW1
z = 2qω2

p

c2β2
cos

(
ω�ζ

υ

)
, (71)

HW1
z = 2qω2

pωh

c2βω�

sin

(
ω�ζ

υ

)
, (72)

EW1
ϕ = qωpωh

c2β
cos

(
ω�ζ

υ

)
= −βHW1

ρ , (73)

HW1
ϕ = qωpω2

h

c2β2ω�

sin

(
ω�ζ

υ

)
, (74)
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while the corrections to the dominant contributions can be
found in Appendix A.

As seen from (68) and (69), the EW
ρ component possesses a

strong singularity (∼ρ−1), while the EW
z and HW

z components
each possess a weak logarithmic singularity. The other com-
ponents vanish ∼ρ ln ρ as ρ → 0. Moreover, (70)–(74) show
that all the components behave harmonically with frequency
ω� in the vicinity of the charge motion line.

It is worthwhile to compare the field behavior in the
neighborhood of the charge motion line given by (68) and
(69) with that for the cold plasma in the absence of an external
magnetic field, the dielectric permittivity of which is given by

ε(ω) = 1 − ω2
p/ω2. (75)

The electric field for this case is known to consist of a
quasistatic field and a so-called “plasma trace” (plasma
oscillations) [4,29]. The “plasma trace” is described by the
following expressions:

EP
ρ = 2qω2

p

υ2
K1

(
ρ

ωp

υ

)
sin

(
ωpζ

υ

)
,

(76)

EP
z = −2qω2

p

υ2
K0

(
ρ

ωp

υ

)
cos

(
ωpζ

υ

)
,

where K0,1 are the modified Bessel functions (McDonald
functions). Using the asymptotic behavior of the functions
K0,1 at ρ → 0 [31], one obtains

EP
ρ ≈

ρ→0

2qω2
p

c2β
sin

(
ωpζ

υ

)(
ρωp

c

)−1

,

(77)

EP
z ≈

ρ→0

2qω2
p

c2β2
cos

(
ωpζ

υ

)
ln

(
ρωp

c

)
.

Expressions (68) for EW
ρ,z are reduced to (77) as ωh → 0, which

is quite natural.
As one can see from (77), the field of “plasma trace”

contains only transversal and longitudinal electric components
possessing singularities at ρ → 0 (∼ρ−1 or ∼ ln ρ). Thus,
the singular behavior of the wave field components (68) is
analogous to the singular behavior of the “plasma trace” (77)
(despite of difference in derivations, because (76) results from
computation of residues in poles ω = ±ωp [29], while (68)
is determined by contribution of small vicinity of ω = ω�

to the integrals for wave components). The essential physical
distinction of the wave field produced by point charge moving
in magnetized plasma is that it contains magnetic components
HW

ρ,z, with the longitudinal component HW
z possessing a

logarithmic singularity.
To further illustrate the influence of the external magnetic

field on the field of the moving charge in the vicinity of
the charge trajectory, we now consider the ωh dependence
of the magnitude of the harmonic functions EW1

ρ (70), EW1
z

(71), and HW1
z (72) (note that the correction terms EW0

ρ ,
EW0

z , and HW0
z can be neglected for small-enough ρ). First,

the magnitude of the longitudinal electric field EW1
z equals

2qω2
p/υ2 and is independent of ωh (and correspondingly

Bext), i.e., the magnitude of this component in the magnetized
plasma coincides with that in the plasma without a magnetic
field. However, the magnitude of the orthogonal electric field

, TextB

1

0
0 2 4 6 8

1210
1110

1010

910

1Magnitude of (arb. units)WE

1Magnitude of (arb. units)W
zH

, TextB

1

0
0 2 4 6 8

1210

1110

1010

910

FIG. 4. (Color online) The magnitude 2qω3
p/(c2βω�) of the

orthogonal electric field (top) and the magnitude of the longitudinal
magnetic field 2qω2

pωh/(c2βω�) (bottom) behind the charge near
the charge trajectory versus Bext. Various plasma frequency values
ωp/(2π ) (s−1) are indicated near the curves.

EW1
ρ equals 2qω3

p/(c2βω�) and can be reduced essentially
by the external magnetic field (Fig. 4). As mentioned above,
Bext produces HW1

z with a magnitude 2qω2
pωh/(c2βω�) that

increases significantly with an increase in Bext (Fig. 4).
Using the main terms in (68) and (69), one obtains the

components of the Poynting vector �S = c/(4π )[ �E, �H ]:

SW
ρ ≈

ρ→0

c

4π

(
EW1

ϕ HW1
z − EW1

z HW1
ϕ

)ρωp

c

[
ln

(
ρωp

c

)]2

,

(78)

SW
ϕ ≈

ρ→0
− c

4π
EW1

ρ HW1
z ln

(
ρωp

c

)(
ρωp

c

)−1

,

(79)

SW
z ≈

ρ→0

c

4π
EW1

ρ HW1
ϕ ln

(
ρωp

c

)
.

Therefore, the orthogonal flux SW
ρ is negligible in the vicinity

of the charge motion line, whereas the longitudinal flux SW
z is

large and the azimuthal flux SW
ϕ is very large.

