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Radial viscous fingering in yield stress fluids: Onset of pattern formation
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We report analytical results for the development of interfacial instabilities in a radial Hele-Shaw cell in which
a yield stress fluid is pushed by a Newtonian fluid of negligible viscosity. By dealing with a gap averaging of
the Navier-Stokes equation, we derive a Darcy-law-like equation for the problem, valid in the regime of high
viscosity compared to yield stress effects. A mode-coupling approach is executed to examine the morphological
features of the fluid-fluid interface at the onset of nonlinearity. Within this context, mechanisms for explaining
the rising of tip-splitting and side-branching events are proposed.
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I. INTRODUCTION

It is well known that when a less viscous fluid pushes a more
viscous one in the confined geometry of a Hele-Shaw cell, the
interface separating the fluids develops the Saffman-Taylor
instability [1] leading to the formation of fingerlike patterns
[2]. The specific morphology of these patterns depend on the
nature of the fluids, and on the geometry of the flow. Most
of the existing studies on the viscous fingering instability
refer to Newtonian fluids. In this case, the resulting interfacial
shapes range from a single, smooth, steady-state finger in
rectangular (or, channel) geometry [3–11], to multifingered
structures in which repeated tip splitting produces highly
ramified patterns in the radial flow setup [12–23]. These pattern
forming phenomena have been extensively studied during
the last 50 years through analytical calculations, numerical
simulations, and experiments.

Although not as numerous as in the Newtonian fluid case,
other Hele-Shaw flow investigations have revealed that a
distinct variety of patterns can be formed when one of the
fluids is non-Newtonian [24]. While Newtonian fluids are
characterized by a constant viscosity, non-Newtonian fluids
display a multiplicity of hydrodynamic behaviors ranging from
elasticity and plasticity to shear thinning and shear thickening,
and in general have a shear-dependent viscosity.

The rheological properties of non-Newtonian fluids exert
a profound effect on the shape of the emerging interfa-
cial patterns in Hele-Shaw flows. Rectangular and radial
Hele-Shaw experiments involving non-Newtonian fluids like
polymer solutions, liquid crystals, clays and foams unveiled
pattern morphologies presenting snowflake-like shapes [25]
and fracturelike structures [26,27]. For shear-thinning fluids
traditional finger tip-splitting events are inhibited, and the
appearance of dendritic patterns with side branching is
favored. Cracklike patterns presenting angular branches and
sharp tips have also been found. On the other hand, flow
with shear-thickening fluids [28] displays patterns similar to
those found in Newtonian fluids but with either narrowing
or widening of the fingers, which can present asymmetric
humps. This morphological diversity and rich dynamical
behavior motivated a number of theoretical studies of the
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problem through linear and weakly nonlinear analyzes, and
sophisticated numerical simulations [29–38].

Despite all the efforts and important results obtained by
researchers on the development of viscous fingering in non-
Newtonian Hele-Shaw flows, the pattern forming dynamics
with yield stress fluids has been relatively underlooked. In
contrast to Newtonian fluids, yield stress fluids [39,40] can
support shear stresses without flowing. As long as the stress
remains below to a certain critical value they do not flow, but
respond elastically to deformation. So such materials possess
properties of both viscous fluids and elastic solids, behaving
like a “semisolid.” On the theoretical side, a linear stability
analysis of the Saffman-Taylor problem in rectangular and
radial cells with yield stress fluids [41] has predicted that the
instability can be drastically modified. On the experimental
arena some interesting findings have been disclosed in channel
geometry [42,43]: depending on whether viscous effects or
yield stresses dominates, fractal patterns, or ramified structures
where multiple fingers propagate in parallel may arise.

In a more recent experimental work [44] fingering in a
yield stress fluid in rectangular as well as in radial Hele-Shaw
cells has been examined. As in Ref. [42,43] different regimes,
leading to diverse pattern morphologies have been observed:
At low velocities (where yield stress dominates) ramified
structures arise; however, for higher velocities (viscous effects
prevail), in addition to tip splitting, interesting side-branching
instabilities become apparent. Although the behavior at the
low velocity regime can be quantitatively explained from the
linear stability results presented in Ref. [41], the nonlinear
side-branching and tip-splitting instabilities detected at higher
velocities are not fully understood to date. So, a theoretical
study addressing these suggestive pattern forming phenomena
in yield stress fluids is still lacking.

In this work we carry out the analytical weakly nonlinear
analysis of the problem in which a yield stress fluid flows in
a radial Hele-Shaw cell. We focus on the regime in which
viscosity effects are prevalent over yield stress. By exploring
the onset of nonlinear effects we try to gain analytical insight
into the dynamic process of fingering formation. In particular,
we seek to understand how mode-coupling dynamics leads
to basic morphological features and behaviors observed
experimentally in such non-Newtonian Hele-Shaw flows [44].

