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Longitudinal viscosity of two-dimensional Yukawa liquids
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The longitudinal viscosity ηl is obtained for a two-dimensional (2D) liquid using a Green-Kubo method with
a molecular dynamics simulation. The interparticle potential used has the Debye-Hückel or Yukawa form, which
models a 2D dusty plasma. The longitudinal ηl and shear ηs viscosities are found to have values that match very
closely, with only negligible differences for the entire range of temperatures that is considered. For a 2D Yukawa
liquid, the bulk viscosity ηb is determined to be either negligibly small or not a meaningful transport coefficient.
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I. INTRODUCTION

The longitudinal viscosity ηl is a transport coefficient of
interest for fluids [1]. It is the counterpart to the better-known
transverse viscosity [2], which is more commonly called the
shear viscosity ηs . The latter characterizes the momentum
flux perpendicular to a velocity gradient. These viscosities
are theoretically predicted to be related by [3,4]

ηl = 2
d − 1

d
ηs + ηb, (1)

where d is the dimensionality of the system and ηb is the
bulk viscosity. The bulk viscosity ηb [5] is also called the
volume viscosity or expansive viscosity; it is a parameter for
liquids as well as for molecular gases [6]. Both the shear and
bulk viscosities appear in the Navier-Stokes equation [7] of a
fluid. However, as compared with the shear viscosity ηs , the
longitudinal viscosity ηl and the bulk viscosity ηb are studied
less often.

Physically, these kinds of viscosity characterize energy
dissipation in a fluid. Bulk viscosity is for energy dissipation
due to compression and rarefaction of a fluid, for example, in
shock waves and high-frequency sound waves. Shear viscosity,
in contrast, is for energy dissipation due to a gradient in the
flow velocity. In the latter case, the energy dissipation rate
is proportional to both the shear viscosity and the square of
the velocity gradient [8,9]. In the case of a periodic density
perturbation, the energy dissipation rate is proportional to
both the bulk viscosity and the square of the rate of density
change [10,11].

Unlike shear viscosity, longitudinal and bulk viscosities
are in general difficult to measure experimentally [5,12].
This is because the hydrodynamic effects of bulk viscosity
are significant only for rapid time variations, unlike shear
viscosity, which affects flows in easily observed ways, even
under steady conditions. Ultrasound attenuation has been
described as the only experimental method available for
measuring bulk viscosity of a fluid [5,12]. In this method, one
can obtain the bulk viscosity after subtracting the ultrasound
attenuation contributions from thermal conduction and shear
viscosity [5,12,13]. This method of measuring bulk viscosity
is so difficult that it has been used only for water and a
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handful of exotic liquids [5] and even for these substances
the results for the bulk viscosity have large uncertainties.
In contrast to this difficult experimental situation, however,
longitudinal viscosity and bulk viscosity are mentioned more
often in the theoretical literature, where it has been calculated,
for example, using the Green-Kubo relation [2,14–28], using
the hydrodynamic limit [29], or derived using a Chapman-
Enskog approach [30]. In this paper, we will make use of
the Green-Kubo approach, which we present in Sec. II. We
will use the Green-Kubo method to obtain ηl and ηs and for
comparison we will use Eq. (1) to study ηb.

Dusty plasma [31–35] is partially ionized gas containing
micron-size solid particles, also called dust particles. These
dust particles are highly charged negatively within the plasma
by absorbing more electrons than ions, since negatively
charged electrons have a higher temperature than positively
charged ions. Due to the shielding provided by free electrons
and ions in the plasma, the interaction between dust particles
in a plasma can be modeled using a Yukawa or Debye-Hückel
potential [36], similar to charged particles in a colloidal
suspension [37]. Because of the high particle charge, dust
particles in plasmas are strongly coupled (i.e., the potential
energy between neighboring particles is larger than its kinetic
energy), so the collection of dust particles exhibits properties
of liquids or solids. In laboratory experiments, dust particles
can be in two-dimensional (2D) or 3D suspensions, depending
on the experimental conditions. In 2D experiments, all dust
particles are confined in a horizontal plane, with negligible
out-of-plane motion due to strong confining potentials in
the vertical direction. The dust particles are immersed in
a rarefied gas, which applies a much weaker friction to
moving dust particles as compared with the case of a colloid.
The size of dust particles allows imaging them directly and
tracking their motion so that various transport mechanisms
can be studied experimentally at the particle level. Transport
mechanisms that have been studied for dusty plasmas include
diffusion [38], shear viscosity [39], and thermal conduction
[40]. For 2D dusty plasmas, viscosity is generally attributed to
dust particle scattering arising from interparticle interactions,
while scattering due to the molecules of rarefied gas is
negligible, as explained in Ref. [41]. Shear viscosity has
been widely studied for dusty plasmas, first in simulations
for 3D systems [21,42,43] and then later in experiments
[39,41] and simulations [44,45] for 2D systems as well as 3D
experiments [46,47]. The longitudinal viscosity and the bulk
viscosity have been quantified for classical 3D one-component
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plasmas (OCPs) [2,14,21,22] using molecular dynamics (MD)
simulations and gluon plasmas (for example, in Ref. [48]);
however, in the present paper they are quantified for classical
2D dusty plasmas.