E. Wave field in the far-field zone

Let us now investigate the behavior of the wave components
(56) and (57) at ζ < 0 and large distances ρ from the charge
motion line. As in Refs. [27,28], we solve the integrals
using the stationary point method [32]. We assume that ρ

is sufficiently large so ρ|se| � 1 at the stationary points ωs ,
which will be found below. Then, the Bessel functions can be
replaced by their asymptotic expressions [31], and the wave
components (56) and (57) can be presented as integrals with
the rapidly oscillating functions exp[iρse(ω) ± iω|ζ |/υ]. The
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FIG. 5. (Color online) Illustration of the solution of equation (81)
for the stationary points. The typical dependence of dse/dω on ω, for
various β values, with the calculated stationary points ωs1,2 (a) and
the corresponding Cherenkov cone with an apex angle α determined
by tgα = (υs ′

e min)−1 (b). The dependence dse/dω on ω is calculated
for ωh = 0.5ωp .

main contribution to these integrals is given by the stationary
points ωs , which are determined by the equations below

ρdse(ωs)/dω ± |ζ |/υ = 0. (80)

The detailed investigation of (80) for the ultrarelativistic case
is given in Appendix B. The first conclusion is that the function
se(ω) increases monotonously in the interval ωp < ω < ω� ,
i.e., dse/dω > 0, and (80) with the plus sign has no solutions.
Therefore, we obtain the following equation for stationary
points:

dse(ωs)/dω = |ζ |/(ρυ). (81)

The second conclusion is that when the external magnetic
field is not very strong (ωh < 6

√
2ωp ≈ 8.5ωp), the derivative

dse/dω has a minimum at ω = ωs0, where ωp < ωs0 < ω� .
The typical dependence of dse/dω on ω is shown in Fig. 5(a),
where the cone (which can be called the Cherenkov cone) is
determined by the following equation:

|ζ | = ζmin(ρ) ≡ ρυs ′
e min, s ′

e min ≡ dse(ωs0)/dωs0. (82)

There are two stationary points ωs1,2 inside the cone (|ζ | >

ζmin). There is a single stationary point ωs0 at the boundary
of the cone (|ζ | = ζmin), and there are no stationary points
outside the cone (|ζ | < ζmin) [see Fig. 4(b)]. For |ζ | � ζmin,
one obtains ωs1 → ωp, ωs2 → ω� and

ωs1 ≈
√

ω2
p +

(
ρω2

p

2|ζ |√ωh

)4/3

,

(83)

ωs2 ≈
√

ω2
p +

[
ωh −

(
ρωpω�

2|ζ |√ωh

)2/3]2

.

The following asymptotic expressions can be written inside
the Cherenkov cone:

⎧⎪⎨
⎪⎩

EW
ρ

EW
ϕ

EW
z

⎫⎪⎬
⎪⎭ ≈ 1

ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ẽW
ρ (ωs1)√
se1|s ′′

e1|
sin
(
ρse1 − ωs1|ζ |

υ

)+ ẽW
ρ (ωs2)√
se2|s ′′

e2|
cos

(
ρse2 − ωs2|ζ |

υ

)
−ẽW

ϕ (ωs1)√
se1|s ′′

e1|
cos

(
ρse1 − ωs1|ζ |

υ

)− ẽW
ϕ (ωs2)√
se2|s ′′

e2|
sin
(
ρse2 − ωs2|ζ |

υ

)
−ẽW

z (ωs1)√
se1|s ′′

e1|
sin
(
ρse1 − ωs1|ζ |

υ

)+ ẽW
z (ωs2)√
se2|s ′′

e2|
cos

(
ρse2 − ωs2|ζ |

υ

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (84)

⎧⎪⎨
⎪⎩

HW
ρ

HW
ϕ

HW
z

⎫⎪⎬
⎪⎭ ≈ 1

ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−h̃W
ρ (ωs1)√
se1|s ′′

e1|
cos

(
ρse1 − ωs1|ζ |

υ

)− h̃W
ρ (ωs2)√
se2|s ′′

e2|
sin
(
ρse2 − ωs2|ζ |

υ

)
−h̃W

ϕ (ωs1)√
se1|s ′′

e1|
sin
(
ρse1 − ωs1|ζ |

υ

)+ h̃W
ϕ (ωs2)√
se2|s ′′

e2|
cos

(
ρse2 − ωs2|ζ |

υ

)
h̃W

z (ωs1)√
se1|s ′′

e1|
cos

(
ρse1 − ωs1|ζ |

υ

)+ h̃W
z (ωs2)√
se2|s ′′

e2|
sin
(
ρse2 − ωs2|ζ |

υ

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (85)

where se1,2 = se(ωs1,2), s ′′
e = d2se/dω2, and s ′′

e1,2 = s ′′
e (ωs1,2).

The formulas (84) and (85) show that at large distances
from the charge motion line inside the cone (82), the field is
essentially determined by two small frequency regions. Recall
that these two frequency ranges are not associated with the
ordinary and extraordinary waves. As shown below, the only
extraordinary wave is excited in the case under consideration
(see Sec. III C).