The article is organized as follows: Sec. II formulates the
problem and derives a generalized Darcy-like law. In Sec. III
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we perform a Fourier decomposition of the interface shape, and
from the alternative form of Darcy’s law study the influence
of weak yield stress effects on the development of interfacial
patterns. Coupled, nonlinear, ordinary differential equations
governing the time evolution of Fourier amplitudes are derived
in detail. Section IV discusses both linear and weakly nonlinear
dynamics. It concentrates on the dawning of finger tip-splitting
and side-branching phenomena. Our main conclusions are
summarized in Sec. V.

II. PROBLEM FORMULATION AND DARCY’S LAW
APPROACH

The Hele-Shaw cell is depicted in Fig. 1 and consists of
two parallel plates separated by a small distance b. Consider
the displacement of a non-Newtonian fluid of viscosity η and
yield stress σ0, by a Newtonian fluid of negligible viscosity
in such confined geometry. The surface tension between the
fluids is denoted by γ . The Newtonian fluid is injected at a
constant areal flow rate Q at the center of the cell, along the
direction perpendicular to the plates (z axis).

We focus on deriving the relevant hydrodynamic equation
for a Hele-Shaw flow of a yield stress fluid. Our main goal
is to obtain a Darcy’s like law which relates the gap-averaged
velocity with the pressure gradient and the yield stress, taking
into account the coupling between them. We start by taking
the Navier-Stokes equation for an incompressible viscous fluid
[45]

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇P − ∇ · τ , (1)

where ρ is density, u denotes the three-dimensional velocity, P
is the pressure, and τ represents the stress tensor that includes
the yield stress. In the scope of the lubrication approximation,
where the distance between the plates b is much smaller than
the unperturbed radius R of the fluid-fluid interface, the motion
is a creeping flow. Therefore, we may neglect the inertial
terms between square brackets in Eq. (1), as well as impose
that the prevailing terms in ∇ · τ are those with transversal
derivatives. Within this framework, we also consider that
pressure is constant along the transversal direction (z axis).
Thus, by integrating (1) we obtain

τiz =
∣∣∣∣b2 − z

∣∣∣∣∇iP , (2)

FIG. 1. Schematic configuration of radial flow in a Hele-Shaw
cell. The inner fluid is Newtonian and has negligible viscosity. The
outer fluid is a yield stress fluid. The unperturbed fluid-fluid interface
(dashed curve) is a circle of radius R. All physical parameters are
defined in the text.

where i = r,θ is the label that indicates polar radial or
azimuthal components, with the origin placed at the center
of the droplet. We have used the symmetry of the flow to state
that the shear stress is zero at the midplane z = b/2 (since the
plates are located at z = 0 and z = b).

Furthermore, as a constitutive relation for yield stress fluids,
we use the Bingham model [24]. It states that, for a given shear
stress higher than the fluid yield stress magnitude σ0, there is
flow and the stress tensor is given by

τiz = −
[
η
∂ui

∂z
+ σi

]
. (3)

This situation corresponds to |τ | > σ0, where |τ | =√
τ 2
rz + τ 2

θz. We point out that, in contrast to previous works
[46–49], here we allow the yield stress to exhibit both r and
θ polar components, in such a way that its response is now
opposite to the stress tension. This is precisely what will
allow us to couple the yield stress to the velocity direction
by the end of our derivation. From Eq. (2) we see that the
stress tension is parallel to pressure gradient and we may write
σi = −σ0∇iP /|∇P |.

On the other hand, if |τ | � σ0, the shear stress do not
overcome the yield stress, thus there is no flow

∂ui

∂z
= 0, (4)

meaning that σi = −τiz.
Since the problem is symmetric with respect to the midplane

z = b/2, we may assume 0 � z � b/2 for simplicity. From
Eq. (2) we find the critical height zc which separates the
sheared region from the unsheared region

zc = b

2
− σ0

|∇P | . (5)

Then, by using Eq. (2) and the profile velocity continuity at
z = zc, it is possible to determine the velocity profile for both
regions

u = −∇P

η

[
z

(
zc − z

2

)]
for 0 � z < zc,

(6)

u = −∇P

η

z2
c

2
for zc � z � b

2
.

It is well known that this velocity profile cannot be exact for
different kind of flows [50–52]. However, the expression given
by Eq. (6) is a good approximation when one only seeks the
relationship between the pressure drop and the mean velocity
[41], which is exactly our case.

We define the gap-averaged velocity as

v = 1

b

∫ b

0
u dz, (7)

and by gap averaging (6) we finally obtain a dimensionless
modified Darcy’s law for yield stress fluids

v = −∇P

[
1 − δ

|∇P | + 4δ3

27|∇P |3
]
. (8)

The dimensionless parameter

δ = πσ0bRf

2ηQ
(9)
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is a modified plasticity number and quantifies the ratio between
yield stress and viscous forces. Hereafter, we take δ as positive
(since Q > 0) and refer to it as the yield stress parameter. We
point out that in Eq. (8) lengths and velocities were rescaled
by Rf and Q/(2πRf ), respectively, where Rf is the radius of
the unperturbed interface at t = tf [see Eq. (11)]. From this
point on we use the dimensionless version of the equations.
Our Eq. (8) is in agreement with the results of Ref. [46], which
studied the simpler situation involving the purely radial flow
of a perfectly circular droplet.

