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A two-dimensional (2D) linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the
framework of reduced magnetohydrodynamics. A local analysis is performed taking into account the dependence
of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al., Phys. Plasmas
14, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain
of plasmoids (kmaxLCS ∼ S3/8, where kmax is the wave number of fastest growing mode, S = LCSVA/η is the
Lundquist number, LCS is the length of the sheet, VA is the Alfvén speed, and η is the plasma resistivity), which
grows super Alfvénically fast (γmaxτA ∼ S1/4, where γmax is the maximum growth rate, and τA = LCS/VA). For
typical background profiles, the growth rate and the wave number are found to increase in the outflow direction.
This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the
periphery of the layer, where the outflow velocity exceeds the Alfvén speed associated with the upstream magnetic
field. The KH instability grows even faster than the plasmoid instability γmaxτA ∼ kmaxLCS ∼ S1/2. The effect
of viscosity (ν) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers
Pm = ν/η, it is found that γmax ∼ S1/4Pm−5/8 and kmaxLCS ∼ S3/8Pm−3/16, leading to the prediction that the
critical Lundquist number for plasmoid instability in the Pm � 1 regime is Scrit ∼ 104Pm1/2. These results are
verified via direct numerical simulation of the linearized equations, using an analytical 2D SP equilibrium solution.
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I. INTRODUCTION

Magnetic reconnection [1–4] is a ubiquitous plasma physics
phenomenon, characterized by the rapid reconfiguration of the
magnetic-field topology. Solar flares [5] and magnetospheric
substorms [6] are two prominent examples of events where
reconnection plays a key role. Plasma dynamics in many lab-
oratory experiments is also critically determined by magnetic
reconnection; examples are the sawtooth [7] and the tearing
instabilities [8,9] in magnetic-confinement-fusion devices,
or the reconnection of high-energy-density, laser-produced
plasma bubbles [10–12].

Along with fast reconnection rates, many observations [13]
of magnetic reconnection phenomena display one intriguing
feature: the formation, and subsequent ejection from the
current sheet, of coherent secondary structures, often referred
to as plasmoids (also known as blobs, flux ropes, or secondary
magnetic islands). There is abundant direct evidence for the
presence of these structures in the Earth’s magnetotail [14–16]
and in solar flares [17–22]. In magnetic-confinement-fusion
devices, plasmoid generation seems to be less certain, although
there are reports of the observation of secondary magnetic
structures correlated to m/n = 1/1 and m/n = 2/1 magnetic
islands on the TEXTOR [23,24] and JET [25] tokamaks.
On TEXTOR, high-resolution measurements of electron tem-
perature fluctuations show structures which hint at plasmoid
formation during sawtooth crashes [26–28]. Finally, recent
laser-plasma experiments where reconnection is conjectured
to occur also show evidence for plasmoid formation [11,12].

Direct numerical simulations of reconnection processes
concur with observations in displaying ubiquitous evidence
for plasmoid formation. Plasmoids have been reported in
numerical simulations using various physical models, ranging

from kinetic [29–33] to Hall-magnetohydrodynamic (MHD)
[34,35] and to single fluid MHD [36–49]. Plasmoid formation
has also been reported in numerical simulations of recon-
nection in relativistic plasmas, both resistive [50] and kinetic
[51–54]. Numerical studies tailored to address specific recon-
nection contexts such as the solar corona [55–58], the Earth’s
magnetotail [59,60], magnetic young stellar objects [61–63],
fusion experiments [36,39], and laser-plasma interactions [64],
although different from each other in a number of details,
again all appear to agree on the basic fact that plasmoids are
generated in reconnecting current sheets.

The plasmoid dynamics inferred from observations and
seen in numerical simulations strongly suggest the very
opposite of the laminar, steady-state reconnection scenarios
that have dominated the field for much of its history [the
Sweet-Parker (SP) [65,66] and the Petschek [67] models, and,
more recently, the Hall reconnection paradigm [68]]. Magnetic
reconnection in the presence of plasmoids appears to be a
highly time-dependent, bursty process, which can only be de-
scribed in a statistical manner [49,58,69–72]. Furthermore, in
addition to their key role in setting the reconnection rate in both
laminar [32,33,35,42,45–47,49,69,71] and turbulent [44,48]
plasmas, there is numerical and observational evidence that
plasmoids may be critical in explaining electron acceleration
in reconnection sites [16,73–75].

In a previous paper [76] (henceforth referred to as paper I),
we attempted to understand the origin of plasmoid formation
in reconnection sites by analyzing the linear stability of
large-aspect-ratio, SP current sheets. These were found to be
violently unstable to the formation of plasmoid chains, the
fastest growing wave-number scaling as kmaxLCS ∼ S3/8, with
corresponding growth rate γmaxτA ∼ S1/4, where LCS is the
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length of the current layer, τA = LCS/VA is the Alfvén time
(VA is the Alfvén speed), and S is the Lundquist number S =
LCSVA/η, where η is the magnetic diffusivity. Since S � 1 in
most applications of interest, this theory predicts the formation
of multitudinous plasmoids growing super Alfvénically; the
immediate implication is that stable reconnecting current
sheets at large values of the Lundquist number can not exist.
These results have since been confirmed in direct numerical
simulations [43,77], and extended to account for the effect of
a finite component of the magnetic field perpendicular to the
reconnection plane [78] and into the two-fluid regime [79].

The analysis of paper I considered a very simplified model
background equilibrium, intended to retain only what we
viewed as the most important features of a SP current sheet: a
reconnecting magnetic field Beq = [0,By(x)] (x is the inflow
direction, y the outflow direction) and an incompressible
flow defined by the stream function φeq = �0xy, where �0 =
VA/LCS is the flow shearing rate. The analytical derivation
in paper I did not, therefore, take into account potentially
important effects, such as the variation of the reconnecting
magnetic field and of the outflow speed along the layer
(i.e., along the y direction in our chosen geometry), or the
reconnected magnetic field.

In this work, we generalize the results of paper I to a more
realistic, two-dimensional (2D) model of the current sheet.
Using an approach in the spirit of WKB theory (justified by the
expectation that the most unstable wave number will be very
large, kmaxLCS � 1), we derive the dispersion relation for the
plasmoid instability as a slow function of the position along
the sheet y0. We find that the scalings of the maximum growth
rate (γmax) and wave number (kmax) derived in paper I hold true
in a central, finite-sized patch of the current sheet; however,
the growth rate and wave number are now parametrized
nontrivially by y0. Surprisingly, we also discover that for a
generic background equilibrium configuration, the maximum
growth rate and wave number of the instability increase with
y0 (i.e., outwards). As we show in this paper, a special point
exists, y0,crit, beyond which the assumptions invoked in our
calculation break down. This is the Alfvén Mach point of
the system, where the magnitude of the outflow velocity
(an increasing function of y0) becomes equal to the value
of the Alfvén speed based on the upstream magnetic field
(a decreasing function of y0). Beyond that point, the current
sheet becomes unstable to a different mode: the Kelvin-
Helmholtz (KH) instability, the growth rate and wave-number
dependence of which we also derive analytically.

The other main result of this paper is the study of the
effect of a large viscosity ν (parametrized by the magnetic
Prandtl number Pm = ν/η � 1) on the plasmoid instability.
The large-Prandtl-number regime is pertinent to various
astrophysical applications, e.g., the interstellar medium [80],
and to fusion plasmas [36], and so it is important to understand
how large Pm affects plasmoid formation and dynamics. Our
analytical results are complemented with a direct numerical
solution of the full set of linearized equations.

This paper is organized as follows. In Sec. II, we present
a heuristic derivation of our main results. A more rigorous
approach to the problem begins in Sec. III, where the equations
to be solved are laid out and the expected properties of the
background equilibrium are discussed (a more quantitative

discussion of the constraints that the background equilibrium
should satisfy can be found in Appendix 1, where an analytical
2D SP-like current-sheet equilibrium is obtained). The core of
the analytical calculation is presented in Sec. IV. The KH
instability of the current sheet is derived in Sec. V. Results
of the direct numerical solution of the linear equations are
presented in Sec. VI. The effect of viscosity on the instability
is addressed in Sec. VI B. Finally, a discussion of the results
and conclusions can be found in Sec. VII.

II. HEURISTIC DERIVATION

In this section, we show how the main results of this paper
can be derived in a simple (albeit nonrigorous) way. A reader
uninterested in the formal mathematical details can skip to
Sec. VI after this section.

A. Plasmoid instability

The fastest growth rate of the plasmoid instability can be
obtained from the usual tearing mode formulas as follows [45].

In the small �′ limit, where �′ is the usual tearing mode
instability parameter, the standard [Furth-Killeen-Rosenbluth
(FKR)] tearing mode dispersion relation is [8]

γ ∼ τ
−2/5
H τ−3/5

η (�′a)4/5, (1)

where a is the characteristic equilibrium magnetic field length
scale, τη = a2/η is the resistive diffusion time, and τH =
1/kB0 is the hydrodynamic time. In the opposite limit of large
�′ [81],

γ ∼ τ
−2/3
H τ−1/3

η . (2)

In both cases, the width of the resistive (or inner) boundary
layer is

δinner/a ∼ (
γ τ 2

Hτ−1
η

)1/4
. (3)

To find the fastest growing mode, let us assume a simple
Harris-sheet equilibrium By = B0 tanh(x/a); then, for ka �
1, as we expect to be the case for k = kmax, we have
�′a ∼ 1/ka. Substituting this expression in Eq. (1), we find
that it yields γ ∝ k−2/5, whereas from Eq. (2) we have
γ ∼ k2/3. Approximate expressions for the largest growth rate
and corresponding wave number can therefore be found by
balancing Eqs. (1) and (2). This gives

kmaxa ∼ (a/B0)1/4τ−1/4
η , (4)

γmax ∼ (a/B0)−1/2τ−1/2
η . (5)

The corresponding inner-layer width is

δinner/a ∼ (aB0/η)−1/4. (6)

In order to apply these scalings to a SP current sheet, we
rescale the equilibrium length scale a to the sheet thickness:

a ≡ δCS ∼ LCSS
−1/2. (7)
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Noting that the plasma outflow speed in a SP current sheet is
VA = B0, we obtain

kmaxLCS ∼ S3/8, (8)

γmaxτA ∼ S1/4, (9)

δinner/δCS ∼ S−1/8, (10)

where τA = LCS/VA. These predictions are in agreement with
the results of paper I [76].

We can now use these results to estimate the critical value of
the Lundquist number Scrit, below which we expect SP current
sheets to be stable. The underlying reasoning is that for the
plasmoid instability to be triggered, we must have γmaxτA �
1, kmaxLCS � 1, and δinner/δCS � 1, i.e., the instability has to
grow faster than the characteristic outflow time and it has to
fit inside the current sheet, both along (thus the restriction on
kmax) and across (thus the restriction on δinner). Of all these
conditions, the most stringent is that on the width of the inner
layer since it bears the weakest S dependence. Therefore, if
we require (nonrigorously!) that δinner/δCS ∼ 1/3 at the very
most, then Eq. (10) would yield Scrit ∼ 104. This is consistent
with numerical simulations [38,39,41,43].