In this paper, we will report a determination of the
longitudinal viscosity for a 2D Yukawa liquid. We will also
report an unusual finding regarding the bulk viscosity: It is
either negligibly small or it is not a meaningful transport
coefficient for a 2D Yukawa liquid.

II. GREEN-KUBO RELATIONS FOR ηl AND ηb

Green-Kubo relations are often used to calculate various
transport coefficients such as diffusion [49], shear viscosity
[41,44], and thermal conductivity [50]. Green-Kubo relations
are for equilibrium conditions; they use microscopic random
motion of particles to determine transport coefficients without
any macroscopic gradients. The longitudinal and bulk viscosi-
ties can also be calculated using the Green-Kubo relations
[2,14–28] using similar equations as the shear viscosity. The
required inputs for calculating longitudinal and bulk viscosities
include time series of particles’ positions, velocities, and
interparticle forces.

Now we review the three steps for calculating the lon-
gitudinal viscosity using the standard Green-Kubo relation
[2,15–20,22–28]. These Green-Kubo relations, which were
originally developed for three dimensions (d = 3), are adapted
here for two dimensions (d = 2) by setting the velocity and
coordinate in the z direction to be zero.

First, we calculate a diagonal element of the stress tensor
Pxx(t), which is defined as

Pxx(t) =
N∑

i=1

⎡
⎣mvixvix − 1

2

N∑
j �=i

xij xij

rij

∂�(rij )

∂rij

⎤
⎦ . (2)

Here i and j indicate different particles that all have the same
mass m, N is the total number of particles, ri = (xi,yi) is
the position of particle i, xij = xi − xj , yij = yi − yj , rij =
|ri − rj |, and �(rij ) is the interparticle potential energy. The
positions and velocities of particles in Eq. (2) vary with time,
which accounts for the time dependence of Pxx(t). The off-
diagonal element of the stress tensor Pxy(t) can be used to
calculate the shear viscosity [41,44]. Unlike Pxy(t), which
fluctuates around zero, however, Pxx(t) fluctuates around a
constant level Pxx(t).

Second, we calculate an autocorrelation function for the
fluctuation of Pxx(t) using

Cl(t) = 〈[Pxx(t) − Pxx(t)][Pxx(0) − Pxx(t)]〉. (3)

Here Cl(t) is the stress autocorrelation function. The angular
brackets indicate an average over an equilibrium ensemble,
which in practice we replace with an average over different
initial conditions.

Third, we integrate the stress autocorrelation function over
time to yield the longitudinal viscosity ηl [18,51],

ηl = 1

AkBT

∫ ∞

0
Cl(t)dt, (4)

where A is the area of the 2D system and T is its temperature.
(For a 3D system, A would be replaced by the system volume

V .) These equations represent the Green-Kubo relation for the
longitudinal viscosity in 2D systems. To improve statistics, we
calculate ηl twice, using Pxx as shown above and also using
Pyy , and we average the resulting values of ηl .