IV. NUMERICAL METHODS AND RESULTS

A. Field of a point charge

In this section, we describe the numerical method developed
for the computation of the field components with arbitrary
parameters and present representative numerical results. In
the vicinity of the charge motion line, as well as in the far-field
zone, the results of the exact calculations will be compared to
the approximate solutions.
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FIG. 6. (Color online) The behavior of the integrand (for the Ez component) on the original integration path 
0 (red dashed line) and the
trapezoidal path 
− (green solid line), which are shown in Fig. 2. The calculation parameters are ωh = 0.5ωp , β1 = 0.24, β = 0.9, ωc = 0.99ωp ,
ρ = 20c/ωp , and ζ= − 100c/ωp .

We will use the representation (30), with the se function,
for the numerical algorithm. Knowing the singularities of the
function se in the complex ω plane and properties (33) and (34),

the original integration path 
0 can be suitably transformed in
the complex plane to provide good convergence of the integrals
(see Fig. 2). In the domain ζ > 0 (in front of the moving
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FIG. 7. (Color online) The full field (solid green line) and its quasistatic component (dashed red line) versus ζ for relatively small ζ and
various ρ and γ . The calculation parameters are q = −1 nC, ωp = 2π × 1012 s−1, ωh = 0.5ωp (Bext ≈ 18 T), and ν = 10−4ωp .
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charge), the trapezoidal path 
+ can be used with its semi-
infinite sections parallel to the asymptotes of SDP from (34) in
the upper half-plane. In the domain ζ < 0 (behind the charge),
the analogous trapezoidal line 
− bent in the lower half-plane
can be utilized. Both paths should be located at a sufficient
distance from the singularities in the integrands. The typical
dependence of the integrands of the Ez component on the

original path and on the transformed path, as parameterized by
a variable along the real axis, are shown in Fig. 6. As seen from
Fig. 6, the transformed path provides both a smoother behavior
for the integrands and a more rapid decay of the integrands at
large values of the integration variable. Smoothing can clearly
be seen in the domain [ωp, ω�], while the faster decay is clearly
seen in the region ω > ω� . Another benefit of this approach is
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FIG. 8. (Color online) The total field from numerical calculations (solid green line), the stationary point method (dashed red line), and the
small ρ approximation (dashed-dotted blue line). Plot (a) corresponds to the far-field zone, plot (b) corresponds to the middle zone, and plot
(c) corresponds to the zone with small values of ρ. The calculation parameters are q = −1 nC, ωp = 2π × 1012 s−1, ωh = 0.5ωp (Bext ≈ 18 T),
and γ = 22. For plot (a), the distances ρ and ζ have been chosen so the observation point is always inside the Cherenkov cone (82): |ζ | > ζmin(ρ),
where ζmin = 1.65 cm for ρ = 0.1 cm. For plot (c), the distances ρ and ζ have been chosen to satisfy the requirements of the small ρ approach:
ρ < ρmax(ζ ), where ρmax ∈ [4, 4.9] μm for ζ ∈ [−2.5, − 2] cm.
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that the parameters of the transformed integration path (shift
in the upper half-plane, length of the parallel to the real axis)
can be adjusted to achieve the most accurate results.

Figure 7 shows the total field (in the relatively small vicinity
of the charge dislocation) calculated by the numerical method
described together with the quasistatic field calculated using
the formulas (58) and (59). It can be seen that the total
field in the region in front of the charge (ζ > 0) coincides
with the quasistatic field, in agreement with the predictions
of the formulas (55)–(59). The quasistatic component of
the longitudinal electric field has a discontinuity at ζ = 0,
while the total field becomes continuous. The width of the
region where quasistatic field dominates is in good agreement
with the theoretical estimation from (65) for large γ (the
boundaries ±ζC of this region are shown in the right row
of Fig. 7 for the case of large γ ). Figure 7(a) shows that the
quasistatic field is relatively weak for large ρ. The quasistatic
field becomes more significant with decreasing ρ [Fig. 7(b)]
until it determines almost the total field for small ρ [Fig.
7(c)]. The larger the charge velocity β (or the Lorentz factor
γ ), the narrower the area over which the quasistatic field is
significant.

Figure 8 shows the dependence of the longitudinal and
orthogonal components of the electric field on ζ at relatively

large distances behind the charge (ζ < 0, |ζ | � ζC) and for
different offsets ρ from the charge trajectory. For a relatively
large offset [Fig. 8(a)], the total field, calculated numerically, is
in good agreement with its wave component calculated using
the stationary point method. Both components have the same
order of magnitude, and the beating behavior arises due to the
contributions mainly from the two small neighborhoods of ωp

and ω� to the field. For a relatively small offset [Fig. 8(c)],
the total field, from numerical calculations, is again in good
agreement with its wave component calculated via the small
ρ approximation. Both components behave harmonically at
a frequency ω� . It should be noted that the Eρ component
is approximately two orders of magnitude larger than Ez,
which is explained by a stronger (inversely proportional versus
logarithmic) singularity as ρ → 0. The region of the middle
offsets [Fig. 8(b)] cannot be described by any of the analytical
approximations. However, for ρ = 50 μm, the Ez component
is still in the beating regime while Eρ is already in the harmonic
regime. The magnitudes of the components are comparable.