Since we are interested in examining the interface desta-
bilization process, we consider the regime where viscous
forces prevail over the yield stress and flow is facilitated,
which corresponds to δ � 1. Therefore, we may neglect the
third-order term in δ shown in Eq. (8). Moreover, since (8)
states that velocity is parallel to the pressure gradient, we may
rewrite it in a more convenient way as

∇P = −v
[

1 + δ

|v|
]
. (10)

Equation (10) is an alternative form of Darcy’s law ideally
suited to describe the Hele-Shaw flow dynamics in the weak
yield stress regime. The usual Newtonian Darcy’s law is
recovered when we set δ = 0.

We close this section by calling the reader’s attention
to an important distinction between our current results and
the ones obtained in Ref. [32]. Kondic et al. [32] studied
a nonNewtonian model where shear-thinning fluids were
analyzed. In their work, a theoretical model for a shear rate
dependent viscosity results in generalized Darcy’s law [their
Eq. (2)], which is distinct from our Darcy’s law [Eq. (10)]
for yield stress fluids. It should be emphasized that we do
not propose a shear-thinning model, i.e., a shear-dependent
viscosity to a nonNewtonian fluid. Rather, we seek for a
Darcy’s law to a yield stress fluid, a nonNewtonian fluid
that can support shear stresses without flowing, and derive
a specific modified Darcy’s law [our Eq. (10)] to describe flow
of such a fluid in the confined geometry of a Hele-Shaw cell.
Moreover, contrary to what is done in Ref. [32], our approach
considers a Bingham model [Eq. (3)] where η denotes a
Newtonian (constant) viscosity.

III. MODE-COUPLING EQUATION

To perform the weakly nonlinear analysis of the system, we
consider that the initial circular fluid-fluid interface is slightly
perturbed (see Fig. 1), R = R(t) + ζ (θ,t) (ζ/R � 1), where
the time dependent unperturbed radius is given by

R(t) =
√

R2
0 + 2t, (11)

R0 being the dimensionless unperturbed radius at t = 0. The
interface perturbation is written in the form of a Fourier
expansion

ζ (θ,t) =
+∞∑

n=−∞
ζn(t) exp (inθ ), (12)

where ζn(t) = (1/2π )
∫ 2π

0 ζ (θ,t) exp (−inθ ) dθ denotes the
complex Fourier mode amplitudes and n is an integer wave

number. In our Fourier expansion (12) we include the n = 0
mode to keep the area of the perturbed shape independent
of the perturbation ζ . Mass conservation imposes that the
zeroth mode is written in terms of the other modes as
ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2. We stress that our perturbation

scheme keeps terms up to the second order in ζ and up to first
order in δ.

The weakly nonlinear approach to radial, Newtonian Hele-
Shaw flow developed in Ref. [18], related the fluid velocity to
a scalar velocity potential v = −∇φ, this replacement made
possible by the irrotational nature of the flow for Newtonian
fluids. For non-Newtonian fluids, in contrast, flows governed
by the modified Darcy’s law (10) exhibit vorticity. Hence, as in
Ref. [36] we perform our calculations using a vector potential
v = ∇ × A. The most general form of the vector potential can
be written as

A =
[
θ +

∑
m,n�=0

Amn

(
R

r

)m

exp (inθ )

]
ẑ, (13)

where Amn are the Fourier coefficients of the velocity vector
potential and ẑ is the outward unit-normal to the upper cell
plate. The radial and polar components of the fluids velocities
are

vr = 1

r
+

∑
m,n�=0

inAmn

(
Rm

rm+1

)
exp (inθ ) (14)

and

vθ =
∑

m,n�=0

mAmn

(
Rm

rm+1

)
exp (inθ ). (15)

We exploit the fact that ∇P must be curl free, and impose
the so-called solvability condition ∇ × ∇P = 0. It simplifies
the general form of the vector potential expansion given in
Eq. (13). The solvability condition reveals that, without loss
of generality, one can rewrite the vector potential as

A =
{

θ +
∑
n�=0

An

(
R

r

)|n|
exp (inθ )

+ δ

[ ∑
n�=0

Bn

(
R

r

)|n|
r exp (inθ )

]}
ẑ, (16)

replacing the array of coefficients Amn with the simpler set of
An and Bn. Observe that the vector potential (16) is simply a
superposition of a purely Newtonian term (∝ δ0, coefficients
An) and a non-Newtonian contribution (∝ δ1, coefficients Bn)

A = AN + ANN . (17)

The flow described by AN is irrotational, while ANN has a
curl.

