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Speed of a swimming sheet in Newtonian and viscoelastic fluids
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We measure the swimming speed of a cylindrical version of Taylor’s swimming sheet in viscoelastic fluids,
and find that depending on the rheology, the speed can either increase or decrease relative to the speed in
a Newtonian viscous fluid. The swimming stroke of the sheet is a prescribed propagating wave that travels
along the sheet in the azimuthal direction. The measurements are performed with the sheet immersed in a fluid
inside a cylindrical tank under torque-free conditions. Swimming speeds in the Newtonian case are found to be
consistent with calculations using the Stokes equation. A faster swimming speed is found in a viscoelastic fluid
that has a viscosity independent of shear rate. By contrast, a slower swimming speed is found with more complex
shear-thinning viscoelastic fluids which have multiple relaxation time scales as well. These results are compared
with calculations with Oldroyd-B fluids which find a decreasing swimming speed with Deborah number given
by the product of the fluid elastic relaxation time scale and the driving frequency.

DOI: 10.1103/PhysRevE.87.013015 PACS number(s): 47.63.Gd, 47.20.Gv, 83.50.Jf

I. INTRODUCTION

Many examples of microorganisms swimming through
viscoelastic fluids can be found in nature, including sperm
swimming through cervical mucus and Helicobacter pylori in
gastric mucus [1]. Because of their small size, the Reynolds
number is small and inertial effects are negligible. Net swim-
ming translation typically occurs due to a broken symmetry
as in a traveling-wave deformation of the sperm flagellum or
a chiral or helical motion of some bacteria. Taylor considered
the corresponding problem of an infinite planar sheet with
a prescribed traveling-wave form [2]. He showed that the
swimming speed is proportional to the phase velocity and
to the square of the wave amplitude. Extending this work to
viscoelastic fluids, Lauga [3] recently calculated the speed of
a swimmer in an Oldroyd-B model fluid which has a single
relaxation time and a shear-rate-independent viscosity. He
found that the ratio vN-N/vN of the swimming speed in the non-
Newtonian fluid to the swimming speed in a Newtonian fluid
decreases with increasing Deborah number De as vN-N/vN =
1/(1 + De2) when the solvent viscosity is small compared
to the polymer contribution to the viscosity. Here De is the
product of the relaxation time constant of the fluid and the
driving frequency. Fu, Powers, and Wolgemuth [4] found a
similar relation for small-amplitude waves on an infinitely
long filament in a fluid described by the Oldroyd-B model.

Several issues arise in further developing and comparing
such calculations with actual swimming speeds of microorgan-
isms. An organism can change form and frequency of stroke
in response to changes in the fluid properties, making direct
comparisons difficult [5]. Furthermore, biological viscoelastic
fluids are far more complex with multiple relaxation time
scales and shear-thinning rheology which are highly dependent
on concentration and pH [6]. Numerical simulations with
finite-length sheets in idealized viscoelastic fluids have shown
that swimming speeds and efficiency can be enhanced at

De ≈ 1 for nonsinusoidal large-amplitude undulations, where
the amplitude increases from head to tail of the sheet [7].
Enhanced swimming speeds have also been observed with a
finite-length model helical flagellum in Boger fluids, with the
greatest enhancement observed again near De ≈ 1, where the
Deborah number is defined as the product of the relaxation
rate and the rotation period [8]. Therefore, the agreement
between the recent observation [9] of swimming speeds of
Caenorhabditis elegans in various concentrations of car-
boxymethyl cellulose (CMC) and the theoretical calculation
by Lauga is somewhat surprising because of the significant
differences in the geometry and the complexity of the fluids
investigated.

In this paper, we introduce an apparatus based on Taylor’s
swimming sheet to investigate the speed of a swimmer in
various non-Newtonian fluids. We first show that the system
captures the essence of the idealized Taylor swimming sheet by
comparing swimming speed with numerical simulations and
analytical calculations using the Stokes equation in the same
geometry. We then discuss the swimming speed measured with
several kinds of viscoelastic fluids including a viscoelastic
Boger fluid which has constant viscosity over a range of shear
rates, and more complex shear-thinning viscoelastic fluids.
We provide evidence that the ratio of swimming speeds is not
always less than 1, and depends on the viscoelastic nature of
the fluid.