B. Plasmoid instability at large Pm

One limitation of paper I was that plasma viscosity was
neglected. At low values of the magnetic Prandtl number Pm =
ν/η [relevant to the interiors of stars and planets, or liquid metal
laboratory dynamos, for example (see [82] and references
therein)], the presence of viscosity should not change our
results substantially. In contrast, for Pm � 1, as is often
found in fusion plasmas [36], warm interstellar and intracluster
media [80,83], etc., both the SP scalings and the tearing and
kink modes scalings change [84], and so, therefore, will the
plasmoid instability. We note for clarity that we are referring
to the perpendicular (to the magnetic field) ion viscosity
ν⊥ ∼ ρ2

i νii (where ρi is the ion Larmor radius and νii is the
ion collision frequency), and thus it is the dependence on the
perpendicular Prandtl number Pm⊥ = ν⊥/η that is the subject
of investigation in this section (the ⊥ subscript will be dropped
for simplicity of notation). In high temperature plasmas, the
parallel ion viscosity ν‖ ∼ v2

th,i/νii (where vth,i is the ion
thermal velocity) is in fact much larger than the perpendicular
one. However, in the reduced-MHD (RMHD) [85] formalism
that we adopt in this paper, the parallel viscosity would appear
multiplying a parallel Laplacian, whereas the perpendicular
viscosity multiplies a perpendicular Laplacian. Under the
ordering assumptions used to derive the RMHD equations,
the ratio of the parallel to the perpendicular Laplacians is of
second order in the small expansion parameter (the ratio of
the perpendicular magnetic field to the parallel one, B⊥/Bz);
these effects are not retained in the RMHD equations. To
see that, although small, the perpendicular viscosity might be
important, note that Pm⊥ ∼ (mi/me)1/2β [36]. This number
can be O(1) in modern day fusion devices, for example, and is
certainly large in many space and astrophysical plasmas where
β � 1.

Let us work out the plasmoid scalings in the large-Pm limit
in a similar way to that just presented for the inviscid case.

Instead of the FKR [8] and Coppi et al. [81] results, we now
use the corresponding formulas valid for Pm � 1, i.e., the the
so-called “visco-tearing” (low �′) and “visco-resistive kink”
(large �′) derived by Porcelli [84].

At low �′ (the visco-tearing mode), we have

γ ∼ τ
−1/3
H τ−5/6

η τ 1/6
ν �′a, (11)

where τν = a2/ν is the viscous diffusion time. At �′ → ∞
(the visco-resistive kink), the growth rate is

γ ∼ τ
−2/3
H τ−2/3

η τ 1/3
ν . (12)

The corresponding inner-layer width is

δinner/a ∼ [
τ 2
H

/
(τητν)

]1/6
. (13)

As before, let us assume that �′a ∼ 1/ka for k ∼ kmax.
Then, we find from Eq. (11) that γ ∝ k−2/3, whereas Eq. (12)
yields γ ∝ k2/3. Scalings for the fastest growing mode can thus
again be found by balancing Eqs. (11) and (12). The result is

kmaxa ∼ (a/B0)1/4τ−1/8
η τ−1/8

ν , (14)

γmax ∼ (a/B0)−1/2τ−3/4
η τ 1/4

ν , (15)

δinner/a ∼ (a/B0)1/4τ−1/8
η τ−1/8

ν . (16)

We now repeat the previous procedure of rescaling the
equilibrium length scale a, this time using the results obtained
by Park et al. [36] for the SP model in the limit Pm � 1:

a ≡ δCS ∼ LCSS
−1/2Pm1/4. (17)

This gives

kmaxLCS ∼ S3/8Pm−3/16, (18)

γmaxτA ∼ S1/4Pm−5/8, (19)

δinner/δCS ∼ S−1/8Pm1/16. (20)

We shall find in Sec. VI that these scalings indeed agree
very well with the results of a direct numerical integration of
the linearized equations. We thus find that the dependence of
γmax and kmax on S remains unchanged at large Pm. However,
viscosity damps the instability and decreases the wave number
and the growth rate of the fastest growing mode, while slightly
thickening the inner layer.

An important question is how the critical Lundquist number
for the onset of the current sheet instability Scrit scales with
the magnetic Prandtl number. Although the expressions above
are formally only valid in the limit S � Scrit,Pm � 1, we can
use them to obtain a rough estimate of this dependence. Since
the instability requires δinner/δCS � 1, we may again demand
that this be at most 1

3 and use Eq. (20) to obtain

Scrit ∼ 104Pm1/2. (21)

To see the consistency of this result, note that the same
dependence of Scrit on Pm can be obtained by either looking
for the minimum wave number that will fit inside the current
sheet kmaxLCS ∼ 1, or by requiring that the growth rate is
comparable to the flow shear rate γmaxLCS/uout ∼ 1 (note
that for Pm � 1, uout ∼ VAPm−1/2 [36]). In both cases,
Eqs. (18) and (19) yield Scrit ∼ Pm1/2. This result is a specific
prediction, which can in principle be checked via direct
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numerical simulations of the current-sheet instability in the
large-Prandtl-number regime.

C. Kelvin-Helmholtz instability

The velocity outflow profile of a Sweet-Parker reconnection
configuration is such that it is maximum at the midplane
(x = 0) of the current sheet, and decays to zero away
from it. Thus, there are two parallel shear layers, with two
corresponding inflection points of the outflow, at x ∼ ±δCS.
The shear (in the x direction) of this flow profile can be
estimated as

duy

dx
∼ VA

δCS

y

LCS
. (22)

Each of these layers would be Kelvin-Helmholtz unstable were
it not for the stabilizing effect of the upstream magnetic field
By [86]: as is well known, a magnetic field that is coplanar
with the flow profile will stabilize the KH instability as long
as |By | > |uy |. In the case of a SP current sheet, the upstream
magnetic field By is not constant along the sheet; in particular,
its magnitude decreases in the y direction (see discussion in
Appendix 2); a simple model for it is [87,88]

By = B0

√
1 − y2/L2

CS. (23)

It is thus possible that there exists a location ycrit/LCS ∼ 1
along the sheet where the (decreasing) strength of By matches
the (increasing) magnitude of the outflow uy ∼ VAy/LCS. This
is the Alfvén Mach point of the system; for y > ycrit, the
magnetic field is no longer able to stabilize the KH mode.
Figure 1 provides a schematic illustration of both types (KH
stable and unstable) of configuration.

-δCS δCS

y < ycrit
(KH stable)

y > ycrit
(KH unstable)

inflection points

x

uy/VA
By/B0

FIG. 1. (Color online) Cartoon illustrating KH-stable and KH-
unstable parts of an idealized SP current sheet. The outflow profile
uy is depicted in blue (full lines); the upstream magnetic field By

in red (dashed lines). The vertical dashed lines mark the position of
KH-unstable layers (i.e., the inflection points of the outflow profile,
where d2uy/dx2 = 0). The label y < ycrit identifies the uy and By

profiles below the Alfvén Mach point; in this case, the magnitude of
By at x ∼ ±δCS exceeds that of uy at x = 0, and thus the magnetic
field is sufficiently strong to stabilize the current sheet against the
KH instability. The opposite case of profiles above the Alfvén Mach
point is labeled by y > ycrit; By at the inflow is now weaker than uy

at the center of the sheet, which is, therefore, KH unstable.

A rigorous derivation of this instability is presented in
Sec. V. Here, we show how the basic scalings for the
fastest growing mode and corresponding wave number can
be obtained heuristically. From the standard theory of the KH
instability [86], it is known that

γ KH
max ∼ duy

dx
∼ VA

a
, kKH

maxa ∼ 1, (24)

where a is the characteristic scale length of the sheared flow
profile uy(x). As above, these estimates can be applied to the
SP sheet by simply setting a → δCS ∼ LCSS

−1/2, implying
that kKH

max ∼ 1/δCS. Thus,

γ KH
maxτA ∼ S1/2, kKH

maxLCS ∼ S1/2. (25)

Note that this growth rate is even larger (i.e., has a steeper
positive scaling with S) than that of the plasmoid instability
[Eq. (9)].

The KH instability scalings in the large Pm limit are easily
obtained in a similar way, using the following modifications
of the SP relations derived in Ref. [36]: uout ∼ VAPm−1/2,
a → δCS ∼ LCSS

−1/2Pm1/4. Then, we have

γ KH
maxτA ∼ S1/2Pm−3/4, kKH

maxLCS ∼ S1/2Pm−1/4. (26)

III. PROBLEM SETUP

In this section, we proceed to make some of the above
discussion more rigorous and quantitative. We solve the 2D
reduced-MHD equations [85]

∂t∇2
⊥φ + {φ,∇2

⊥φ} = {ψ,∇2
⊥ψ} + ν∇4

⊥φ, (27)

∂tψ + {φ,ψ} = η∇2
⊥ψ − E0. (28)

Here, φ and ψ are the stream and flux functions of the in-plane
velocity and magnetic field, respectively, so u = (−∂yφ,∂xφ),
B = (−∂yψ,∂xψ); the magnetic field is measured in velocity
units; Poisson brackets are denoted by {φ,ψ} = ∂xφ∂yψ −
∂yφ∂xψ ; η and ν denote the plasma resistivity and viscosity,
respectively; E0 represents an externally applied electric
field, required to sustain an equilibrium in the presence of
finite resistivity. In the analytical calculation that follows,
we will assume that the magnetic Prandtl number is small
Pm = ν/η � 1 and therefore neglect the effect of viscosity
on the linear instability. The case of large Pm will be studied
numerically in Sec. VI B.

We are interested in analyzing the linear stability of an
SP-type current sheet, the inverse aspect ratio ε of which is
predicted by the SP model to scale as

ε = δCS/LCS ∼ S−1/2 � 1. (29)

Therefore, in the vicinity of a general point along the current
sheet, y = y0, and provided that y0 is not too close to either of
the ends of the sheet, it is reasonable to expand the equilibrium
magnetic flux and stream functions in a power series [89]:

ψeq(x,y)|y=y0 =
∞∑

n=0

1

n!

(
y − y0

LCS

)n

ψn(x,y0), (30)

φeq(x,y)|y=y0 =
∞∑

n=0

1

n!

(
y − y0

LCS

)n

φn(x,y0). (31)
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The functions ψn(x,y0),φn(x,y0) can in principle be found
either by substituting these expansions back into Eqs. (27) and
(28) and solving the equilibrium problem order by order in
(y − y0)/LCS, or by Taylor expanding a known equilibrium
solution ψeq,φeq around the point y = y0. Neither of these
procedures is straightforward: The first option implies either
truncating the expansion at some arbitrary order or guessing
one of the equilibrium functions [89] to solve the closure
problem; the second requires an exact analytical solution.
To the best of our knowledge, a 2D analytical solution to
this problem that would capture all the essential features
of a resistive SP-type current sheet equilibrium has never
been derived [90]. Fortunately, however, we shall find in the
following sections that, actually deriving the linear instability
requires very little information about the equilibrium profiles,
and the problem can be solved for general functions ψn,φn

provided that the following key assumptions hold:
(i) the background equilibrium observes the expected

symmetries, i.e., at the center of the sheet

ψ2n+1(y0 = 0) = 0, φ2n(y0 = 0) = 0; (32)

(ii) for |x| � 1, the incoming flow ux and the reconnecting
magnetic field By approach constant (in x) values (which can,
however, be functions of y0).