In addition to the longitudinal viscosity, we can also
calculate the shear viscosity ηs [41,44,50] for 2D systems
using

Pxy(t) =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xij yij

rij

∂�(rij )

∂rij

⎤
⎦ , (5)

Cs(t) = 〈Pxy(t)Pxy(0)〉, (6)

and

ηs = 1

AkBT

∫ ∞

0
Cs(t)dt. (7)

The bulk viscosity [2,16,18,21] for 2D systems can be
calculated similarly using

P̃ (t) = 1
2 [Pxx(t) − Pxx(t) + Pyy(t) − Pyy(t)], (8)

Cb(t) = 〈P̃ (t)P̃ (0)〉, (9)

and

ηb = 1

AkBT

∫ ∞

0
Cb(t)dt. (10)

We will use the same simulation data as the inputs in
calculations of ηl and ηs .

It has been questioned theoretically whether transport
coefficients are meaningful for 2D liquids. This question has
been studied theoretically, starting with a 2D hard disk system
[52] and then liquids with other interparticle potentials [50].
A transport coefficient is deemed to be not meaningful if
the corresponding autocorrelation function has a long-time
tail that decays as slowly as 1/t so that the Green-Kubo
integral does not converge. For a 2D Yukawa liquid, the
validity of transport coefficients has been discussed in detail
in Refs. [41,44,50,53,54]. In Sec. IV we will present our
autocorrelation functions and discuss whether they have a
long-time tail.

Equations (2)–(10) are presented in physical units, although
we will perform simulations using dimensionless units. Some
of the parameters we will use when making quantities
dimensionless include the area A of the simulated system, the
areal number density n, the particle mass m, the Wigner-Seitz
radius a ≡ (nπ )−1/2, a characteristic plasma frequency [55]
ωpd = (Q2/2πε0ma3)1/2, and the particle kinetic temperature
T . Here Q is the particle charge.

III. SIMULATION METHOD

To model 2D dusty plasmas, we perform equilibrium MD
simulations using a binary interparticle interaction with a
Yukawa potential [36]. We integrate the equation of motion
mr̈i = −∇ ∑

φij for all particles. This equation of motion
does not include any friction term or any Langevin heating
term. Particles are constrained to move only within a single
2D plane. Our simulation includes N = 1024 particles in
a rectangular box with periodic boundary conditions to
model an infinite system. The Yukawa potential is φij =

013106-2



LONGITUDINAL VISCOSITY OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 87, 013106 (2013)

19

19.5

20

20.5

21

21.5

22

0 2000 4000 6000 8000 104

t pd

FIG. 1. Temperature fluctuation during about one-half of the 106

steps used for data analysis for 	 = 20 and κ = 0.5. Here 	−1 is a
dimensionless temperature.

Q2exp(−rij /λD)/4πε0rij , where λD is the screening length.
We truncate the Yukawa potential at distances beyond a cutoff
radius of 24.76a; this truncation has been justified in Ref. [44].
This simulated system is essentially the same as a Yukawa
OCP, except that we constrain the particle to move only on a
single plane at z = 0.

Yukawa systems can be described by two dimensionless
parameters: the coupling parameter 	 and the screening
parameter κ . They are defined as 	 = Q2/4πε0akBT and
κ ≡ a/λD . One can think of 	 as an inverse temperature and
κ as an inverse indicator of density.

The input parameters in our simulation include κ and 	. We
choose a single value of κ = 0.5, which is typical for 2D dusty
plasma experiments [41]. When κ = 0.5, the melting point of
2D Yukawa system is 	 ≈ 142 [56]. To study 2D Yukawa
liquids over a large temperature range, we choose 12 different
values of 	 varying from 140 (corresponding to a temperature
near the melting point) down to 2 (corresponding to a much
higher temperature). The integration time step is in a range
between 0.0037 and 0.037ω−1

pd , depending on the choice of 	,
as in Ref. [44]. For each value of 	, we perform four runs with
different initial configurations of particles.

We use a thermostat only for the initial equilibrium of our
simulation and not for the data used to calculate ηl and ηs .
For each simulation run, we first integrate 105 steps using a
Nosé-Hoover thermostat to approach equilibrium at a desired
temperature [44] under steady conditions. We then turn off this
thermostat to integrate another 106 steps. Only the data in the
latter 106 steps will be used to calculate the viscosities. We use
a sufficiently small time step so that the energy conservation
is adequately obeyed during the simulation run, as we have
verified for our simulation data. We measure T , which can
differ slightly from the desired temperature, using the mean
square velocity fluctuation.