II. CYLINDRICAL TAYLOR SWIMMER

In order to perform an experiment with a finite-sized
swimming sheet, we consider a cylindrical sheet, deformed
by traveling bending waves and with an average radius R1

immersed inside a cylindrical tank with a radius R2. The
cylindrical geometry further simplifies the analysis since there
are no complicating effects from free ends. The swimming
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speed of this cylindrical Taylor swimmer can be calculated
using the Stokes equations and imposing nonslip boundary
conditions on the swimmer. Because of the rotary geometry,
torque-free conditions are imposed on the swimmer instead of
the force-free conditions of the original planar Taylor-sheet
swimmer. The stroke of the swimmer is a traveling wave
that propagates around the cylindrical sheet. It is simplest to
describe the wave in the frame that rotates with the wave. In this
frame the peaks and the troughs of the wave are stationary, but
the material points of the wave move clockwise, tangentially to
the inextensible sheet with speed v. Our wave has two peaks,
so the shape of the sheet is given in this frame as

R(�) = (R1 + b sin 2�) R̂, (1)

where R and � are the polar coordinates in the traveling-wave
frame. To first order in b/R1, the arclength s along the sheet
is related to the angle � by

�(s) ≈ s/R1 + b

2R1

[
cos

(
2s

R1

)
− 1

]
. (2)

To get the velocity of the material points in the traveling-wave
frame, we label the points by their arclength coordinate s0 at
time t = 0, which will have an angle �s0,t = �(s0 − vt) at
time t and position

R(s0,t) = (R1 + b sin 2�s0,t )R̂(�s0,t ). (3)

Differentiating the position R(s0,t) with respect to t at fixed
s0 and expressing the result in terms of � leads to

V(�,t) = −v

[
�̂ + 2

b

R1
R̂ cos 2�

]
. (4)

It is simplest to calculate the swimming speed in the the
“swimmer frame,” the frame that rotates with the material
points of the sheet. If the sheet makes one revolution in
period T , the swimmer frame rotates at an angular velocity
�sheet = 2π/T relative to the traveling-wave frame. For small
deformations, the perimeter of the sheet is unchanged from
that of a circle of radius R1 up to first order in b/R1, so v =
�sheetR1. The traveling-wave frame rotates counterclockwise
relative to the swimmer frame, so that the angle θ measured
from the x axis of the swimmer frame is related to the angle
� measured from the x axis of the traveling-wave frame by
θ = � + vt/R1 = � + �sheett . Likewise R̂(�) = r̂(θ ), and
�̂(�) = θ̂ (θ ), and the velocity v of material points in the
swimming frame is related to the velocity of material points
in the traveling-wave frame by v = V + �sheetẑ × R, or

v = −2�sheetb cos [2(θ − �sheett)] r̂

+�sheetb sin [2(θ − �sheett)] θ̂ . (5)

It is interesting to draw a contrast between this expression for
the velocity of material points on a curved sheet with small
ripples and the corresponding expression used by Taylor for
the flat sheet [2]. For the flat sheet with small ripples, the
condition of inextensibility leads to horizontal components of
the velocity of the wave which are second order in amplitude.
These components make a contribution to the swimming
velocity that is fourth order, and therefore may be disregarded
at leading order [2]. In contrast, the inextensibility of the
cylindrical sheet leads to azimuthal components that are first

order in the amplitude b, and these components must not
be disregarded when calculating the leading-order swimming
speed.

Imposing the no-slip boundary conditions on the swimmer
and the wall and solving the Stokes equations in polar
coordinates leads to

�N
swim = gf �sheet, (6)

where gf is a nondimensional geometric factor which depends
on the amplitude of the wave and the size of the tank relative
to the size of the swimmer, and is given by

gf = 2b2

R2
1

3(1 + 6α2 + α4)

4(1 − α2)2
, (7)

to leading order in b/R1, and where α = R1/R2. Thus, the
swimming speed has a similar dependence on amplitude and
angular phase velocity as in the original Taylor swimming
sheet, and the effect of the finite size of the tank is to increase
the speed of the swimmer. Such enhancement of swimming
has been noted previously as well for a planar sheet swimming
near a boundary [10].