Further general properties of the equilibrium that will be
needed in our calculation are derived in Appendix 1.

Note that, in paper I, we considered only the case y0 =
0. Furthermore, we adopted a very simplified description
of an equilibrium current sheet in which only φ1 and ψ0

were nonzero, with φ1 = �0xy,ψ0 = ψ0(x), i.e., the flow had
no vorticity ωz = ∇2

⊥φ1 = 0, and the reconnected field was
ignored, Bx = −∂ψ/∂y = 0. In this paper, we drop those
model assumptions and consider an arbitrary, two-dimensional
current-sheet equilibrium.

A. Normalizations

We introduce the following normalizations, motivated by
the SP scalings:

φ′
0 = �0y0v(x); ψ ′

0 = B0f (x);

φ1 = −�0LCSδCSu(x); ψ1 = −�0y0δCSg(x); (33)

φ2 = −�0y0δCSw(x); ψ2 = −�0LCSδCSh(x);

where

δCS = (η/�0)1/2 (34)

and �0 = B0/LCS (note that in our units B0 = VA). We also
normalize time and lengths as follows:

t�0 = τ ; x/δCS = ξ ; y/LCS = ȳ. (35)

Under these normalizations, the magnetic and velocity fields
obtained from the power-series expansions (30) and (31)
keeping only up to first-order corrections in ȳ − ȳ0 are

By/B0 = f (ξ ) − (ȳ − ȳ0)ȳ0g
′(ξ ) (reconnecting), (36)

Bx/B0 = ε[ȳ0g(ξ ) + (ȳ − ȳ0)h(ξ )] (reconnected), (37)

and

uy/VA = ȳ0v(ξ ) − (ȳ − ȳ0)u′(ξ ) (outflow), (38)

ux/VA = ε[u(ξ ) − (ȳ − ȳ0)ȳ0w(ξ )] (inflow). (39)

It is clear from these expressions what the physical significance
of the functions f,g,h,v,u,w is. The physical units and
presumed magnitudes of these fields have been absorbed
into the normalizations, so these functions are all order-
unity dimensionless quantities. They can have parametric
dependence on ȳ0, but note that the presumed lowest-order
linear dependence of the reconnected magnetic field and of the
outflow on ȳ0 are explicitly included in the normalizations (33).

B. Linearized equations

Let us consider small perturbations to a generic equilibrium ψ = ψeq + δψ(x,y,t),φ = φeq + δφ(x,y,t), and linearize the
RMHD equations (27) and (28) using the expansions (30) and (31) for the equilibrium profiles, keeping terms up to first order in
(ȳ − ȳ0). We obtain

∂δψ

∂τ
+ [ȳ0v(ξ ) − (ȳ − ȳ0)u′(ξ )]

∂δψ

∂ȳ
+ [u(ξ ) + (ȳ − ȳ0)ȳ0w(ξ )]

∂δψ

∂ξ
− [ȳ0g(ξ ) + (ȳ − ȳ0)h(ξ )]

∂δφ

∂ξ

− [f (ξ ) − (ȳ − ȳ0)ȳ0g
′(ξ )]

∂δφ

∂ȳ
=

(
∂2

∂ξ 2
+ ε2 ∂2

∂ȳ2

)
δψ + O((ȳ − ȳ0)2), (40)

{
∂

∂τ
+ [ȳ0v(ξ ) − (ȳ − ȳ0)u′(ξ )]

∂

∂ȳ
+ [u(ξ ) + (ȳ − ȳ0)ȳ0w(ξ )]

∂

∂ξ

}(
∂2

∂ξ 2
+ ε2 ∂2

∂ȳ2

)
δφ

− [u′′(ξ ) + (ȳ − ȳ0)ȳ0w
′′(ξ )]

∂δφ

∂ξ
− [ȳ0v

′′(ξ ) − (ȳ − ȳ0)u′′′(ξ )]
∂δφ

∂ȳ

=
{

[f (ξ ) − (ȳ − ȳ0)ȳ0g
′(ξ )]

∂

∂ȳ
+ [ȳ0g(ξ ) + (ȳ − ȳ0)h(ξ )]

∂

∂ξ

}(
∂2

∂ξ 2
+ ε2 ∂2

∂ȳ2

)
δψ

− [ȳ0g
′′(ξ ) + (ȳ − ȳ0)h′′(ξ )]

∂δψ

∂ξ
− [f ′′(ξ ) + (ȳ − ȳ0)ȳ0g

′′]
∂δψ

∂ȳ
+ O((ȳ − ȳ0)2), (41)
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where we have used the normalizations defined in
Eqs. (33)–(35).

In the case of y0 = 0, the above equations include the
following effects which were absent in paper I:

(i) in Eq. (40), the term proportional to h(ξ ), represents the
effect of the reconnected magnetic field;

(ii) in Eq. (41), the terms proportional to u′′(ξ ) and u′′′(ξ )
on the left-hand side, which represent the vorticity of the
equilibrium flow;

(iii) the term proportional to h′′(ξ ) on the right-hand side of
Eq. (41), which is the contribution to the equilibrium-current
gradient from the reconnected magnetic field.

Further progress at this point is hindered by the fact that
these equations contain explicit dependencies on the y variable
and can not, therefore, be Fourier transformed in this direction.
To address this difficulty, let us compare the magnitudes of the
first and third terms on the left-hand sides of these equations:

∂/∂τ

(ȳ − ȳ0)∂/∂ȳ
∼ γ

(ȳ − ȳ0)κ
, (42)

where γ is the growth rate of the anticipated instability at
(ȳ = ȳ0) normalized to the Alfvénic shearing rate �0 and

κ = kLCS (43)

is the normalized wave number of the perturbation at that
location. Thus, the third term can be ignored if the analysis is
restricted to patches of the current sheet whose extent in the y

direction is such that

(ȳ − ȳ0) � γ /κ. (44)

This approach is valid provided that

κ(ȳ − ȳ0) � 1. (45)

In other words, the domain in the y direction is divided into
smaller patches, and the linear analysis performed locally in
each of these. A WKB approach remains valid provided that
asymptotically many wavelengths fit in each of these patches.
Equations (44) and (45) imply that we seek solutions such that

∂

∂τ
∼ γmax � 1,

∂

∂ȳ
∼ κmax � 1. (46)

These are a priori assumptions, which will be later justified
by our ability to obtain such solutions.

Under these approximations, Eqs. (40) and (41) become

∂δψ

∂τ
+ ȳ0v(ξ )

∂δψ

∂ȳ
+ u(ξ )

∂δψ

∂ξ
− ȳ0g(ξ )

∂δφ

∂ξ
− f (ξ )

∂δφ

∂ȳ

=
(

∂2

∂ξ 2
+ ε2 ∂2

∂ȳ2

)
δψ, (47)

{
∂

∂τ
+ ȳ0v(ξ )

∂

∂ȳ
+ u(ξ )

∂

∂ξ

}(
∂2

∂ξ 2
+ ε2 ∂2

∂ȳ2

)
δφ

−u′′(ξ )
∂δφ

∂ξ
− ȳ0v

′′(ξ )
∂δφ

∂ȳ

=
[
f (ξ )

∂

∂ȳ
+ ȳ0g(ξ )

∂

∂ξ

](
∂2

∂ξ 2
+ ε2 ∂2

∂ȳ2

)
δψ

− ȳ0g
′′(ξ )

∂δψ

∂ξ
− f ′′(ξ )

∂δψ

∂ȳ
. (48)

Note that the functions h(ξ ) and w(ξ ) have dropped
out.

One can now look for linear modes of the form exp(−iωτ ).
In the midplane of the current sheet (i.e., ξ = 0), the plasma is
flowing outwards at some fraction of the Alfvén speed, ȳ0v0,
where v0 = v(ξ = 0,ȳ0). Let us take this into consideration
explicitly and set

ω = κȳ0v0 + iγ . (49)

We therefore look for solutions to Eqs. (47) and (48) in the
form

δψ = �(ξ )e[γ−iκȳ0v0]τ+iκȳ , (50)

δφ = −i�(ξ )e[γ−iκȳ0v0]τ+iκȳ . (51)

We are ignoring the time dependence of κ due to the
background flows because this variation will occur on a much
longer time scale than that of the expected growth rate of the
instability [91]. Introducing the parameter

λ = γ /κ, (52)

we obtain

{λ − iȳ0[v0 − v(ξ )]}� + u(ξ )

κ
� ′ + i

ȳ0

κ
g(ξ )�′ − f (ξ )�

= 1

κ
(� ′′ − κ2ε2�), (53)

{λ − iȳ0[v0 − v(ξ )]}(�′′ − κ2ε2�)

+ u(ξ )

κ
(�′′′ − κ2ε2�′) − u′′(ξ )

κ
�′ − iȳ0v

′′(ξ )�

= −f (ξ )(� ′′ − κ2ε2�) + i
ȳ0

κ
g(ξ )(� ′′′ − κ2ε2� ′)

− i
ȳ0

κ
g′′(ξ )� ′ + f ′′(ξ )�. (54)

This is the set of equations that will be solved in Secs. IV
and V.

IV. PLASMOID INSTABILITY

We will now proceed to solve Eqs. (53) and (54) in three
different regions: the “external” (global) region where δCS �
x � L (i.e., 1 � ξ � S1/2), the “outer” region (the SP current
sheet), where x ∼ δCS (ξ ∼ 1), and finally the “inner” region
(the inner layer inside the current sheet where plasmoids form),
where x � δCS (ξ � 1). Outside the current sheet (i.e., in the
external region), the plasma is ideal; inside the current sheet
(i.e., in the outer and inner regions), resistive effects can not
be neglected. In addition to the assumptions of Eq. (46), we
will require here that λ = γ /κ � 1. This ordering is indeed
satisfied by the fastest growing mode, as we will confirm a
posteriori.

A. External region: |ξ | � 1

This is the upstream region outside the current layer, i.e.,
x � δCS. Here, we expect the equilibrium profiles to behave
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as

v(ξ ) → 0, u(ξ ) ≈ ∓u∞, (55)

f (ξ ) ≈ ±f∞, g(ξ ) ≈ ±g′
∞ξ, (56)

where u∞, f∞, g′
∞ are functions of ȳ0 only, taken to be

of order unity (see Appendix 1); of these, we will discover
that only f∞ matters for the calculation of the instability.
In the above expressions, the upper sign applies to ξ > 0, and
the lower sign to ξ < 0 [so as to observe the expected parities
of the equilibrium, namely, that u(ξ ) and f (ξ ) are odd in ξ ,
and g(ξ ) is even]. The linear dependence of g(ξ ) on ξ for
large ξ might not be obvious at first glance and is derived in
Appendix 1.