B. Field of a finite bunch

It was stressed above that there are singularities in some
of the field components on the charge trajectory behind the
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FIG. 10. (Color online) The magnitudes of the longitudinal and orthogonal electric field and longitudinal magnetic field versus ρ, produced
by a disk of radius (a) a = 4.8 μm and (b) a = 24 μm. The other calculation parameters are the same as in Fig. 9.
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charge. Therefore, analysis of the small bunch field near the
line ρ = 0 requires accounting the finite size of the bunch.
This problem is particularly relevant in the context of the
wakefield acceleration technique, where the wave field of the
large driver bunch is used for the acceleration of a relatively
small witness bunch [33–35]. One promising version of
this method is the plasma wakefield acceleration (PWFA)
scheme [36], for which an accelerating field of 40 GeV/m has
now been attained [37]. This success has stimulated research
activity in this area [38,39].

We can calculate the field of the bunch �Eb(x,y,ζ ),
�H b(x,y,ζ ) using the field of the point charge �E(ρ,ζ ), �H (ρ,ζ )

as the Green’s function:

{ �Eb, �H b} =
∫∫∫

Vb
dx ′dy ′dζ ′ρb(x ′,y ′,ζ ′)

×{ �E, �H }(
√

(x − x ′)2 + (y − y ′)2,ζ − ζ ′),
(86)

where V b is the bunch volume and ρb is the bunch charge
density. The convolution in (86) can be easily calculated

for arbitrary ρb in a region where ζ is sufficiently large
(ζ < 0, |ζ | � ζC) and ρ is sufficiently small so (A18) is
fulfilled; in this case, only the wave component is essential
and can be described by the small ρ approximation formulas
from (68)–(74) and (A10)–(A17). Indeed, only the strong
field components EW

ρ , EW
z , and HW

z are significant in this
region. Moreover, the EW

ρ component is a simple analytical
function of ρ and ζ . Although the expressions for the EW

z

and HW
z components contain complex nonanalytic integral

functions of ζ [see the first terms in the formulas (A10) and
(A11)], these functions can be replaced by corresponding
analytical approximations (by polynomial regression, for
example) within the domain of integration in (86). The field
of bunches [with the orthogonal dimensions of the bunches
satisfying the requirements of the small ρ approach (A18)]
can be calculated at large-enough distances behind the bunches
without computational difficulties. It should be stressed that
this is the region of most interest for PWFA purposes.

For the purposes of illustration, we consider two types of
bunches. The first bunch is a uniformly charged, infinitely thin
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(dashed red line) versus ζ . Calculation parameters are q = −1 nC, ωp = 2π × 1012 s−1, ωh = 0.14ωp (Bext = 5 T), β = 0.999 (γ = 22),
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disk of radius a with a charge density given by

ρd = q�(a − ρ)δ(ζ )/(πa2). (87)

The second bunch is a uniformly charged cylinder with the
following charge density:

ρc = q�(a − ρ)�(σ − |ζ |)/(2σπa2), (88)

where a and 2σ are the cylinder radius and length, respectively,
and �(ξ ) is the Heaviside step function. In these cases, because
the integration over x ′ and y ′ in (86) uses the point charge
field in the domain ρ∈[0, 2a], the small ρ approach formulas
can be applied to calculate (86) for a<ρmax/2 where ρmax

is given by (A18). Moreover, because (87) depends on ζ

via the δ function, one can also easily calculate the field
produced by a disk with a radius slightly exceeding ρmax/2.
In this case, the convolution in (86) utilizes the dependence
of the point charge field on the orthogonal coordinate ρ only,
and the real complex dependencies �E(ρ) and �H (ρ) can be
replaced by the corresponding analytical approximations for
ρ > ρmax.

Figure 9 compares the behavior of the magnitudes of the
main field components versus ρ for a point charge and a
charged disk (87). The field produced by the disk is finite
at ρ → 0, contrary to the field of the point charge, which is
quite naturally. Moreover, the field of the disk varies slowly
with ρ.

Figure 10 shows the main components of the field versus
ρ, produced by a relatively small disk and a relatively large
disk. One can compare the magnitudes of the longitudinal and
orthogonal electric field to each other and the magnitude of the
longitudinal magnetic field to the magnitude of the external
magnetic field. For a relatively small disk radius [Fig. 10(a)],
the Eρ component is approximately two orders of magnitude
larger than the Ez component, while these components become
comparable for a disk that is 5 times larger [Fig. 10(b)]. The
magnitude of the magnetic field produced by a small disk
exceeds the external field Bext [Fig. 10(a)], while the larger
disk produces a smaller field compared to the external field
[Fig. 10(b)].

Figure 11 compares the fields produced by a point charge,
a charged disk and a charged cylinder. The disk and cylinder
radii a have been chosen such that a < ρmax/2 in the range
of varying ζ . Figure 11(a) shows that for a relatively large
ρ (comparable to the disk radius), the longitudinal electric
field produced by the point charge almost coincides with that
produced by the charged disk (this is also can be seen in
Fig. 9). With decreasing ρ, the difference becomes essential.
Figure 11(b) shows that a short cylinder (on the scale of
the wavelength λ = 2πβc/ω�) produces a field that almost
coincides with that of the disk. The field of the long cylinder
is several orders of magnitude smaller than the field of the
disk. Obviously, this can be explained by the noncoherency of
the fields produced by the different particles inside the large
bunch.