Similarly, we express the pressure of the outer fluid as a
sum of Newtonian and non-Newtonian pressures, and propose
a general form for their Fourier expansion

P = PN + PNN, (18)

where

PN = − log

(
r

R

)
+

∑
n�=0

pn

(
R

r

)|n|
exp (inθ ) (19)
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and

PNN = δ

[
−r +

∑
n�=0

qn

(
R

r

)|n|
r exp (inθ )

]
. (20)

The gradient of the complex pressure field (18) must
satisfy the non-Newtonian Darcy’s law given by Eq. (10).
By inspecting the r and θ components of Eq. (10), and by
examining the Newtonian and non-Newtonian components of
it, we can express the Fourier coefficients of PN , PNN , and
ANN in terms of the Fourier coefficients of AN ,

pn = isgn(n)(An), (21)

qn = iAnsgn(n)β(n) +
∑

m�=0,m�=n

mAm(n − m)An−mk(n,m),

(22)

Bn = Anα(n) +
∑

m�=0,m�=n

m(iAm)(n − m)An−mh(n,m),

(23)

where in order to keep the results in a compact form, we
introduced the coefficients

α(n) = |n|(|n| − 1)

(2|n| − 1)
, (24)

β(n) = n2

(2|n| − 1)
, (25)

h(n,m) = 1

2|n| − 1

(
(1 − |n − m|)sgn(m) − 2(n − m)

+ n

2
{1 − sgn[m(n − m)]}

)
, (26)

and

k(n,m) = 1

n

[
sgn(m) − (|n| − 1)h(n,m)

]
. (27)

Note that sgn(n) = 1 if n > 0 and sgn(n) = −1 if n < 0.
Using Eqs. (21)–(23), which are consistent with the

solvability condition and Darcy’s law (10), we can derive the
general expression of the vector potential Fourier coefficients
in terms of the perturbation amplitudes. To fulfill this goal,
consider the generalized pressure jump condition at the
interface can be written as [2]

P |R = −�κ‖|R, (28)

where

� = b2πγ

6ηRf Q
(29)

is a surface tension parameter, and κ‖ is the curvature in the
direction parallel to the plates. By expanding Eq. (28) up to
the second order in ζ and up to first order in δ we find the
coefficient of the vector potential corresponding to the nth
evolution mode, A(k)

n , in terms of the kth order in ζ (k = 1,2)

iA(1)
n (t) =

[
R

n
ζ̇n + 1

nR
ζn

]
[1 − δRα(n)],

iA(2)
n (t) = 1

R

∑
m�=n,0

{
1

2Rsgn(n)

+ �

sgn(n)R2

[
2m2 + m(n − m)

2
− 1

]

+ δu(n,m)

}
ζmζn −m +

∑
m�=n,0

[1 + δRv(n,m)]

× ζ̇mζn− m + δR3
∑

m�=n,0

k(n,m)

sgn(n)
ζ̇mζ̇n−m

+ δR
∑

m�=n,0

k(n,m)

sgn(n)
ζmζ̇n−m, (30)

where the overdot denotes total time derivative, and the
coefficients

u(n,m) = 1

sgn(n)

(
k(n,m) +

(
1 − 1

|m|
)

β(m) − α(m)

−β(n)

{
1

2
+ �

R

[
2m2 + m(n − m)

2
− 1

]})
, (31)

v(n,m) = 1

sgn(n)

[
k(n,m) − β(n)

+
(

1 − 1

|m|
)

β(m) − α(m)

]
. (32)

To conclude our derivation we need one more step.
The vector potential coefficients can be introduced into the
kinematic boundary condition [2,14]

∂R
∂t

=
[

1

r

∂R
∂θ

(−vθ ) + vr

]
|R

, (33)

which states that the normal components of each fluid’s veloc-
ity at the interface equals the velocity of the interface itself.
By using Eq. (33) plus Darcy’s law (10) and Eq. (30) one can
finally find the equation of motion for perturbation amplitudes
ζn. We present the evolution of the perturbation amplitudes in
terms of δ and the kth order in the perturbation amplitude ζ

ζ̇n = ζ̇ (1)
n + ζ̇ (2)

n , (34)

where

ζ̇ (1)
n = λ(n)ζn, (35)

λ(n) = 1

R2
(|n| − 1) − �

R3
|n|(n2 − 1)

+ δ
|n|

2|n| − 1

[ |n| − 1

R
+ �

R2
|n|(n2 − 1)

]
(36)

is the linear growth rate, and

ζ̇ (2)
n =

∑
m�=n,0

[FN (n,m) + δFNN (n,m)]ζmζn−m

+
∑

m�=n,0

[GN (n,m) + δGNN (n,m)]ζ̇mζn−m

+ δ
∑

m�=n,0

HNN (n,m)ζmζ̇n−m

+ δ
∑

m�=n,0

JNN (n,m)ζ̇mζ̇n−m. (37)

In Eq. (37) the coefficients FN,FNN,GN,GNN,HNN ,
and JNN represent the second-order Newtonian (N ) and
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non-Newtonian (NN ) terms. Their detailed functional form
are presented in Appendix A. These second-order coefficients
present special reflection symmetries C(n, − m) = C(−n,m),
and C(−n, − m) = C(n,m), where C = FN,FNN,GN,GNN ,
HNN , and JNN .

Equation (34) is the mode-coupling equation of the
Saffman-Taylor problem with yield stress fluids in radial
geometry. It gives us the time evolution of the perturbation
amplitudes ζn, accurate to second order, in the weak yield
stress limit. Notice that Eq. (34) is conveniently written in
terms of two dimensionless parameters: δ [Eq. (9)] and �

[Eq. (29)]. The generalized Darcy law (10) and the equation
of motion (34) constitute central results of this work.