We will make the a priori assumption that the terms
proportional to u(ξ ) or u′′(ξ ) and to g(ξ ) or g′′(ξ ) in Eqs. (53)
and (54) are negligible in this region, and then show that this
is indeed the case. In the absence of these terms, we obtain

(λ − iȳ0v0)� = ±f∞�, (57)

(λ − iȳ0v0)(�′′ − κ2ε2�) = ∓f∞(� ′′ − κ2ε2�), (58)

which can be easily combined to yield[
f 2

∞ − (λ − iȳ0v0)2
]
(� ′′ − κ2ε2�) = 0. (59)

The general solution to this equation is simply

�± = C±
3 e∓κεξ , (60)

where C±
3 are integration constants and ± refers to ξ ≷ 0 [in

unscaled units: �± = C±
3 exp(∓kx)].

We can now check the assumption about the smallness of
the terms proportional to u(ξ ), u′′(ξ ), g(ξ ), and g′′(ξ ). From
Eqs. (57) and (60), we see that, for arbitrary y0, we have
� ′/� ∼ �′/� ∼ κε. Let us then compare the magnitudes of
the third and first terms on the left-hand side of Eq. (53) [the
same reasoning applies to Eq. (54)]:

(u∞/κ)� ′

λ�
∼ λ−1ε, (61)

which is small provided that λ � ε, a condition we will later
see is satisfied by the fastest growing mode. With respect
to terms involving g(ξ ), the ratio of the magnitudes of the
fourth and fifth terms on the left-hand side of Eq. (53) [and
similarly for the second and first terms on the right-hand side
of Eq. (54)] is

ȳ0
ξ

f 2∞κ

�′

�
∼ ξε. (62)

This is again small provided that ξ � ε−1 ∼ S−1/2; we shall
find that the fastest growing wave number κmax ∼ ε−3/4 and
thus the eigenfunction, Eq. (60), decays before the condition
ξε � 1 breaks down. Note also that the expression for g(ξ )
given in Eq. (56) is not expected to hold for ξ > ε−1 (i.e.,
x > LCS): the reconnected magnetic field does not grow
unbounded as ξ → ∞.

B. Outer region: |ξ | ∼ 1

This region represents the SP current sheet itself, i.e.,
x ∼ δCS. Here, the functions u(ξ ), v(ξ ), f (ξ ), and g(ξ ) are
simply assumed to be ∼O(1). We find that terms proportional

to u(ξ ) and g(ξ ) or to their derivatives are again negligible. For
example, consideration of the same terms as in the previous
section leads to

u� ′/κ
λ�

∼ γ −1 � 1, (63)

ȳ0g�′/κ
f �

∼ ȳ0κ
−1 � 1, (64)

and similarly for the others. Therefore, to lowest order in ε,
Eqs. (53) and (54) become

{λ − iȳ0[v0 − v(ξ )]}� = f (ξ )�, (65)

{λ − iȳ0[v0 − v(ξ )]}(�′′ − κ2ε2�) − iȳ0v
′′(ξ )�

= −f (ξ )� ′′ + [f ′′(ξ ) + κ2ε2f (ξ )]�. (66)

Combining these equations results in the following eigenvalue
problem:

� ′′ −
[
f ′′(ξ )

f (ξ )
+ κ2ε2

]
�

= −λ − iȳ0[v0 − v(ξ )]

f (ξ )

×
{(

d2

dξ 2
− κ2ε2

)
λ − iȳ0[v0 − v(ξ )]

f (ξ )
� − iȳ0v

′′(ξ )

f (ξ )
�

}
,

(67)

subject to boundary conditions given by the external solution
[Eq. (60)] and the requirement (for the plasmoid instability)
that � be an even function. Writing the solution in the form
�(ξ ) = f (ξ )χ (ξ ), Eq. (67) becomes

d

dξ
[V (ξ )χ ′(ξ )] = ε2κ2V (ξ )χ (ξ ), (68)

where the “potential” V (ξ ) is

V (ξ ) = f 2(ξ ) + [λ − iy0(v0 − v(ξ ))]2. (69)

Note that in the case y0 � 1, all terms on the right-hand
side of Eq. (67) are small compared to the first two terms on the
left-hand side. In that case, we recover to the problem solved
in paper I [except here f (ξ ) remains unspecified]. For the
general case ȳ0 ∼ 1, an exact solution can be obtained provided
that the terms proportional to κ2ε2 can be neglected (we will
later check the validity of this assumption; for now, let us
call attention to what it means: κε = kδCS, so the assumption
κε � 1 implies that the wavelength of the expected instability
is much longer than the current sheet thickness). Thus, we
neglect the right-hand side of Eq. (68) and find the solution

�±(ξ ) = C±
1 f (ξ ) + C±

2 f (ξ )
∫ ξ

ξ0

dξ ′

V (ξ ′)
, (70)

where ± refers to ξ ≷ 0, C±
1 ,C±

2 are constants in integration,
and ξ0 is an arbitrary number of order unity (different choices
of ξ0 will produce subdominant corrections to C±

1 ).
For the plasmoid instability, we expect λ � 1, so this

solution simplifies to

�± = C±
1 f (ξ ) + C±

2 f (ξ )
∫ ξ

ξ0

dξ ′

f 2(ξ ′) − ȳ2
0 [v0 − v(ξ ′)]2

.

(71)
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We now match this expression to the external solution
[Eq. (60)] in the region 1 � ξ � (κε)−1 or, equivalently, in
dimensional form δCS � x � 1/k. In this region, v(±ξ ) � v0

and f ′(±ξ ) � 1, implying that |f (±ξ )| ≈ f∞ and the integral
is dominated by the upper limit. We obtain

C±
3 = − C±

2 f∞
f 2∞ − ȳ2

0v2
0

1

κε
, (72)

C±
1 = ∓ C±

2

f 2∞ − ȳ2
0v2

0

1

κε
. (73)

For ξ � 1, f (ξ ) ≈ f ′
0ξ and v(ξ ) = v0 − v′′

0ξ 2/2. Thus, to
lowest order in ξ , the integrand in Eq. (71) becomes 1/(f ′

0
2
ξ 2).

The integral is therefore again dominated by the upper limit
and we obtain

�±(0) = −C±
2

f ′
0

. (74)

Demanding that � be an even function of ξ yields

C+
2 = C−

2 = −f ′
0�(0). (75)

Thus, the outer region solution is

�±(ξ ) = f ′
0�(0)f (ξ )

{
± 1

f 2∞ − ȳ2
0v

2
0

1

κε

−
∫ ξ

ξ0

dξ ′

f 2(ξ ′) − ȳ2
0 [v0 − v(ξ ′)]2

}
. (76)

Note that the second term of the above expression ensures that
the eigenfunction remains finite at ξ = 0.

As usual in tearing-mode-type calculations, let us now
introduce the standard instability parameter

�′ = � ′(+0) − � ′(−0)

�(0)
. (77)

Using Eq. (76), we obtain [92]

�′ = 2

κε

f ′
0

2

f 2∞ − ȳ2
0v

2
0

. (78)

We stress that the functional dependence of �′ on ȳ0 is both
explicit and implicit, as f ′

0, f∞, and v0 are all functions of ȳ0.

C. Inner region: |ξ | � 1

This region is the internal layer inside the SP current sheet,
i.e., x � δCS. We begin by noting that, again, independently
of the specific functional form of the SP equilibrium, the
symmetries of the problem are such that, for |ξ | � 1, the
equilibrium profiles can be approximated as

f (ξ ) = f ′
0ξ + O(ξ 3), g(ξ ) = g0 + O(ξ 2), (79)

u(ξ ) = u′
0ξ + O(ξ 3), v(ξ ) = v0 + O(ξ 2), (80)

where f ′
0, u′

0, g0, v0 are constants with respect to ξ but depend
on ȳ0. In this region, the relative magnitudes of the different
terms in Eqs. (53) and (54) can be reduced to one of the

following cases:

u� ′

κ

1

λ�
∼ u′

0δinner�

κδinner

κ

γ�
∼ 1

γ
, (81)

ȳ0g�′

κ

1

f �
∼ g0

κf ′
0δ

2
inner

∼ 1

κδ2
inner

, (82)

� ′′

κ

1

λ�
∼ 1

γ δ2
inner

, (83)

u′′�′

κ

1

λ�′′ ∼ δ2
inner

γ
, (84)

ȳ0v
′′�

λ�′′ ∼ κδ2
inner

γ
, (85)

ȳ0g
′′� ′

κ

1

f � ′′ ∼ 1

κ
. (86)

Except for Eq. (83), all these ratios can be shown a posteriori
to be small. Thus, to lowest order, Eqs. (53) and (54) become

λ� − f ′
0ξ� = 1

κ
� ′′, (87)

λ�′′ = −f ′
0ξ� ′′. (88)

These equations are mathematically the same as the
equations for the tearing mode in the inner region, except that
here the role of the small parameter is played by 1/κ rather
than resistivity. Since �′δinner is not expected to be small, the
constant-� approximation [8] can not be used. Instead, this
eigenvalue problem is mathematically equivalent to the one
solved by Coppi et al. for the resistive internal kink mode [81].
The resulting dispersion relation is

−π

8
(κf ′

0)1/3�5/4 �[(�3/2 − 1)/4]

�[(�3/2 + 5)/4]
= �′ = 2

κε

f ′
0

2

f 2∞ − ȳ2
0v2

0

,

(89)

where � is the gamma function and � = γ f ′
0
−2/3

κ−2/3. The
width of the inner region is

δinner = γ 1/4κ−1/2f ′
0
−1/2

, (90)

which can be used to confirm the smallness of the terms
neglected in deriving Eqs. (87) and (88).

D. Solution of the dispersion relation (89)

The dispersion relation, Eq. (89), has two relevant limits.
For � � 1,

γ ≈
[
−16

π

�(5/4)

�(−1/4)

]4/5
f ′

0
2(

f 2∞ − ȳ2
0v2

0

)4/5
κ−2/5ε−4/5

≈ 0.95
f ′

0
2(

f 2∞ − ȳ2
0v2

0

)4/5
κ−2/5ε−4/5. (91)

This is valid provided that κ � ε−3/4 (but also κε � 1, as
required by our earlier assumptions).