These results can be used to further develop the PWFA
technique. The electromagnetic field in a cold plasma with
a longitudinal external magnetic field has several advantages
here. First, we can use the focusing action of the external
magnetic field which can be enhanced by the longitudinal
magnetic field of the radiated wave. As has been shown, the

magnetic field of the wave can exceed the external field for
a small enough bunch. Another benefit is that the deflecting
orthogonal electric field can be depressed considerably by the
external magnetic field.

V. CONCLUSION

In the present work, we have investigated the electro-
magnetic fields produced by a point charge and a charged
bunch moving in a cold magnetized plasma along the external
magnetic field. Different equivalent integral representations
for the components of the point charge field have been
obtained. These representations facilitate both analytical
transformations and the development of effective numerical
algorithms for computing the fields.

Attention has mainly been focused on the ultrarelativistic
motion of a charge. We have divided the field into wave
components and quasistatic components. It has been shown
that the quasistatic component is only essential at small
longitudinal distances from the charge, which is inversely
proportional to the Lorentz factor. We have analyzed the wave
field in the far-field zone using the stationary point method.
One interesting effect is the beating behavior of the field
inside the Cherenkov cone, which is explained by the main
contributions to the field coming from two small frequency
regions. It should be noted that the beating nature of the field is
not associated with the existence of ordinary and extraordinary
characteristic waves in the medium because only the slow
extraordinary wave is excited for the case under consideration.

The wave field in the small neighborhood of the charge
trajectory behind the charge has also been analyzed. In
this case, we have obtained relatively simple approximate
expressions for the field components and have shown that
the field exhibits harmonic behavior. The longitudinal electric
and magnetic fields show a weak (logarithmic) singularity,
while the orthogonal electric field exhibits a stronger (inversely
proportional) singularity. The rest of the field components
vanish as the distance from the trajectory tends to zero.
These properties are similar to those of the “plasma trace,”
which is usually encountered in isotropic media. An important
difference between the two cases consists of the presence of a
large wave magnetic field in the vicinity of the trajectory. On
the other hand, the longitudinal electric field does not depend
on the external magnetic field and coincides with that of the
“plasma trace.” In contrast, the magnitude of the orthogonal
electric field decreases while the magnitude of the longitudinal
magnetic field increases with an increasing external magnetic
field.

By suitably transforming the integration path in the complex
plane, we have developed an efficient numerical algorithm
for the computation of the point charge field at arbitrary
distances. The field patterns obtained using this method were
in good agreement with those obtained by using the analytical
approximations in the domain of their validity. The field
behavior in the “middle” zone, which cannot be calculated
using the approximate techniques, has been analyzed. In
particular, it has been shown that the longitudinal electric field
can be in the beating regime (similar to the far-field zone)
while the orthogonal electric field is already in the harmonic
regime (similar to the neighborhood of the trajectory).
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The expressions for the wave field in the vicinity of the
charge motion line have been effectively utilized to calculate
the fields produced by two types of bunches. The fields
produced by a point charge, a disk, and a cylinder have been
compared to each other. The fields of the point charge and
the thin disk almost coincide at distances on the order of
the disk radius from the charge motion line. The orthogonal
electric field can be several orders of magnitude larger than the
longitudinal electric field for a relatively small disk, while the
difference between the orthogonal and longitudinal compo-
nents decreases with increasing disk radius. The longitudinal
magnetic field can exceed the external magnetic field for a
small enough disk. A short cylindrical bunch with a length
of one third of the wavelength produces a field that almost
coincides with the field of an infinitely thin disk. In contrast,
the field for a bunch that is one wavelength long is much
smaller than the field of the disk. This effect highlights the
incoherent summation of fields produced by charges of a long
bunch.

These results can be implemented in all areas where charged
particles in cold plasma are encountered. The approaches
developed here facilitate quick and efficient numerical calcu-
lation of wakefields produced by small bunches of arbitrary
configuration. This approach is based on computing the
convolution integral with analytical functions and requires
neither expensive numerical simulation suites nor a large
amount of computer resources.
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APPENDIX A: WAVE-FIELD EXPANSION AT SMALL
VALUES OF ρ

Here, we present the results for treating the wave integrals
(56) and (57) in the vicinity of the charge trajectory. First,
let us specify a region δ such that the function se(ω) can be
substituted by the expression (66) for ω� − δ < ω < ω� , with
a given accuracy. For example, δ can be defined as follows:

∣∣(s2
e (ω� − δ) − σ 2

e /δ
)
s−2
e (ω� − δ)

∣∣ = 10−m, (A1)

where the fixed integer m > 0 determines the accuracy. The
integrals (56) and (57) can be rewritten as follows:

{
EW

ρ,ϕ,z

HW
ρ,ϕ,z

}
=
{

ẼW
ρ,ϕ,z + ˜̃EW

ρ,ϕ,z

H̃W
ρ,ϕ,z + ˜̃HW

ρ,ϕ,z

}
. (A2)

Here, the primary summands (shown with a single tilde) are
integrals of the form

∫ ω�−δ

ωp
dω. The secondary summands

(shown with a double tilde) are integrals of the form
∫ ω�

ω�−δ
dω.

The integrands of these expressions are the same as in formulas
(56) and (57). Because the function se(ω) is limited in the
interval ωp < ω < ω� − δ, the Bessel functions in the single

tilde summands can be expanded into a series [31],

J0(ρse) ≈
ρ→0

1 − (ρse)2/4,

(A3)
J1(ρse) ≈

ρ→0
ρse/2 − (ρse)3/16,

in the issue, single tilde summands behave as polynomials of
the second or third degree with respect to ρ as ρ → 0.