IV. DISCUSSION

We proceed by using our mode-coupling approach to
investigate the interface evolution at first and second order
in ζ . To simplify our discussion it is convenient to rewrite the
net perturbation (12) in terms of cosine and sine modes

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )], (38)

where an = ζn + ζ−n and bn = i(ζn − ζ−n) are real-valued.
Without loss of generality, for the remainder of this work, we
choose the phase of the fundamental mode so that an > 0 and
bn = 0. Henceforth, we study the development of interfacial
instabilities, and to examine how the yield stress parameter δ

and the effective surface tension � affect pattern morphology.
It should be noted that the theoretical results presented in the
following sections utilize dimensionless quantities which are
extracted from the realistic physical parameters used in the
experiments of Refs. [14–16] and [43,44].

A. First order: Linear regime

Before analyzing the weakly nonlinear regime, and try to
understand how nonlinearity affects the morphology of the
emerging patterns, we briefly discuss some useful information
which can be extracted from the linear growth rate (36).
The wave number of maximum growth [obtained by setting
dλ(n)/dn = 0] for a Newtonian fluid (δ = 0) can be easily
calculated from Eq. (36), yielding

nN
max =

√
1

3

(
1 + R

�

)
. (39)

From Eq. (36), one can obtain an explicit solution for the wave
number nmax with maximal growth rate for a yield stress fluid
(δ �= 0). Although this expression is rather complex, in the
limit � � 1 and nN

max 	 1 it simplifies to (see Appendix B)

nmax ≈ nN
max

(
1 + δR

4

)
. (40)

It is worth noting that a similar kind of approximation has been
performed in Ref. [35], leading to their Eq. (62). We stress that
this limit (very small �) is consistent with experimental data
of Refs. [14–16] and [43,44] which imply in � of the order
of 10−3. We have also verified that the critical wave number

0.15
0.075
0

0 5 10 15
0

2

4

6

n

λ
n

FIG. 2. Linear growth rate λ(n) as a function of mode n, for
three values of δ, surface tension parameter � = 4.45 × 10−3, and
t = tf = 0.495. To better guide the eye the maxima of the curves are
explicitly indicated by small dots.

[obtained by setting λ(n) = 0], that is the maximum wave
number for which the growth rate is still positive, is shifted
towards higher wave numbers as the yield stress parameter δ

is increased. From these findings it is evident that yield stress
effects tend to destabilize the interface in the weak yield stress
regime.

Further insight on the linear behavior can be obtained from
Fig. 2, which plots λ(n) as a function of mode number n for
three different values of the yield stress parameter δ (0, 0.075,
and 0.15), and � = 4.45 × 10−3. By examining Fig. 2, we
notice that by increasing δ one observes an increased growth
rate of the fastest growing mode nmax, so that it is shifted
towards larger wave number values. Since nmax is related to the
typical number of fingers formed at the onset of the instability,
this means that higher δ would induce the formation of patterns
tending to present an increased number of fingered structures.
It is also clear that the action of yield stress widens the
band of unstable modes. These linear stability results indicate
that interfacial instabilities involving multifingered structures
presenting finger tip splitting and side branching would be
plausible candidates to arise due to the action of yield stress
effects.

B. Second order: Weakly nonlinear regime

Now the mode-coupling equation (34) is utilized in its
entirety to study the onset of pattern formation through the
coupling of a small number of modes. Specifically, we will be
interested in examining the action of the yield stress parameter
δ on the mechanisms of finger tip splitting and side branching.

1. Tip-splitting mechanism

Within the scope of our mode-coupling theory, finger tip
splitting and finger tip narrowing are related to the influence
of a fundamental mode n on the growth of its harmonic 2n

[18,36]. For consistent second-order expressions, we replace
the time derivative terms ȧn and ḃn by λ(n)an and λ(n)bn,
respectively. Under these circumstances the equation of motion
for the cosine mode 2n is

ȧ2n = λ(2n)a2n + 1
2T (2n,n)a2

n, (41)
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where the tip-splitting function is given by

T (n,m) = FN (n,m) + λ(m)GN (n,m) + δ[FNN (n,m)

+ λ(m)GNN (n,m) + λ(n − m)HNN (n,m)

+ λ(m)λ(n − m)JNN (n,m)]. (42)

Equation (41) shows that the presence of the fundamental
mode n forces growth of the harmonic mode 2n. The function
T (2n,n) acts like a driving force and its sign dictates if finger
tip splitting is favored or not by the dynamics. If T (2n,n) < 0,
a2n is driven negative, precisely the sign that leads to finger
tip widening and finger tip splitting. If T (2n,n) > 0 growth of
a2n > 0 would be favored, leading to outwards-pointing finger
tip narrowing.