On the other hand, taking � → 1− (from below), we obtain

γ = (f ′
0κ)2/3 −

√
π

3

f 2
∞ − ȳ2

0v2
0

f ′
0

κ2ε, (92)
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valid for κ � ε−3/4. The scaling of the fastest growing wave
number can be determined by balancing the two terms on the
right-hand side of the above expression. The exact result can
be obtained by solving the equation dγ /dκ = 0 in the limit
� → 1−. We obtain

κmax =
(

1√
π

f ′
0

5/3

f 2∞ − ȳ2
0v

2
0

)3/4

ε−3/4, (93)

γmax = 2

3π1/4

√
f ′

0
3

f 2∞ − ȳ2
0v2

0

ε−1/2. (94)

The scalings with ε are the same as those derived in
paper I, although here they have been obtained for a general
SP equilibrium. In other words, this linear theory predicts that
current sheets are unstable to a super-Alfvénic instability, the
growth rate of which increases with the Lundquist number
γmax ∼ S1/4 [recall that ε = S−1/2; see Eq. (29)]. A plasmoid
chain forms inside a region of width δinner ∼ S−1/8δCS, with the
number of plasmoids scaling as κmax ∼ S3/8. These scalings
justify the ordering assumptions employed in deriving these re-
sults, i.e., γmax � 1, κmax � 1, and λmax ∼ γmax/κmax ∼ ε1/4,
so, ε � λmax � 1.

Let us now analyze the dependence of γmax and κmax on
the position ȳ0 along the sheet. Note first that the instability
vanishes at the locations where the equilibrium current f ′

0 = 0:
the end points of the SP current sheet. Note also that since we
have dropped corrections of order ε1/2 in our derivation [for
example, the terms proportional to κ2ε2 in Eq. (68)], the terms
proportional to ȳ2

0 in the above expressions are only to be kept
if ȳ0 � ε1/4. For values of ȳ0 � ε1/4, all ȳ0 corrections are
negligible to lowest order and Eqs. (93) and (94) simplify to
yield

κmax = π−3/8Ē
5/4
0 ε−3/4, (95)

γmax = 2

3π1/4
Ē

3/2
0 ε−1/2, (96)

where Ē0 = LCSE0/(B2
0δCS) is the normalized background

electric field, and we have used the relationship f ′
0 = Ē0,

which follows from Eq. (A3) in the limit ȳ0 � ε1/4 [note that
f∞(ȳ0 = 0) = 1].

In the opposite case of ȳ0 � ε1/4, the dependence of κmax

and γmax on ȳ0 is a nontrivial function of the specific values
of the equilibrium coefficients, which are all functions of ȳ0

(this does not affect the scaling of κmax and γmax with ε).
For ȳ0 � 1, exact values of the coefficients of the Taylor
expansion of the equilibrium around ξ = 0 were derived
semianalytically by Uzdensky and Kulsrud [93] assuming
a Syrovatskii-type upstream magnetic field [Eq. (23)] (see
Appendix 1). Using those coefficients and the relationship
f ′

0 = Ē0 − ȳ2
0v0g0 derived in Appendix 1, a Taylor expansion

of Eqs. (93) and (94) in ȳ0 yields

κmax(|ȳ0| � 1) ≈ (
0.56 + 0.10ȳ2

0

)
ε−3/4, (97)

γmax(|ȳ0| � 1) ≈ (
0.71 + 0.73ȳ2

0

)
ε−1/2. (98)

These results reveal a perhaps unexpected feature of the
plasmoid instability: both κmax and γmax increase with distance

from the center of the sheet. The same conclusion is easily
deduced for arbitrary ȳ0 ∼ 1: even though in that case one is
forced to retain the full expressions for κmax and γmax [Eqs. (93)
and (94)], it is also true that, under very general conditions,
one expects f∞ to be a decreasing function of ȳ0 (for example,
a standard Syrovatskii ideal current sheet solution [87] yields
f∞ = √

1 − ȳ2
0 ; see the Appendix).

A problem thus arises: It is possible that a location
ȳ0 = ȳ0,crit ∼ O(1) exists inside the current sheet where f 2

∞ −
ȳ2

0,critv
2
0 = 0, and our solution breaks down (�′,γ,κ → +∞).

It is clear that while approaching that point, κmax will get to be
so large that terms of order κmaxε, or κ2

maxε
2, can no longer be

neglected and thus our ordering assumptions become invalid.
For values of |ȳ0| > ȳ0,crit, our solution is again physical, but
the second term on the right-hand side of Eq. (92) equation
changes sign, implying that γ grows with κ and the value of
the fastest growing wave number can not be deduced from this
equation. This means that terms proportional to κ2ε2 are still
necessary to determine the fastest growing mode. Physically,
the fact that the condition κmaxε ∼ 1 is met somewhere
in the sheet means that at those locations the wavelength
of the perturbation becomes comparable to the current-sheet
thickness, whereas for |ȳ0| � ȳ0,crit it was much longer.

It is easy to understand why the location f 2
∞ − ȳ2

0,critv
2
0 = 0

should be special: this is where the midplane outflow speed
(i.e., uy measured at x = 0) matches the Alfvén velocity
associated with the upstream magnetic field (measured at
x ∼ δCS), i.e., it is the Alfvén Mach point of the system. The
background outflow velocity profile is strongly sheared (in
the x direction) inside the current sheet. Such a profile would
be unstable to the Kelvin-Helmholtz (KH) instability, were
it not for the stabilizing effect provided by the (flow-aligned)
background magnetic field By [86]. However, whereas the flow
grows in magnitude with increasing y, By does the opposite
(see the discussion of Secs. II C and A 2). The Alfvén Mach
point is where the two amplitudes match. Beyond that point,
the magnetic field is no longer sufficiently strong to provide
stability, and we should thus expect the plasmoid instability to
morph into the KH instability. The increase of γmax and κmax

along the sheet is thus a reflection of the fact that the current
sheet is increasingly unstable to the KH mode. For ȳ0 � ȳ0,crit

the plasmoid instability is replaced by the KH instability as
the most unstable mode. The most unstable wave number
also grows along the sheet because, as is well known [86],
the growth rate of the KH instability peaks at κε ∼ 1 (i.e.,
kδCS ∼ 1, where δCS is the scale of the cross-sheet velocity
shear).

To summarize, the analytical dispersion relation [Eq. (89)]
accurately describes the plasmoid instability of the current
sheet for −ȳ0,crit < ȳ0 < ȳ0,crit. For values of ȳ0 outside this
interval, it becomes necessary to keep terms proportional to
κ2ε2 in order to calculate the fastest growing mode, which
is no longer the plasmoid instability, but the KH instability.
Retaining the κ2ε2 terms analytically is difficult; however, we
have been able to address the full problem by a direct numerical
solution of the linearized equations. Results are shown in
Sec. VI. Before discussing those, though, let us present an
analytical derivation of the KH instability of a current sheet
valid in the long-wavelength limit κε � 1.
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V. KELVIN-HELMHOLTZ INSTABILITY OF THE LAYER

In this section, we derive an analytical dispersion relation
of the Kelvin-Helmholtz (KH) instability of the current sheet
valid for perturbations whose wave number is κ � ε−1. This
ordering of κ is not expected to capture the fastest growing
mode, as suggested by the heuristic derivation of Sec. II C
(κmax ∼ ε−1), but we are unable to obtain an analytic solution
valid for κε ∼ 1. The derivation presented here, however, does
reveal a number of interesting features of the KH instability of
the current sheet. The direct numerical solution presented in
the next section does of course cover all values of κ .

We first remind the reader that in a SP reconnection
configuration, the outflow velocity profile is maximum at the
midplane (x = 0) of the sheet and decays to zero away from
it. There are, therefore, two shear layers on each side of the
sheet, at x ∼ ±δCS, where the KH instability may develop
(see Fig. 1). These two shear layers will push magnetic fields
of opposite sign on each side of x = 0 towards each other.
This will create a current sheet at x = 0. Thus, resistivity
can play an important role in this mode, not at the KH
layers themselves x � ±δCS, but at x = 0, where the shear
layers interact. This situation is then conceptually similar
to the forced reconnection problem treated by Hahm and
Kuslrud [94] (the Taylor problem), where perturbations at
some distant boundaries on each side of a rational surface
induce reconnection at that surface. Here, the KH instability
can be thought of as the equivalent of those perturbations at
the boundaries, forcing reconnection at x = 0.

In Ref. [94] (see also [95]), it was found that if the change
in the boundaries occurs on a time scale much faster than the
resistive one, there will be no reconnection in the early (linear)
stage of evolution; the magnetic field will pile up until the
current gets sufficiently large for the resistive term to become
important. In a somewhat similar fashion, here, whether or
not the KH instability induces reconnection depends on how
large its growth rate is; for low values of κε, when its growth
rate is lower, the pileup of the magnetic field is prevented by
reconnection, which can proceed at a rate comparable to the
growth rate of the KH instability. However, for larger values
of κε, the KH instability will be faster than the rate at which
reconnection can occur and we expect to find an ideal (i.e.,
nonreconnecting) mode (although reconnection is expected to
start in the nonlinear stage, which we do not address here).

Our formal analysis of this problem again considers three
asymptotic regions: the inner region (|ξ | � 1), the outer region
(or flow shear layer |ξ | ∼ 1), and the external region (|ξ | � 1).
Since all the same orderings that led to the simplification of
Eqs. (53) and (54) in the previous section are still expected
to hold here, the equations to solve in each of these regions
are the same. In particular, the solution in the the external and
outer regions remains unchanged and is given by Eqs. (60) and
(71), respectively.

In the inner region, we must solve Eqs. (87) and (88). There
are two cases of interest: when the right-hand side of Eq. (87)
is important, and when it is not. The former case occurs at
low values of κε, whereupon we simply recover the dispersion
relation (92). This is similar to the resistive-kink-mode solution
of Coppi et al. [81]: as ȳ0 increases and eventually becomes
such that ȳ0v0 > f∞, �′ [Eq. (78)] transitions from positive to

negative via infinity; mathematically, this is equivalent to the
well known transition from the very unstable (large-�′) tearing
mode to the resistive kink mode [81], except here reconnection
is driven by the KH instability, rather than by the kink mode.

For larger values of κε (although still requiring that κε � 1;
we will later determine how large κ has to be for the following
to hold), we can ignore the right-hand side of Eq. (87) and
obtain

� = f ′
0ξ

λ
�. (99)

So, Eq. (88) becomes

�′′ = −f ′
0

2

λ2
ξ (2�′ + ξ�′′), (100)

to be solved subject to the boundary condition �(0) = 0 [96].
The solution is

�±(ξ ) = �′
0λ

f ′
0

arctan

(
f ′

0

λ
ξ

)
, (101)

where �′
0 ≡ �′(0). The inner layer width is, therefore,

δinner = λ

f ′
0

. (102)

Using Eq. (101) to substitute for � in Eq. (99), we obtain

�±(ξ ) = �′
0ξ arctan

(
f ′

0

λ
ξ

)
. (103)

As expected, this is a nonreconnecting mode: �(0) = 0;
indeed, this solution is mathematically equivalent to the
ideal-kink-mode solution found by Rosenbluth et al. [97].
Physically, the difference here is that the drive is the KH
instability.