The integrands in the double tilde summands in (A2) can
be simplified further. The nondivergent summands can be
neglected compared to the divergent summands (s2

e , ε1s
2
e ∼ se)

so the slowly varying functions can then be factored out of the
integral. In the issue we have

˜̃EW
ρ ∼

∫ ω�

ω�−δ

s3
e J1(ρse)dω

=
∫ ω�

ω�−δ

σ 3
e

(ω� − ω)3/2
J1

(
ρσe√

ω� − ω

)
dω, (A4)

{ ˜̃EW
z , ˜̃HW

z

} ∼
∫ ω�

ω�−δ

s2
e J0(ρse)dω

=
∫ ω�

ω�−δ

σ 2
e

ω� − ω
J0

(
ρσe√

ω� − ω

)
dω, (A5)

{ ˜̃EW
ϕ , ˜̃HW

ρ,ϕ

} ∼
∫ ω�

ω�−δ

seJ1(ρse)dω

=
∫ ω�

ω�−δ

σe√
ω� − ω

J1

(
ρσe√

ω� − ω

)
dω. (A6)

Introducing a new variable ξ = ρσe/
√

ω� − ω in (A4)–(A6),
one obtains

˜̃EW
ρ ∼ 1

ρ

∫ ∞

ρσe/
√

δ

J1(ξ )dξ, (A7)

{ ˜̃EW
z , ˜̃HW

z

} ∼
∫ ∞

ρσe/
√

δ

J0(ξ )ξ−1dξ,

(A8){ ˜̃EW
ϕ , ˜̃HW

ρ,ϕ

} ∼ ρ

∫ ∞

ρσe/
√

δ

J1(ξ )ξ−2dξ.

Expressions (A7) and (A8) show that for finite ρ �= 0, the
integrals (56) and (57) are convergent. However, expression
(A7) diverges as ρ → 0, and the integrals in (A8) also contain
divergent terms. Indeed, one can put ρ = 0 in the lower
limit of the integral (A7), therefore, EW

ρ ∼ const/ρ as ρ → 0.
The integrals in (A8) can be approximated by the following
scheme. Let us suppose that ρ is sufficiently small so

ρ < ρ0 ≡
√

δ/σe. (A9)

When (A9) is fulfilled, ρσe/
√

δ < 1 and ξ = 1 lies within
the integration interval. Each of integrals in (A8) then can be
divided into two, such that the integration is performed from
ρσe/

√
δ to 1 in the first integral and from 1 to ∞ in the second

integral. The tail integrals from 1 to ∞ are convergent and do
not depend on ρ. The integrals from ρσe/

√
δ to 1 can be ap-

proximated by expanding the Bessel functions J0(ξ ) and J1(ξ )
into a series similar to (A3). The first terms in the Bessel func-
tion expansions give logarithmic terms, while the second terms
produce quadratic polynomials in ρ for the integrals in (A8).
As a result, we obtain the decomposition (68) and (69), where
the dominant contributions are given by formulas (70)–(74),
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and the corrections are expressed as follows:

EW0
z = qβ

ω2
pωh

∫ ω�−δ

ωp

ω
(
ω2 − ω2

h

)
√

ω2 − ω2
c

[
ω2

c2

(
ε2

2 − ε2
1 + 2ε1

β2
− 1

β4

)
+ s2

e

(
ε1 − 1

β2

)]
cos

(
ωζ

υ

)
dω

+ qβω�

ωh

√
ω2

� − ω2
c

{
υ

ζ

[
ω2

�

c2
ε2

2(ω�) − 2ω�σ 2
e

ω2
p

− ω2
�

υ2β2

][
sin

(
ω�ζ

υ

)
− sin

(
(ω� − δ)ζ

υ

)]

− 2σ 2
e

β2

[
cos

(
ω�ζ

υ

)
M1 + sin

(
ω�ζ

υ

)
M2

]}
, (A10)

HW0
z = −q

∫ ω�−δ

ωp

s2
e√

ω2 − ω2
c

sin

(
ωζ

υ

)
dω − 2qσ 2

e√
ω2

� − ω2
c

[
sin

(
ω�ζ

υ

)
M1 − cos

(
ω�ζ

υ

)
M2

]
, (A11)

EW0
ϕ = −βHW0

ρ = −q

2ωp

∫ ω�−δ

ωp

ωs2
e√

ω2 − ω2
c

cos

(
ωζ

υ

)
dω − qω�σ 2

e

c

√
ω2

� − ω2
c

[
cos

(
ω�ζ

υ

)
M3 + sin

(
ω�ζ

υ

)
M2

]
, (A12)

HW0
ϕ = qc2β

2ω3
pωh

∫ ω�−δ

ωp

s2
e

(
ω2 − ω2

h

)
√

ω2 − ω2
c

[
ω2

c2

(
ε2

2 − ε2
1 + ε1

β2

)
+ ε1s

2
e

]
sin

(
ωζ

υ

)
dω

+ qc2βσ 2
e

ωpωh

√
ω2

� − ω2
c

[
ω2

�

c2
ε2

2(ω�) − 2ω�σ 2
e

ω2
p

][
sin

(
ω�ζ

υ

)
M3 − cos

(
ω�ζ

υ

)
M2

]
, (A13)