Figure 3 plots the behavior of T (2n,n) as a function of δ,
for two different values of the surface tension parameter �. To
simplify our analysis we consider the onset of growth of mode
2n [using the condition λ(2n) = 0] in the Newtonian limit
δ = 0, where we know T (2n,n) is negative [18]. By inspecting
Fig. 3 we see that, regardless of the value of �, T (2n,n)
becomes more negative as δ increases, driving a2n negative [see
Eq. (41)]. Considering the presence of only modes n and 2n

this indicates an enhanced tendency of the fingers to get wider,
and possibly split. These second-order results are consistent
with the first-order predictions described in Sec. IV A, which
associated larger δ with finger proliferation.

It is important to notice that, although Fig. 3 indicates an
increasing tendency to observe tip splitting for larger values
of δ and lower values of �, this is not sufficient to guarantee
that finger tip splitting will be the dominant morphological
feature. It is necessary to analyze the interplay between the
tip splitting and other relevant nonlinear phenomena such as
side-branching in order to determine the ultimate shape of
the evolving pattern. In the following section we investigate
the role of the side-branching mechanism in our system, and
analyze which effect prevails for each set of dimensionless
parameters.

4.45 10 3

2.45 10 3

0 0.04 0.08 0.12 0.16

5

10

15

δ

T
2n
,n

FIG. 3. Tip-splitting function T (2n,n) plotted against the yield
stress parameter δ, for two values of the surface tension parameter
�: 4.45 × 10−3, and 2.45 × 10−3. Here t = tf = 0.495. Note that
the qualitative behavior of T (2n,n) is basically the same for the two
values of �. As expected, for a given δ, smaller � leads to enhanced
tendency towards finger tip widening and splitting.

2. Side branching mechanism

Another relevant non-Newtonian effect that can be studied
at second order refers to the side-branching phenomenon [36].
In the realm of a mode-coupling theory, side branching requires
the presence of mode 3n. If the harmonic mode amplitude a3n is
positive and sufficiently large, it can produce interfacial lobes
branching out sidewards which we interpret as side branching.

As commented at the introduction of this work, an ex-
perimental study of radial Hele-Shaw flow with yield stress
fluids (in the regime where viscous effects are prevalent over
yield stress), detected the development of patterns exhibiting
occasional tip splitting and dominant side branching [44].
Taking these experimental facts into consideration we analyze
the interplay of three modes: n, 2n, and 3n. More precisely,
we examine the influence of the fundamental mode n, and
its harmonic 2n, on the growth of mode 3n. The equation of
motion for the cosine 3n mode is

ȧ3n = λ(3n)a3n + 1
2S(3n)ana2n, (43)

where the side-branching function S(3n) = [T (3n,n) +
T (3n,2n)] can be easily obtained from Eq. (42). By analyzing
Eq. (43) we observe that mode 3n can be spontaneously
generated due to the driving term proportional to ana2n, such
that it enters through the dynamics even when it is missing
from the initial conditions. The existence and phase of mode
3n depends on the interplay of the modes n and 2n. Side
branching would be favored if a3n > 0.

To study the growth of mode 3n, in Fig. 4 we plot the
function S(3n) as the yield stress parameter is varied. Here,
we consider the onset of growth of mode 3n [i.e. obeying
the condition λ(3n) = 0] in the Newtonian limit δ = 0. From
Fig. 4 one can verify that S(3n) is indeed negative for all values
of δ. As shown in Sec. IV B1, starting with a fundamental
mode an, the harmonic mode a2n is driven negative. Hence the
product S(3n)ana2n in Eq. (43) is positive, driving a3n > 0,
exactly the sign that favors side branching. Of course, whether
side branching actually occurs depends on the magnitude of
a3n.

It is worth pointing out that there exists a subtle intercon-
nection between modes 3n and 2n, described by the evolution

4.45 10 3

2.45 10 3

0 0.04 0.08 0.12 0.16

5

10

15

20

δ

S
3n

FIG. 4. Behavior of the side-branching function S(3n) as the yield
stress parameter δ is increased, for two values of the surface tension
parameter �: 4.45 × 10−3 and 2.45 × 10−3. Here t = tf = 0.495.
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FIG. 5. Snapshots of the evolving interface, plotted at equal time intervals for the interaction of three cosine modes n = 4, 2n = 8, and
3n = 12 when (a) δ = 0, and (b) δ = 0.15. Here � = 4.45 × 10−3, t = tf = 0.495, and R0 = 0.1. In (a) fingers widen and tip splitting is
imminent, while in (b) the rising of three-lobed finger shapes indicate that side branching is favored.

equation (43), and a similar expression for the growth of mode
2n,

ȧ2n = λ(2n)a2n + 1
2

[
T (2n,n)a2

n + S2nana3n

]
, (44)

where S2n = [T (2n, − n) + T (2n,3n)] is positive, but de-
creases in magnitude as δ is increased. Hence, when δ = 0
side branching via a positive a3n will tend to drive a2n less
negative, diminishing the intensity of tip splitting but also,
as a by-product, reducing a the growth rate of a3n itself.
Fortunately, these effects become less important when δ > 0,
so that side branching could still be detected by properly tuning
δ and �.