Figure 1 shows the time series of the measured temperature
from one of our simulation runs. The temperature fluctuates
about a steady level during the 106 steps simulation interval.
The temperature fluctuations are due to the finite simulation
size. The absence of a general upward or downward trend in
the temperature as a function of time is due to our choice of
an adequately small integration time step. When we report a

value for 	 we use a temperature that was averaged over the
106 steps for a given run.

IV. RESULTS

A. Longitudinal and shear viscosities

Using the particles’ positions, velocities, and potentials
from the simulation, we use Eqs. (2) and (5) to calculate
the time series of the stress tensor elements. Examples of
the results for the stress tensor are shown in Fig. 2. All our
calculations of ηl and ηs will be based on these time series.
We note that Pxx(t) fluctuates about a nonzero value, while
Pxy(t) fluctuates about zero. The source of this fluctuation is
the microscopic compression and shear motion of particles.
We find that fluctuations of Pxx(t) and Pxy(t) have comparable
amplitudes and time scales.

We calculate the autocorrelation function of the time series
of Pxx(t) using Eq. (3) and the result is shown in Fig. 3.
Also shown is the autocorrelation function of Pxy(t). In Figs.
3(a) and 3(b) we see the initial decay followed by a small
variation around zero. We will use the area under these curves
to calculate the viscosities, using Eq. (4) for ηl and Eq. (7)
for ηs . The integral in Eq. (4) has a finite upper time limit
of infinity, which we replace with the first zero crossing [41],
marked as tI in Fig. 3. In Fig. 3(c) we show the positive portion
of these autocorrelation functions on a logarithmic scale so that
the two curves can be distinguished. The two curves are almost
identical in the initial decay, which leads us to expect that the
longitudinal and shear viscosities will have almost the same
values.

Indeed, we find that the longitudinal viscosity ηl and the
shear viscosity ηs have almost the same values for the full
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FIG. 2. (Color online) Fluctuations of the stress tensor elements
during about 5% of the 106 steps used for data analysis for 	 = 20
and κ = 0.5.
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FIG. 3. (Color online) Autocorrelation functions of the stress ten-
sor elements (Cl for longitudinal viscosity and Cs for shear viscosity)
for 	 = 20 and κ = 0.5. The same autocorrelation functions are
shown with (a) and (b) linear axes and (c) a logarithmic axis. Data
are normalized by parameters defined in Secs. II and III. The first
zero crossings in (a) and (b) are marked as tI , which will be used to
replace the upper limits in the integrals (4) and (7).

range of 	 that we investigate. This is seen in Fig. 4(a), where
we present ηl and ηs determined by performing the integrals of
the stress autocorrelation function in Eqs. (4) and (7). We find
negligible differences between them, as shown in Fig. 4(b).

We also see a minimum in ηl as a function of 	. This
minimum matches the minimum in ηs , which was previously
studied and explained as being due to a balance of kinetic and
potential terms in the shear stress [44,45].

In Fig. 4 the data have scatter in both axes. For the horizontal
axis, the scatter around each value of 	 indicates slight
differences in the measured temperature, which can occur due
to the absence of a thermostat, as discussed in Sec. III. For the
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FIG. 4. (Color online) (a) Longitudinal and shear viscosities from
evaluating Eqs. (4) and (7), respectively. (b) The difference between
ηl and ηs is negligible for all values of 	. Using Eq. (11), this result
indicates that ηb is negligibly small. The minimum in ηs in (a) is
known to arise from a balance of kinetic and potential terms in the
shear stress [44,45] and here we find that a similar minimum appears
in ηl .

vertical axis, the scatter corresponds to the random run-to-run
variation for the obtained viscosity values, i.e., random errors.
In addition to these random errors, there is a systematic error
associated with the choice of the upper integral limit. By
examining the fluctuation of the Green-Kubo integral at long
times [57] we determined that this systematic error is smaller
than the random errors.