M1 =
⎧⎨
⎩
∫∞

1
J0(ξ )

ξ
dξ + ln

( ωp

√
υ

cσe

√|ζ |
)+ Ac − 1

4 for |ζ | > ζ0, ρ < ρ0
√

ζ0/|ζ |,∫∞
1

J0(ξ )
ξ

dξ + ln
(ωp

√
δ

cσe

)− 1
8

ζ 2

υ2 δ
2 − 1

8 for |ζ | < ζ0, ρ < ρ0,

(A14)

M2 =
{

As − 1
2 for |ζ | > ζ0, ρ < ρ0

√
ζ0/|ζ |,

− 1
2

|ζ |
υ

δ for |ζ | < ζ0, ρ < ρ0,
(A15)

M3 =
⎧⎨
⎩

2
∫∞

1
J1(ξ )
ξ 2 dξ + ln

( ωp

√
υ

cσe

√|ζ |
)+ Ac − 3

16 for |ζ | > ζ0, ρ < ρ0
√

ζ0/|ζ |,

2
∫∞

1
J1(ξ )
ξ 2 dξ + ln

(ωp

√
δ

cσe

)− 1
8

ζ 2

υ2 δ
2 − 1

16 for |ζ | < ζ0, ρ < ρ0,

(A16)

Ac =
∫ √

δ

√
υ/|ζ |

cos(ζ ξ 2/υ)ξ−1 dξ, As =
∫ √

δ

√
υ/|ζ |

sin(ζ ξ 2/υ)ξ−1 dξ, (A17)

where ζ0 ≡ υ/δ and δ is defined by (A1). The region of validity
for the approximation can be written in the following form:

ρ<ρmax≡
{

ρ0 for |ζ | < ζ0,

ρ0
√

ζ0/|ζ | for |ζ | > ζ0,
(A18)

and is shown as the dashed region in Fig. 12. Note that because
a logarithm is a weak singularity, the constant terms can

0

0

max

0 0

0

FIG. 12. (Color online) The region of validity (shown with
dashes) in the (ρ, ζ ) plane for the approximations given by (68)–(74)
and (A10)–(A17) for the wave components of the field.

have significant contributions, for example, for large values
of |ζ |.

In concluding this section, one should say a few words
about the numerical calculation of the wave components
via exact formulas (56) and (57). As mentioned above, the
function se(ω) is limited in the interval ωp < ω < ω� − δ

so there are no difficulties in calculating the single tilde
summands. However, the “tail” integrals (A8) for EW

ϕ and
HW

ρ,ϕ exhibit the steepest convergence at ξ→∞ [∼ cos(ξ −
3π/4)/ξ 5/2], while those for EW

z and HW
z exhibit a slower

convergence [∼ cos(ξ − π/4)/ξ 3/2], and the integral (A7) for
EW

ρ exhibits the slowest convergence [∼ cos(ξ − 3π/4)ξ 1/2].
The numerical calculation of the “tails” (A7) and (A8) requires
the integration interval to be restricted by a value ξmax so
integrals from ξmax to ∞ can be neglected. Thus, ξmax for the
calculation of EW

ρ should take the largest value, while ξmax for
calculating EW

z and HW
z should take smaller values and ξmax

for calculating EW
ϕ and HW

ρ,ϕ should take the smallest value.
Moreover, because the integration step size δξ should be at
least several times smaller than the oscillation period (which
equals approximately unity), increasing ξmax essentially leads
to increasing the calculation time.
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APPENDIX B: INVESTIGATION OF THE
STATIONARY-POINTS EQUATIONS (80)

Here, we investigate possibilities of solving the equations
(80) to determine the stationary points ωs1,2. The properties of
dse/dω are examined in the interval [ωp, ω�] or, equivalently,
in the interval [u1, u2] [recall that u1 corresponds to ωp, while
u2 corresponds to ω� , see (51)]. Using (47), one can rewrite
the derivative of se with respect to ω as follows:

dse

dω
= dse

du

du

dω
= 1

2se

ds2
e

du

du

dω
, (B1)

where du/dω = ω/u. Because se > 0 and du/dω > 0 within
[ωp, ω�], dse/dω has the same sign as ds2

e /du. The derivative
ds2

e /du is expressed as follows:

ds2
e

du
= PB(u)

c2(u − u2)2
,

(B2)
PB(u) = B3u

3 + B2u
2 + B1u + B0,

where for the ultrarelativistic case γ � 1, we have

B3 ≈ −2

γ 2 − 1
, B2 ≈ 2ωh(2γ 2 − 1)

γ (γ 2 − 1)3/2
,

(B3)

B1 ≈ −ω2
h(2γ 2 − 1)2

2γ 2(γ 2 − 1)2
, B0 ≈ ω2

pωhγ√
γ 2 − 1

.

Using (B3), one can show that PB(u1) ≈ PB(u2) ≈ ω2
pωh[1 +

1/(2γ 2)] > 0 for γ � 1. The extrema of PB(u) are determined
by the following equation:

P ′
B(u) = 3B3u

2 + 2B2u + B1 = 0, (B4)

where P ′
B(u) = dPB/du. The roots of (B4) are u2/3 and u2.