The role of the yield stress parameter in determining the
side-branching behavior is illustrated in Fig. 5, which depicts
the time evolution of the interface, plotted at equal time
intervals, considering the interaction of three representative
cosine modes: a fundamental n = 4 and its harmonics 2n = 8,
and 3n = 12. The final time is t = 0.495, R0 = 0.1, and
� = 4.45 × 10−3. The initial amplitudes at t = 0 are an =
R0/(32.5), a2n = 0, and a3n = 0, so that modes 2n and 3n are
both initially absent.

In Fig. 5(a), when yield stress effects are absent (δ = 0),
we see a nearly circular initial interface evolving to a four-
fingered structure. Finger broadening can be observed and, at
later times, the finger tips become increasingly flat, showing
a tendency to bifurcate. The development of broad fingers
in Fig. 5(a) results from nonlinear effects, as predicted by
Eq. (41), when the mode 2n is driven negative. Notice that there
is no sign of the presence of a mode 3n in Fig. 5(a), indicating
that side branching would not be favored when δ = 0.

A different scenario is observed in Fig. 5(b), where the
yield stress parameter is nonzero (δ = 0.15). Contrary to what
is shown in Fig. 5(a), in Fig. 5(b) we see the development of
an initially fourfold structure which evolves towards a 12-fold
fingered morphology, clearly showing the presence and growth
of a sizable amplitude a3n > 0. This indicates that the presence
of a nonzero, sufficiently large yield stress parameter does
favor side-branching formation at second order. Therefore,

our weakly nonlinear results predict enhanced side-branching
behavior when the role of yield stress is taken into account.

In order to reinforce the conclusions reached from Fig. 5,
in Fig. 6 we compare the time evolution of the cosine
perturbation amplitudes of modes n, 2n, and 3n when yield
stress effects are neglected (dashed curves) and taken into
account (solid curves). All initial conditions and physical
parameters are identical to the ones utilized in Fig. 5. It is
clear that as a result of the weakly nonlinear coupling we find
the enhanced growth of modes 2n (with a2n < 0) and 3n (with
a3n > 0), and a diminished growth of the fundamental mode
n. This provides supplementary information supporting the
effectiveness of the side-branching formation mechanism at
the onset of nonlinearity.

It is worth noting that, although in Fig. 6 a2n is more
negative for the yield stress case in comparison to the
Newtonian one, this does not necessarily imply that tip splitting
will be the prevalent morphological feature of the emergent

a12

a8

a4

Solid curves 0.15
Dashed curves 0

0 0.1 0.2 0.3 0.4 0.5

0.1

0

0.1

0.2

t

a n

FIG. 6. Time evolution of the cosine perturbation amplitudes
of modes n = 4, 2n = 8, and 3n = 12, for δ = 0 (dashed curves),
and δ = 0.15 (solid curves). These are the amplitudes related to the
patterns depicted in Fig. 5.
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FIG. 7. Morphological phase diagram in the parameter space
(δ, �). The dashed lines delimitate the boundary between different
morphological regions (I, II, and III).

pattern. As a matter of fact, the positive amplitude of a3n is also
increased due to the effect of the yield stress when compared
to the δ = 0 situation. Consequently, side branching is also
favored and eventually overcomes the tip-splitting tendency.
Therefore, we find necessary to plot the interface with all
three modes (n,2n,3n) put together in order to determine the
prevailing mechanism at the weakly nonlinear regime. As it
is further discussed, we proceed by inspecting our parameter
space in Fig. 7 to unveil the final predominant morphology for
each set of parameters.

We conclude this section by briefly presenting a morpho-
logical “phase diagram” for the onset of pattern formation
in our radial Hele-Shaw system with a yield stress fluid.
Figure 7 shows typical emerging patterns by considering the
parameter space (δ, �). Since the parameters δ [Eq. (9)] and
� [Eq. (29)] depend on the final unperturbed radius Rf ,
the representative patterns shown in the insets of Fig. 7 are
plotted in such a way that Rf and R0 are kept fixed, while
the initial perturbation amplitudes are chosen in order to
allow better visualization of the nonlinear effects. In other
words, we choose the adequate perturbation amplitudes such
that at R = Rf the weakly nonlinear evolution reaches its
limit of validity (interfaces plotted at different times do
not intercept [53]). For this reason the initial conditions
of the four insets of Fig. 7 are not exactly the same,
presenting small differences in their innermost interfacial
contours.

In the phase diagram depicted in Fig. 7 we can identity
three different regions: for lower values of � and nonzero
δ (region I) we verify that tip splitting is unfavored for a
nonNewtonian yield stress fluid, so that the resulting patterns
present a small bump in the middle of each evolving finger,
indicating preferred side-branching behavior. On the other
hand, for higher values � (region III) finger tip splitting
arises without any evident manifestation of side branching,
generating petal-like patterns which are similar to the ones
obtained in the purely Newtonian problem when δ is small. It
is also clear that stronger splitting results when δ is increased,

leading to shapes showing fingers with increased spreading.
Finally, for intermediate values of � (region II) we have the
delicate interplay between modes 2n and 3n mentioned earlier
[Eqs. (43) and (44)], leading to a competition between the two
participating mechanisms, which ends up forming three-lobed,
side-branched structures. The phase diagram contemplates the
possibility of existence of tip-splitting events (region III), plus
the prevalence of side-branching phenomena (regions I and
II), being generally consistent with available experimental
results [43,44].