B. Bulk viscosity

The negligible difference between ηl and ηs that we find in
Fig. 4 leads us to determine that the bulk viscosity ηb is much
smaller than either ηl or ηs . This conclusion is drawn from
Eq. (1) for our 2D system, which is

ηb = ηl − ηs. (11)

Previous simulations using the Green-Kubo approach to
obtain the bulk viscosity were mostly for 3D Lennard-Jones
interparticle potentials and soft-sphere interparticle potentials
[15–18,20,23–28] or similar interparticle potentials [19]. In
some of those simulations, the shear viscosity was also
calculated [15–17,23,24,28] and it was found that the bulk
viscosity differs from the shear viscosity, with the difference
within one order of magnitude.
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FIG. 5. (Color online) Correlation functions for (a) ηl , (b) ηs , and (c) ηb for 	 = 140 and κ = 0.5. Here data are shown with log-log axes to
allow an identification of any possible long-time tail. We find that only the correlation function Cb for the bulk viscosity in (c) has a significant
long-time tail, as seen by a decay that is slower than 1/t . These results, for 	 = 140, are representative of the other values of 	 studied as well.

Simulations of 3D plasmas [2,14,21,22] provided results for
the bulk viscosity for both OCPs and Yukawa OCPs. In these
simulations [2,14,21,22], it was found that the bulk viscosity
is negligible as compared with the shear viscosity, about two
orders of magnitude smaller or even more. From this aspect, it
seems that our results for the 2D Yukawa system that ηb � ηs

are consistent with those previous simulations in 3D OCP
systems.

We now examine the autocorrelation functions used in
calculating ηl , ηs , and ηb in Eqs. (4), (7), and (10) to determine
whether they exhibit a long-time tail. As discussed in Sec. II,
if the correlation function decays more slowly than 1/t , this
long-time tail prevents the convergence of the Green-Kubo
integral so that the corresponding transport coefficient is
deemed to be not meaningful. In Figs. 5(a) and 5(b) we present
the correlation functions Cl for longitudinal viscosity and Cs

for shear viscosity and we find that they do not exhibit a
noticeable long-time tail before the function becomes noisy.
However, in Fig. 5(c) the correlation function Cb decays more
slowly, as can be seen by comparing it to the line drawn with
a slope corresponding to a 1/t scaling. This result suggests
that within the uncertainties that are inherent in a finite-size
simulation [50], ηl and ηs are meaningful, but ηb is not. It is
interesting that the signal-to-noise ratio for Cb, the correlation
function of the bulk viscosity, is still comparable to that of
Cs and Cl even though its amplitude is one or two orders of
magnitude smaller. Even if ηb were meaningful it would have a
small value because Cb in Fig. 5(c) is two orders of magnitude
smaller than Cl and Cs .

We cannot explain in terms of the macroscopic fluid
equations why the bulk viscosity is either negligibly small
or not meaningful for this 2D liquid. However, in terms of

microscopic motion, we can discuss some of the terms of
the correlation functions. The correlation function for the
longitudinal viscosity Cl involves only products of Pxx with
a delayed version of itself and likewise for Pyy . The bulk
viscosity has a different character because Eq. (9) also includes

cross terms such as 〈˜Pxx(t)˜Pyy(0)〉. In fact, the correlation
function for the bulk viscosity [Eq. (9)] can be written as the
sum of two terms: Cl/2 and a cross correlation involving Pxx

and Pyy . For our 2D Yukawa liquid these two terms almost
cancel.

V. SUMMARY

Molecular dynamics simulations of a 2D Yukawa liquid
demonstrate that the longitudinal viscosity is almost the same
as the shear viscosity over a wide range of temperature. These
results were obtained using Green-Kubo integrals of the appro-
priate autocorrelation functions. The very close match of the
values for ηl and ηs would predict, using Eq. (1), that ηb is neg-
ligibly small or even zero. Indeed, ηb might not even be a mean-
ingful transport coefficient for the system studied here because
we found that its autocorrelation function exhibits a long-time
tail and so the corresponding Green-Kubo integral diverges.
This divergence does not occur for ηs and ηl , as they do not
have a long-time tail, as judged by our simulation. We note that
our results are based on a finite-size simulation; future larger
simulations might be able to provide noise-free correlation-
function data for longer times to further test these conclusions.
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[53] T. Ott, M. Bonitz, Z. Donkó, and P. Hartmann, Phys. Rev. E 78,
026409 (2008).

[54] T. Ott and M. Bonitz, Phys. Rev. Lett. 103, 195001 (2009).
[55] G. J. Kalman, P. Hartmann, Z. Donkó, and M. Rosenberg, Phys.
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