The solution (103) is now matched to the solution in the
outer region, Eq. (71). For ξ � 1, Eq. (103) becomes

�±(ξ ) = �′
0ξ

(
± π

2
− λ

f ′
0ξ

)
. (104)

Therefore, we have

C±
1 = ±π

2

�′
0

f ′
0

, (105)

C±
2 = λ�′

0. (106)

Substituting these expressions for C±
1 ,C±

2 in Eq. (73), we
obtain the final dispersion relation

γ = λκ = π

2

ȳ2
0v2

0 − f 2
∞

f ′
0

κ2ε. (107)

This expression shows that an unstable mode exists when
|ȳ0v0| > |f∞|, i.e., above the Alfvén Mach point of the system,
|ȳ0| > ȳ0,crit. To determine its region of validity, let us use
Eqs. (102) and (107) to compare the the right-hand side of
Eq. (87), which we neglect in this derivation, to the first term
on the left-hand side of that equation. We then find that this
solution is valid for ε−3/4 � κ � ε−1.

Finally, we estimate the value of κ = κtr above which
Eq. (107) yields faster growth than the resistive dispersion
relation, Eq. (92). This corresponds to a transition from a
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reconnecting to a nonreconnecting mode. Comparing the two
expressions, we find

κtr =
(

π

2
−

√
π

3

)−3/4
f ′

0
5/4(

ȳ2
0v

2
0 − f 2∞

)3/4 ε−3/4. (108)

Wave numbers such that κ > κtr are ideal nonreconnecting
modes [i.e., �(0) = 0]. This implies, in particular, that the
fastest growing mode κmax ∼ ε−1 is an ideal mode, as will be
confirmed by the full numerical solution presented in the next
section.

VI. NUMERICAL RESULTS

In this section, we compare the heuristic and the analytical
results of Secs. II, IV, and V with the direct numerical solution
of the full set of linearized equations(

1

κ

∂

∂τ
+ iȳ0v(ξ )

)
� + u(ξ )

κ
� ′ + i

ȳ0

κ
g(ξ )�′ − f (ξ )�

= 1

κ
(� ′′ − κ2ε2�), (109)(

1

κ

∂

∂τ
+ iȳ0v(ξ )

)
(�′′ − κ2ε2�)

+u(ξ )

κ
(�′′′ − κ2ε2�′) − u′′(ξ )

κ
�′ − iȳ0v

′′(ξ )�

= −f (ξ )(� ′′ − κ2ε2�) + i
ȳ0

κ
g(ξ )(� ′′′ − κ2ε2� ′)

−i
ȳ0

κ
g′′(ξ )� ′ + f ′′(ξ )�, (110)

where ξ = x/δCS, κ = kLCS, and ε = δCS/LCS = S−1/2.
These equations follow straightforwardly from Eqs. (47)
and (48) after Fourier decomposing in the y direction:

δψ = �(ξ ) exp(iκy), δφ = −i�(ξ ) exp(iκy). The functions
f (ξ ), g(ξ ), u(ξ ), and v(ξ ) are the normalized SP-type back-
ground equilibrium profiles: the reconnecting and reconnected
magnetic field components and the inflow and outflow velocity
profiles, respectively (see Sec. III A for the normalizations
adopted for them). Explicit expressions for these functions,
parametrized by the position along the sheet ȳ0 = y0/LCS, are
derived in Appendix 1. For the equilibrium adopted, the Alfvén
Mach point of the current sheet, defined by uy(ξ = 0,ȳ0,crit) =
By(ξ = ∞,ȳ0,crit), occurs at ȳ0,crit ≈ 0.61. Above this point,
the upstream magnetic field is no longer able to stabilize the
KH mode.

Equations (109) and (110) are solved in a domain of
size −Lx � ξ � Lx using a second-order-accurate predictor-
corrector numerical scheme. The boundary conditions are
�(−Lx,t) = �(Lx,t) = �(−Lx,t) = �(Lx,t) = 0. The size
of the simulation domain Lx depends on κ , with lower
values of κ requiring larger domains [this is due to the behavior
of the eigenfunction in the external region, � ∼ e−κεξ ; see
Eq. (60)]. Convergence tests were performed to ensure that
both the domain size and resolution were appropriate.

A. Plasmoid and KH instabilities

We begin by focusing on the inviscid limit Pm = 0.
Plotted in Fig. 2(a) are solutions of (i) the full analytical
dispersion relation for the plasmoid instability [Eq. (89)] for
ε = 10−6 (i.e., S = 1012) and several different values of ȳ0

(thin colored lines); (ii) the analytical KH dispersion relation
in the resistive limit [Eq. (92)] (orange, long-dashed–dotted
line), and in the ideal limit [Eq. (107)] (red dotted line) for
ȳ0 = 0.8 (i.e., beyond the Alfvén Mach point ȳ0,crit = 0.61).
Overplotted (symbols) are the numerical results. The
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FIG. 2. (Color online) (a) Growth rate (normalized to the global Alfvén time τA = LCS/VA) as a function of the wave number κ = kLCS for
ε = 10−6 (i.e., S = 1012) and at positions along the sheet ȳ0. Thin colored lines show the solution of the analytical dispersion relation for the
plasmoid instability [Eq. (89)]. The orange long-dashed–dotted line is the solution of the analytical resisitive KH dispersion relation [Eq. (92)],
and the red dotted line is the solution of the analytical ideal KH dispersion relation [Eq. (107)], both evaluated for ȳ0 = 0.8. Symbols are
the results of direct numerical integration of the linearized equations. The dotted black lines identify the analytically predicted slopes for the
plasmoid instability (κ2/3 for κ � ε−3/4 and κ−2/5 for κ � ε−3/4). The vertical dotted line is at κε = 1; the vertical dashed-dotted-dotted line
identifies κtr [Eq. (108)]. The analytical dispersion relations are numerically solved assuming that the global equilibrium can be approximately
described by the analytical solution in the vicinity of the origin derived in Ref. [93]. For this equilibrium, ȳ0,crit = 0.61. The numerical
results use the analytical SP equilibrium calculated in Appendix 1 (for which ȳ0,crit is the same). (b) Same as (a) for ȳ0 = 0.8 and ε = 10−8

(i.e., S = 1016).
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FIG. 3. (Color online) Maximum growth rate (left) and the corresponding wave number (right) as functions of the Lundquist number S,
for ȳ0 = 0.0 and 0.8. The plasmoid instability [γmax ∼ S1/4,κmax ∼ S3/8; see Eqs. (9) and (94)] observed at ȳ0 = 0.0 is superseded by the KH
instability [γmax ∼ S1/2,κmax ∼ S1/2; see Eq. (25)] at ȳ0 = 0.8.

theoretically predicted slopes for the plasmoid instability in
the limits � � 1 and � → 1− [κ2/3 and κ−2/5, respectively;
see Eqs. (91) and (92)] are shown by the dotted black lines. The
vertical dotted line is at κε = 1; all the analytical dispersion
relations plotted are only valid for values of κ significantly
to the left of this line. The vertical dashed-dotted-dotted line
shows the position of κtr, the value of κ at which a transition
from the resistive to the ideal KH mode occurs, as given by
Eq. (108).

For ȳ0 � 0.4, the agreement between the numerical solution
and the analytical plasmoid dispersion relation is very good
up to wave numbers approaching κε ∼ 1; this is not surprising
since we used the ordering κε � 1 in our calculation. Impor-
tantly, this ordering is indeed respected by κ = κmax [Eq. (93)],
which is accurately described by the analytical solution at
these values of ȳ0. Note that the dependence of γ on ȳ0 is very
weak, both as predicted by theory [Eq. (94) with f ′

0,v0 and
f∞ given by Eqs. (A13), (A3), and (A14), respectively] and
as determined by the numerical solution (see Fig. 4).

The behavior of the growth rate is distinctly different for
ȳ0 = 0.8. This value of ȳ0 is above the Alfvén Mach point
ȳ0,crit = 0.61, and it is, therefore, in the KH-unstable part of
the current sheet. At low values of κ , the analytical dispersion
relation (92) (labeled “KH res.” in the figure) correctly captures
the numerical solution. The transition from the resistive KH
to the ideal KH mode occurs at κ ≈ κtr given by Eq. (108).
The ideal KH dispersion relation derived in Sec. V [Eq. (107)]
(labeled “KH ideal” in the figure) applies for κ > κtr, but fails
to capture the fastest growing mode, which now occurs when
κε ∼ 1, as anticipated.

The transition between the resistive and ideal modes is
not completely clear in Fig. 2(a); for κ > κtr the numerical
data points lie between the ideal and resistive KH lines (red,
dotted, and orange, long-dashed–dotted, respectively) before
rolling over and reaching γmax at κ = κmax. This is because,
even at such a large value of S, there is not enough scale
separation between κtr ∼ ε−3/4 and kmax ∼ ε−1 for the ideal
solution to match its asymptotic form derived in Sec. V. In
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FIG. 4. (Color online) Maximum growth rate (left) and the corresponding wave number (right) as functions of the position ȳ0 along the
sheet, for ε = 10−6 (i.e., S = 1012). The analytic solution is given by Eqs. (93) and (94). The vertical dotted line identifies the position of ȳ0,crit

for the equilibrium parameters specified in Eq. (A14).
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FIG. 5. (Color online) Eigenfunctions [|�|( left) and |�| (right) normalized to their respective maxima] for κ = κmax at ε = 10−6

(i.e., S = 1012). These plots are constructed from runs at the values of ȳ0 shown in Fig. 4. In all runs, the size of the simulation domain
is Lx = 100, and the resolution is �x = 0.0125. Only a fraction of the simulation domain is shown. The horizontal dashed white line shows
the location of the Alfvén Mach point ȳ0 = ȳ0,crit.

order to illustrate clearly this transition, we plot in Fig. 2(b)
the dispersion relation obtained at ȳ0 = 0.8 for an even smaller
(perhaps unrealistically so) ε = 10−8, i.e., S = 1016. In this
figure, it is clear that the mode becomes ideal for κ > κtr, and
is correctly described there by the ideal KH dispersion relation
(107).

In Fig. 3, we plot the fastest growth rate and the corre-
sponding wave number as functions of the Lundquist number.
Whereas the plasmoid instability scalings are obtained at
ȳ0 = 0.0 [i.e., γmax ∼ S1/4, see Eqs. (9) and (94)], we see
that it is the KH scaling that is manifest at ȳ0 = 0.8 [i.e.,
γmax ∼ S1/2, as derived in Eq. (25)].

Plots of γmax and κmax as functions of ȳ0 at S = 1012

are shown in Fig. 4. In this figure, the dashed vertical line
identifies the position of the Alfvén Mach point ȳ0,crit ≈ 0.61.
As expected based on the previous discussion, the agreement
between the analytical plasmoid dispersion relation (89) and
the numerical solution is excellent at values of ȳ0 < ȳ0,crit.
As ȳ0 → ȳ0,crit, the difference between the analytical and
numerical solutions increases and explodes at ȳ0 = ȳ0,crit.
The transition to the KH mode happens then; for ȳ0 � ȳ0,crit,
our simplified analytical theory (Sec. V) fails to produce a

maximum of the growth rate and so can not be compared to
the numerical solution, which confirms that the reason for the
failure of the asymptotic theory is that for γ = γmax, κmaxε is
not small, but approaches values of order unity.