V. CONCLUDING REMARKS

In this work we have considered a modified version
of the Saffman-Taylor viscous fingering problem in radial
Hele-Shaw geometry. In contrast to the conventional purely
Newtonian situation, we have examined the case in which
a fluid of negligible viscosity displaces a viscous yield
stress fluid. Motivated by existing experiments [43,44] we
have focused on the regime in which viscous effects prevail
over yield stress. These experiments revealed the rising of
ramified structures, presenting some tip-splitting events, but
the predominance of side-branching phenomena.

In order to get some analytical insight into the onset of
pattern formation we have derived two main theoretical results:
First, using the lubrication approximation we deduced a Darcy-
like law for the gap-averaged problem. Then by employing a
perturbative weakly nonlinear approach we have found the
mode-coupling differential equation which governs the time
evolution of the interface at lowest nonlinear order. In this
framework, we have shown that consideration of the coupling
between a small number of modes allows one to predict and
detect the occurrence of both tip splitting and side branching.

Finger widening and splitting occur through the favored
growth of the harmonic mode 2n, while side branching devel-
ops through the enhanced growth of mode 3n. Nonlinear mode-
coupling enhances the growth of these specific perturbations
with appropriate relative phases. Last, we provided a morpho-
logical phase diagram that shows the flow and fluid parameters
required to develop either tip splitting or side branching. In
conclusion, we have developed a relatively simple analytical
model which is able to capture the most salient features of this
interesting and complex pattern formation problem.
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APPENDIX A: EXPRESSIONS FOR THE SECOND-ORDER
TERMS

This Appendix presents the expressions for the second-
order Newtonian (N ) and non-Newtonian (NN ) mode-
coupling coefficients which appear in Eq. (37):

FN (n,m) = |n|
R3

[
1

2
− sgn(nm) − �

R

(
1 − nm

2
− 3m2

2

)]
,

(A1)
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FNN (n,m) = 1

R2

{(
2 − n

m

)
α(m)

+ |n|
[

1

2
− �

R

(
1 − nm

2
− 3m2

2

)]
[α(n) − β(n)]

+ |n|
[(

1 − 1

|m|
)

β(m) − α(m)

]
+ f (n,m)

}
,

(A2)

GN (n,m) = |n|
R

[
1 − sgn(nm) − 1

|n|
]
, (A3)

GNN (n,m) =
(

2 − n

m

)
α(m)

+ |n|
[
α(n) − β(n) +

(
1 − 1

|m|
)

β(m) − α(m)

]
+ f (n,m), (A4)

HNN (n,m) = f (n,m), (A5)

and

JNN (n,m) = R2f (n,m), (A6)

where

f (n,m) = nh(n,m) + |n|k(n,m). (A7)

APPENDIX B: DERIVATION OF EQ. (40)

This appendix describes the main steps of the derivation of
Eq. (40). By using Eq. (36) and setting [dλ(n)/dn]n=nmax = 0
for the situation in which δ �= 0, we obtain a complicated
equation for nmax

1

R2
− �

R3

(
3n2

max − 1
) + δ

{(
2n2

max − 2nmax + 1
)

(2nmax − 1)2

(
1

R

)

+
(

�

R2

)
2nmax

(
3n3

max − 2n2
max − nmax + 1

)
(2nmax − 1)2

}
= 0. (B1)

By considering the limit � � 1, so that the product δ� is
negligibly small, Eq. (B1) can be rewritten in a much simpler
form

�

R

(
3n2

max − 1
) = 1 + δR

{
2n2

max − 2nmax + 1

(2nmax − 1)2

}
. (B2)

Recalling that we only consider contributions up to first order
in δ, notice that on the right hand side of Eq. (B2) we can
replace nmax by nN

max [Eq. (39)] without loss of generality. In
this context, and assuming that (nN

max)2 	 nN
max 	 1, we may

approximate (2n2
max − 2nmax + 1)/(2nmax − 1)2 ≈ 1/2. Thus,

Eq. (B2) is simplified further, leading to

nmax =
√

R

3�

(
1 + �

R
+ δR

2

)1/2

. (B3)

By utilizing this equation plus Newton’s generalized binomial
theorem [54]

(x + y)r = xr + rxr−1y + · · · , (B4)

where x = 1 + �/R, y = δR/2, and r = 1/2 we get

nmax =
√

R

3�

[√
1 + �

R
+ δR

4

1√
1 + �

R

+ O(δ2)

]

=
√

1

3

(
1 + R

�

)
+ δR

4

√
R
3�√

1 + �
R

. (B5)

By considering the situation � � 1, we may write (1 +
R/�) ≈ R/� and (1 + �/R) ≈ 1. Then, Eq. (B5) leads to

nmax ≈
√

1

3

(
1 + R

�

)(
1 + δR

4

)
. (B6)

With the help of Eq. (39), this last expression readily leads to
Eq. (40).
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