Because P ′′
B (u2/3) ≈ 4ωh/γ

2 > 0 for γ � 1, PB(u) possesses
a minimum at u = u2/3. Because PB(u2/3) ≈ ω2

pωh > 0 for
γ � 1, then PB(u) > 0 and ds2

e /du > 0 over the whole
interval [u1, u2] and, therefore, dse/dω > 0 over [ωp, ω�].
Thus, we have proved that the derivative of se with respect to
ω is positive within the range of radiated frequencies for the
ultrarelativistic case. This means that equation (80) with the
plus sign has no solutions.

To obtain the extrema of the function dse/dω, the second
derivative of se is equated to zero:

d2se

dω2
= 1

2se

{
ds2

e

du

d2u

dω2
+
[
d2s2

e

du2
− 1

2s2
e

(
ds2

e

du

)2](
du

dω

)2
}

= 0. (B5)

For γ � 1, the expression in the figure brackets of (B5) can
be presented in the following form:

−
4ω4

pωh

[
u3 − ωh

4 u2 + 3ω2
p

2 u − 3ω2
pωh

4

]− �(u)
γ 2

2c2ω2
pu3(u − ωh)3

= 0, (B6)

where

�(u) = 4ω4
p(u − ωh)

(
u3 − 2ωhu

2 + ωhu − ω2
pωh

4

)

− 2ω4
p

(
u2 + ω2

p

)[
2

u4

ω2
p

− 2
ωhu

3

ω2
p

− ωhu − ω2
h

+ (
4ω4

pωhu − ω4
pω2

h

)(ωh

2u
− u2 − ωhu

ω2
p

)]
. (B7)

If we neglect the term ∼γ −2 in (B6), we obtain the following
equation for the extrema of dse/dω:

u3 + u2ωh

4
+ 3uω2

p

2
− 3ω2

pωh

4
= 0. (B8)

The derivative of (B8) results in the following equation:

3u2 + uωh/2 + 3ω2
p/2 = 0, (B9)

the determinant of which is

D = (
ω2

h − 72ω2
p

)/
4. (B10)

For D < 0, (B9) does not have real solutions and the
polynomial on the left-hand side of (B8) has no extrema.
Therefore, (B8) has a single real solution and dse/dω has
a single extremum when the following inequality is fulfilled:

ωh < 6
√

2ωp ≈ 8.5ωp. (B11)

Condition (B11) can be understood as a requirement that the
external magnetic field Hext ∼ ωh not be very large. If (B11) is
satisfied, the single real root of (B8) u(0) can be found exactly:

u(0)= (a0 + 36b0)
2
3 − 72ω2

p + ω2
h + ωh(a0 + 36b0)

1
3

12(a0 + 36b0)1/3
, (B12)

where

a0 = 540ω2
pωh + ω3

h,
(B13)

b0 = ωp

√
288ω4

p + 213ω2
pω2

h + ω4
h.

For ωh � ωp, expression (B12) simplifies to

u(0) ≈
γ�1, ωp�ωh

ωh/2. (B14)

Equation (B6) can be solved when the term ∼γ −2 is taken into
account by using the successive approximation method. Using
the ansatz u = u(0) + u(1)/γ 2 and substituting it into (B6), one
finds

u(1) = �(u(0))

4ω4
pωh

[
3(u(0))2 − u(0)ωh/2 + 3ω2

p/2
] . (B15)

From (48), (B1), and (B2), dse/dω → +∞ as both ω →
ωp (or u → u1) and ω → ω� (or u → u2); therefore, the
extremum that has been found is a minimum. When the
external magnetic field is not very strong in the sense of (B11),
the function dse/dω has a single minimum at the frequency
ωs0, which can be calculated via the formula

ωs0 =
√

ω2
c + (u(0) + u(1)/γ 2)2, (B16)

where ωc is given by (37) and (39). In the special
case of γ � 1 and ωh � ωp, one obtains the following
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expressions:

ωs0 ≈ ωp

(
1 + ω2

h

8ω2
p

)
, s ′

e min≡
dse(ωs0)

dω
≈ 4ω2

p

ω2
h

. (B17)

The characteristic dependence of dse/dω on ω is presented in
Fig. 5(a).

Next, approximate expressions for the stationary points
ωs1,2 are found. Strictly speaking, equation (B5) reduces to
(B8) only for γ → ∞ or β → 1. For β = 1, (B1) can be
presented in the following form:

dse

dω
= ωpωh

2c

ω(
ω2 − ω2

p

)3/4(
ωh −

√
ω2 − ω2

p

)3/2
. (B18)

For |ζ | � ζmin ≡ ρυs ′
e min one obtains ωs1 → ωp and ωs2 →

ω� , so two separate approximate equations can be written for
the stationary points:

ωs1:
|ζ |
ρυ

≈ ω2
pωh

/
(2c)(

ω2 − ω2
p

)3/4
ω

3/2
h

,

(B19)

ωs2:
|ζ |
ρυ

≈ ω�ωpωh/(2c)

ω
3/2
h

(
ωh −

√
ω2 − ω2

p

)3/2
.

The solution of (B19) results in the formulas given by (83).
For the general case, stationary points can be found numer-
ically using the approximate expressions in (83) as initial
guesses.
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