Finally, in Fig. 5, we show the eigenfunctions �(ξ ) (left)
and �(ξ ) (right) corresponding to the fastest growing wave
number κmax at S = 1012. These plots are constructed from
runs at the values of ȳ0 plotted in Fig. 4. We see that
the eigenfunctions undergo an abrupt change at ȳ0 ∼ 0.6,
where the Alfvén Mach point of the system is located
(identified by the dashed white line). Close inspection of
the � eigenfunctions reveals that for ȳ0 > 0.6, �(0) → 0,
as predicted in Sec. V; i.e., the most unstable mode is ideal.
Visible in the plot of the � eigenfunction beyond the Alfvén
Mach point is the formation of structure at each of the
KH-unstable shear layers, located at x/δCS ≈ ±1. For a clearer
observation of both these properties of the eigenfunctions, we
plot in Fig. 6 one-dimensional cuts of Fig. 5, taken at ȳ0 = 0.4
(i.e., below the Alfvén Mach point) and ȳ0 = 0.8 (i.e., above
the Alfvén Mach point). As seen, for ȳ0 = 0.4, � is finite at
ξ = 0, whereas it is zero at ȳ0 = 0.8, in agreement with the
analytical theory of Sec. V and the prediction that above ȳ0,crit
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FIG. 6. (Color online) Real and imaginary parts of the eigenfunctions for κ = κmax at ε = 10−6 (i.e., S = 1012) and ȳ0 = 0.4 and 0.8. Only
a fraction of the simulation domain is shown.
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FIG. 7. Maximum growth rate (left) and the corresponding wave number (right) as a function of the Prandtl number Pm for ε = 10−6

(i.e., S = 1012) and ȳ0 = 0.

the fastest growing mode is nonreconnecting. Furthermore, the
broadening of the � eigenfunction around ξ = 0 at ȳ0 = 0.8
suggests the pileup of the magnetic field that we discussed in
Sec. V.

B. Effect of viscosity

In order to address the effect of viscosity on the plasmoid
instability, the term Pm(�′′′′ − 2κ2ε2�′′ + κ4ε4�)/κ , where
Pm = ν/η, is added to the right-hand side of Eq. (110), and
two additional boundary conditions are used: �′′(−Lx,t) =
�′′(Lx,t) = 0. We follow the generalization of the SP scalings
to plasmas where Pm � 1 derived in Ref. [36]: namely, we
must scale the electric field at the origin as E0/Pm1/4, and
the width of the current layer as δCS → δSPPm1/4, where
δSP/LCS = S−1/2. Therefore, we rescale the parameter ε =
δCS/LCS according to ε → εSPPm1/4, where εSP = δSP/LCS =
S−1/2.

Plotted in Fig. 7 are the maximum growth rate and the
corresponding wave number as a function of Pm for S = 1012

and ȳ0 = 0. Both κmax and γmax are seen to decrease with
increasing Prandtl number; a good fit to the data is given

by γmax ∝ Pm−5/8 and κmax ∝ Pm−3/16. The scaling of γmax

and κmax with the Lundquist number at Pm = 30 is shown in
Fig. 8. We see that the S dependence of the maximum growth
rate and of the corresponding wave number remains unchanged
at large Pm, i.e., γmax ∝ S1/4 and κmax ∝ S3/8. These results
agree exactly with the power laws derived in Sec. II, Eqs. (18)
and (19).

VII. SUMMARY

In this paper, a two-dimensional linear theory of the
instability of large-aspect-ratio, Sweet-Parker-type current
sheets is presented. This work is a direct generalization of our
previous results [76] (paper I), where the simple equilibrium
used was only a good model of a current sheet in the immediate
vicinity of y = 0 (y is the outflow direction).

In the work presented here, a general 2D SP-type current-
sheet equilibrium is considered. As in paper I, we conclude that
large-aspect-ratio Sweet-Parker current sheets are violently
unstable to high-wave-number tearinglike perturbations, and
the same scalings of the growth rate with the Lundquist number

 1

 10

 100

108 109 1010 1011 1012

γ m
ax

τ A

S

S1/4

102

103

104

108 109 1010 1011 1012

k m
ax

L C
S

S

S3/8

FIG. 8. Maximum growth rate (left) and the corresponding wave number (right) as a function of the Lundquist number S at Pm = 30 and
ȳ0 = 0.
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S = LVA/η are obtained here: γmaxτA ∼ S1/4 and kmaxLCS ∼
S3/8 [see Eqs. (93) and (94)]. The plasmoid chain is formed
inside a boundary layer whose width scales as δinner/δCS ∼
S−1/8. These scalings have been confirmed via direct numerical
simulation [43,77].

The more general approach employed in this paper has
allowed us to calculate the growth rate of the plasmoid
instability as a function of the position along the current sheet
y0. The dependence of γmax and kmax on y0 is a nontrivial
function of the particular equilibrium considered and, in the
absence of a known analytical solution to the SP problem, can
not be evaluated explicitly. However, for y0/LCS � 1 we make
use of the semianalytical results of Uzdensky and Kulsrud [93]
and present an exact solution: Eqs. (97) and (98). The most
unstable wave number and corresponding growth rate are
then found to increase with distance from the center. Under
general conditions (Syrovatskii-type upstream magnetic field
profile and outflow profile increasing monotonically along the
layer), we show that the same result holds true at arbitrary
y0/LCS ∼ 1. This finding is somewhat counterintuitive: a
priori, one could expect that the increasing strength of the
reconnected field along the sheet, as well as the shear in the
outflow (in the y direction), would provide a stabilizing effect.
Our calculation shows, however, that both are irrelevant to the
instability. An intuitive understanding of why that should be so
can be gained by comparing the strength of the upstream and
the downstream magnetic fields at the boundary of the inner
(plasmoid) layer ξ = δinner:

By

Bx

∣∣∣∣
x∼δinner

∼ δinner

δCS
S1/2 ∼ S3/8 � 1, (111)

i.e., even at the scale of the inner layer the reconnected field Bx

is completely overwhelmed by the reconnecting field By . The
gradient of the background outflow in the y direction, whose
length scale is ∼LCS, is also unimportant because kmaxLCS �
1 everywhere in the sheet. At the periphery of the sheet, for
y0 > y0,crit, where y0,crit/LCS is equilibrium dependent but
otherwise O(1), the current sheet becomes unstable to the
Kelvin-Helmholtz (KH) instability driven by the velocity shear
between the Alfvénic reconnection outflow and the stationary
upstream plasma. This occurs because the magnitude of the
upstream magnetic field is a decreasing function of the outflow
coordinate y (see discussion in Appendix 2) and eventually
becomes smaller than the outflow speed (which is an increasing
function of y/LCS). At, and beyond, the Alfvén Mach point,
where this happens, the magnetic field can no longer stabilize
the current sheet against the KH instability.

We find that the KH instability of the sheet can either
be resistive (i.e., induce reconnection at x = 0) or ideal (no
reconnection), with lower values of kLCS corresponding to the
former, and larger values to the latter. The fastest growing
KH mode kmaxLCS ∼ S1/2 (i.e., kmaxδCS ∼ 1) is an ideal,
nonreconnecting mode. This is because reconnection can not
occur at the fast rates required by the fastest growing KH
mode. A useful analogy can be made with the Taylor (forced
reconnection) problem [94]: since there are two shear layers,
one on each side of the current sheet, the KH instability
of the sheet is conceptually similar to a situation where
perturbations at distant walls attempt to drive reconnection

at a rational surface. In the Taylor problem, it is also found
that the perturbations at the walls do not drive reconnection
in the initial stage. However, the same analogy suggests that
as the ideal KH mode evolves into the nonlinear regime,
it will cause the upstream magnetic field to pile up in the
current layer, eventually leading to its reconnection. This
KH-driven reconnection that occurs at y0 > y0,crit will give
rise to a plasmoid chain, just as the “pure” plasmoid instability
that is found at y0 < y0,crit. Therefore, in practice, it may
be difficult to distinguish between the two situations, and a
clear identification of the KH instability may require a careful
analysis of the linear stage of the current-sheet instability. In
the numerical simulations reported in Ref. [43], which did
focus on the early stage of the current-sheet instability, only
the central quarter of the current sheet was simulated and the
imposed upstream magnetic field profile was uniform along
the sheet (for a discussion of this issue, see Appendix 2).
Replacing f∞ with a constant value in Eq. (94) and using
the equilibrium parameters of Eq. (A14) yields an expression
for γmax which initially (i.e., at low values of y/LCS) decays
outwards, consistent with Ref. [43]. This trend reverses at
y/LCS ∼ 0.6, when γ begins to increase with y/LCS and
eventually blows up as the transition to KH takes place.
However, this behavior could not be seen in the simulations
of Ref. [43] in principle, as it occurs outside the simulation
domain used there [98].

It is worth noting that the basic KH instability mechanism
that we have described here need not be limited to resistive
MHD reconnection. The existence and triggering of the
KH instability in a reconnecting current sheet relies on one
essential ingredient: the existence of an Alfvénic Mach point
somewhere along the layer. We believe this should be a rather
general property of any truly global reconnection configuration
(see Appendix 2). Provided that this condition is satisfied,
the current sheet should become KH unstable, regardless
of the plasma collisionality, which may however affect the
ensuing dynamics of the KH mode. In this respect, our findings
may be related to recent observations of the KH instability
in collisionless simulations of guide-field reconnection [99]
(although this is a very different regime than the one we
address in this paper and thus the possibility that other effects
are important there can not be discarded).

Finally, the effect of viscosity on the plasmoid instability
has been addressed via numerical integration of the linearized
set of equations. Our results are that in the limit Pm = ν/η �
1, the fastest growth rate and wave number of the plasmoid
instability scale as

γmax ∼ S1/4Pm−5/8 ∼ L
1/4
CS V

1/4
A η3/8ν−5/8, (112)

κmax ∼ S3/8Pm−3/16 ∼ L
3/8
CS V

3/8
A η−3/16ν−3/16. (113)

We have not performed a rigorous analytical calculation of
the plasmoid instability in this limit, but we have been able
to recover these scalings in a nonrigorous way from known
results on the visco-tearing and resistive-kink modes [84] via
the rescaling of the background magnetic shear length a →
δCS ∼ LCSS

−1/2Pm1/4 [36]. Although these scalings are only
expected to apply for S � Scrit, Pm � 1, where Scrit is the
critical value of the Lundquist number for the current sheet to
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be plasmoid unstable, they lead to the prediction that

Scrit ∼ 104Pm1/2, Pm � 1. (114)

This result as well as those of Eqs. (112) and (113) are concrete
predictions that can be tested in direct numerical simulations
of MHD reconnection in the large-magnetic-Prandtl-number
regime.
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Superior Técnico), Newhydra (University of Oxford), and
Verus (University of Colorado).

APPENDIX: EQUILIBRIUM CONSIDERATIONS

1. An exact, two-dimensional, Sweet-Parker-type
current-sheet equilibrium

Exact two-dimensional solutions of Eqs. (27) and (28)
describing a Sweet-Parker-type reconnecting current sheet are
not known. In principle, these can be obtained by substituting
the expressions for ψ and φ given by Eqs. (30) and (31) into
Eqs. (27) and (28) and equating equal powers of (y − y0)/
LCS = ȳ − ȳ0. To lowest order in ȳ − ȳ0, we obtain the
following equations:

u(ξ )f (ξ ) − ȳ2
0v(ξ )g(ξ ) = f ′(ξ ) − Ē0, (A1)

u(ξ )v′′(ξ ) − v(ξ )u′′(ξ ) = g(ξ )f ′′(ξ ) − f (ξ )g′′(ξ ) + Pmv′′′(ξ ),

(A2)

where we have used the normalizations of Eq. (33), neglected
terms of order ε2, and defined the normalized electric field
Ē0 = LCSE0/(B2

0δCS).
Evaluated at ξ = 0, Eq. (A1) yields

f ′
0 = Ē0 − ȳ2

0v0g0, (A3)

whereas for ξ � 1 we obtain from the same equation

u∞ = Ē0

f∞
. (A4)

These expressions are exact; however, we see that Eqs. (A1)
and (A2) are not a closed set since there are only two equations
and four unknowns: f (ξ ), g(ξ ) (the normalized reconnecting
and reconnected magnetic field profiles, respectively), and
u(ξ ), v(ξ ) (the normalized inflow and outflow velocity pro-
files, respectively). This closure problem is introduced by the
expansion in (ȳ − ȳ0) (recall the discussion of Sec. III). In
order to obtain a SP-type equilibrium, which we require for our
numerical solution, one has to close Eqs. (A1) and (A2), e.g.,

by guessing two of the four unknown functions, and solving
those equations for the other two. Any model of the equilibrium
that can be found in this way is necessarily nonunique (i.e.,
dependent on the guesses required for the closure); however,
we will see in what follows that a qualitatively satisfactory
model of a SP current sheet can be obtained by this procedure.

Let us introduce an auxiliary function s(ξ ) defined by the
following equation:

g(ξ ) = u∞
f∞

v(ξ ) − s(ξ ). (A5)

Then, from Eq. (A1) we obtain

v(ξ ) = f∞
u∞

s(ξ )

2

±
√

f 2∞
u2∞

s2(ξ )

4
+ f∞

u∞

u(ξ )f (ξ ) − f ′(ξ ) + Ē0

ȳ2
0

. (A6)

Equation (A2) can also be easily solved in the limit Pm = 0
(viscous effects in the equilibrium that we are about to derive
can be modeled by a rescaling of the current-sheet thickness,
the outflow speed, and the reconnection electric field according
to the SP relationships in the viscous regime derived in
Ref. [36]). Using Eq. (A5), Eq. (A2) becomes

s ′′(ξ ) = s(ξ )
f ′′(ξ )

f (ξ )
, (A7)

to be solved subject to the boundary conditions s(0) = u∞v0/

f∞ − g0, where v0 = v(0) and g0 = g(0), and s ′(0) = 0 [we
demand that both v(ξ ) and g(ξ ) are even functions].

The general solution to this equation is

s(ξ ) = C1f (ξ ) + C2f (ξ )
∫ ξ dξ ′

f 2(ξ ′)
. (A8)

(The lower limit of integration on the last term on the right-
hand side of this expression need not be specified as C1 can
be redefined to absorb the difference between different lower
limits; note, however, that we take the lower limit to be finite,
i.e., neither 0 nor ∞.)

At this stage, the equilibrium problem is solved if we
provide functional forms for the reconnecting magnetic field
f (ξ ) and for the inflow velocity profile u(ξ ). The simplest
choice for f (ξ ) is the “Harris sheet” [100]

f (ξ ) = f∞ tanh

(
f ′

0

f∞
ξ

)
. (A9)

A qualitatively plausible choice for u(ξ ) is

u(ξ ) = −u∞
f (ξ )

f∞
. (A10)

Substituting Eq. (A9) into Eq. (A8) and evaluating the integral
explicitly, we obtain

s(ξ ) =
(

g0 − u∞
f∞

v0

)[
f ′

0

f∞
ξ tanh

(
f ′

0

f∞
ξ

)
− 1

]
, (A11)

where the constants of integration C1,C2 have been chosen
to satisfy the boundary conditions we specified for s(ξ ).
Substituting Eqs. (A9)–(A11) into Eqs. (A5) and (A6) yields
explicit expressions for the two remaining unknowns: the
reconnected magnetic field g(ξ ) and the outflow velocity
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profile v(ξ ). Although it is not particularly enlightening to
write these expressions in explicit form, it is useful to evaluate
g(ξ ) for ξ � 1. It is

g(ξ )|ξ�1 ≈ ±
(

u∞
f∞

v0 − g0

)
f ′

0

f∞
ξ ≡ ±g′

∞ξ. (A12)

This expression is used in Sec. IV A to estimate the magnitude
of g(ξ ) for ξ � 1.

The last step in obtaining an analytical SP-type equilibrium
solution consists of determining E0, v0, g0, and f∞, all of
which can in principle be functions of ȳ0. A reasonable choice
for f∞ is a Syrovatskii-type profile [87]

f∞ =
√

1 − ȳ2
0 . (A13)

As for E0,v0,g0, their values at ȳ0 = 0 have been calculated
semianalytically in Refs. [93,101]:

Ē0(ȳ0 = 0) = 1.075; g0(ȳ0 = 0) = 0.642;

v0(ȳ0 = 0) = 1.286. (A14)

The simplest choice is to assume that these values are constant
along the sheet [note, though, that a linearly increasing
dependence of the outflow and reconnected field profiles is
already included in the normalizations, Eq. (33)].

Examples of the equilibrium profiles obtained in this
fashion are shown in Fig. 9 for ȳ0 = 0.4 (left) and ȳ0 =
0.8 (right) [in Eq. (A6), the solution with the “+” sign is
chosen]. We see that these profiles retain all the qualitative
features expected of a true SP equilibrium. Note that for these
parameters, the Alfvén Mach point of the system occurs at
ȳ0,crit = 0.61.

The solution found here can be viewed as a generalization to
the entire current sheet of the equilibrium derived by Biskamp
[89], which is only applicable for ȳ0 = 0. As mentioned
above, the equilibrium profiles obtained by this procedure,
although exact, are not unique since they depend on the
guesses for f (ξ ),u(ξ ); another ansatz can, in principle, yield a
different, but equally plausible, equilibrium. For the purposes
of this paper, however, we do not believe this to be a serious
constraint since we expect both the plasmoid and the KH
instabilities to be largely independent of the fine details of
the background profiles; this certainly seems to be true for the

plasmoid instability, as is suggested by the agreement between
the theoretical predictions of paper I using a very simplified
equilibrium and subsequent numerical studies [43,47]. The
profiles we have derived are a convenient model for solving
the linear problem, as we do in Sec. VI.

2. On the y dependence of the upstream magnetic field By( y)

As discussed throughout the paper, the key ingredient for
the existence of the KH instability of the current sheet is
existence of an Alfvén Mach point somewhere along the layer.
The most natural way of achieving this is if the upstream
magnetic field profile By(y) is a decreasing function of
|y/LCS|. Here, we discuss why we expect this to be a rather
general feature of any global reconnecting system.

The functional shape of By(y), seen as the boundary
condition for the reconnection problem, is not a property
of the reconnection process itself but, rather, is dictated by
the large-scale, global system configuration into which the
reconnecting region is embedded and which thus provides the
boundary conditions for the local reconnection layer analysis.

Any real global system that forms a current layer has
some scale LCS (in the y direction for the geometry we choose
in this paper). In the local reconnection problem, this scale
generally speaking manifests itself via the characteristic scale
in the boundary condition By(y); this really is the proper
way to define LCS. For a given global configuration, this
function is determined by the layout of the global currents
and does not have a universal behavior. However, it does have
some generic features. For example, the current layer ends
with a Syrovatskii-type 60◦ Y point [87] or a smooth cusp
point [88]. In this study, we are not investigating what happens
exactly at the endpoint of the layer, but we do need to specify
the variation of By(y) along the bulk of the layer’s length.
Whatever this function is, there is no a priori reason for it
to be completely constant [which is what is often assumed
(e.g., [43])]. Furthermore, it is natural to assume that it has
a maximum somewhere, and that it is at this position that
the dominant X point will form; this point thus defines the
center of the layer. Then, this function generally declines from
this center point outward in both directions. The particular

10 5 5 10ξ

2

2

4

6

v ξ
u ξ
g ξ
f ξ

y0 LCS 0.4

10 5 5 10ξ

2

2

4

6

v ξ
u ξ
g ξ
f ξy0 LCS 0.8

FIG. 9. (Color online) Analytic SP-type equilibrium profiles [Eqs. (A5), (A6), (A9), (A10)] evaluated for ȳ0 = 0.4 (left) and ȳ0 = 0.8
(right). These equilibria are obtained by choosing the functional form of the upstream magnetic field f (ξ ), and imposing that the inflow profile
be such that u(ξ ) = −u∞f (ξ )/f∞. The lowest order [in (y − y0)/LCS] Ohm’s law and momentum equation can then be solved for the two
remaining unknowns, namely, the reconnected magnetic field g(ξ ) and the outflow v(ξ ).
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functional form of this decline may vary from case to case, but
in this study we just take one representative example.

Indeed, because of the cross-layer pressure balance at each
y, the y variation of the plasma (plus guide-field) pressure
exactly in the midplane of the layer reflects that of the upstream
reconnecting magnetic field pressure. Therefore, the decline
of By(y) with |y| translates into the pressure gradient force
along the layer that helps (along with the magnetic tension
force) accelerate and expel the incoming plasma out of the
layer, i.e., to form the reconnection outflow. If, instead, the
upstream magnetic field is constant along the layer, then so
is the pressure along the midplane; in this case, there is no
pressure gradient driving the outflow, only magnetic tension.
This probably results in a weaker outflow and, in particular,
may imply that the KH instability is absent in such systems.
Furthermore, as we have explained, what matters for the
KH instability is not the absolute magnitude of the outflow,
but how it compares with the magnetic field outside of the
layer. Once again, if the upstream magnetic field is constant
along y, then it may be that the critical Alfvén point where

uy(x = 0,y) = VA(y) = By(y) is never reached, because VA

remains large throughout the layer, and the outflow inside the
layer only grows up to that level perhaps only at the very end
of the layer, if at all. However, if the upstream magnetic field
declines with y, then it is possible that such a point is reached
somewhere midway through the layer. This is what we have in
our example.

One example of a global configuration featuring a By

profile that decreases with |y| that has been used in
global reconnection studies is the so-called “rosette” struc-
ture [45,47,88,102–104], inspired by the typical config-
uration relevant for laboratory reconnection experiments
(e.g., [105,106]).

Finally, we note that global numerical simulations of
MHD reconnection display solutions where the upstream
magnetic field is maximum at the center of the layer and
decays outwards in global numerical simulations of MHD
reconnection (see, e.g., [38,39,41]). Thus, an equilibrium
model with the upstream magnetic field profile decreasing
outwards appears the most adequate one.
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