In the traveling-wave frame, the geometry of the problem
is constant and thus the Stokes problem can be easily solved
using COMSOL. In this frame, the material points of the sheet
move tangentially to the sheet and so the no-slip boundary
condition is a tangential flow at the surface of the deformed
sheet. For small deformations, the solutions obtained using
COMSOL match the perturbation result for gf [Eq. (7)] to 1.4%.
Using COMSOL, we are also able to investigate large-amplitude
deformations and the effects of geometrical asymmetries in
the experiments; we describe those results in Sec. IV A in the
context of our experimental observations.

Furthermore, for small amplitudes and for small solvent
viscosity, the swimming speed in an Oldroyd-B fluid for the
cylindrical geometry is

�N-N
swim = 1

1 + De2 �N
swim, (8)

where the superscript N -N denotes swimming speed in a
non-Newtonian fluid. In this equation, the Deborah number
is defined as

De = ωτ, (9)

where ω = 2�sheet is the oscillation frequency of a material
point on the belt. This form is again similar to that for the
finite planar Taylor swimming sheet and tells us that for
single-relaxation-time viscoelastic fluids, the swimming speed
is always lower than that in a Newtonian fluid for the same
prescribed traveling wave form.

III. EXPERIMENTAL APPARATUS

A schematic of our experimental apparatus consisting of the
cylindrical swimmer immersed in a circular cylindrical glass
tank with radius R2 = 10.15 cm is shown in Fig. 1(a). The
swimmer is composed of a polyester sheet with a coating of
rubber on the inner surface glued to form an elastic circular
cylinder with radius R1 = 5.70 cm. The elastic cylinder is then
stretched between two vertical rollers as shown in Fig. 1(a),
resulting in a swimmer with a cross section as shown in
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FIG. 1. (Color online) (a) Schematic diagram of the cylindrical
swimmer apparatus. (b) The measured shape of the swimmer and
error bars as it rotates over several cycles. The undeformed circular
sheet with R1 = 5.70 cm and the boundary of the tank with radius
R2 = 10.15 cm are also plotted for reference.

Fig. 1(b). An elliptical cross section can be calculated to
result using elastic theory if a circular sheet is stretched by
applying constant forces along diametrically opposite ends.
This shape is observed to describe the measured cross section,
which has major semiaxis 6.8 cm and minor semiaxis 4.6 cm.
Some deviations are also observed caused by seams and
other imperfections in the fabrication of the cylinder. These
deviations lead to a maximum of 2.4% deviation in the
horizontal direction and 2.8% deviation in the vertical direction
from the center as the swimmer rotates. We do not observe
deformation of the sheet arising from fluid stresses.

The rollers are then driven with a stepper motor and
planetary gear system. This allows the rotation speed of the

cylindrical sheet (which equals the phase velocity �sheet =
2π/T , where T is the period) to be set and varied over a wide
range. Therefore if one follows a point on the surface of the
sheet, it moves in and away from the center of the cylinder
as it rotates, giving rise to a traveling wave in the azimuthal
direction. The tank is placed on a bearing to impose torque-free
boundary conditions on the swimmer provided the bearing is
frictionless. The frictional coefficient of the bearing is obtained
by measuring the decay of the angular speed of the tank set
into motion with an initial speed. The friction is found to be
small and constant over the range used in our experiments
and approximately equal to 0.005 ± 0.0001 N m. The entire
swimmer along with gears and motors is mounted on a second
rotary bearing from the ceiling to reduce the torques during
the initial transient.

Once a traveling wave is imposed on the inner cylinder, the
outer cylinder (the tank) starts to rotate in the same direction
to minimize torque. In the final steady state the tank rotates
with net torque close to zero. Note that the forces exerted
by the gears and motors on the oscillating sheet are internal
forces, and maintaining torque-free boundary conditions at
steady state on the tank ensures that the swimming sheet itself
is torque-free. The rotation speed of the tank �tank is measured
by imaging a marker on the tank. The corresponding swimming
speed of the Taylor swimmer is then obtained by

�swim = �sheet − �tank. (10)

IV. MEASUREMENT OF SWIMMING SPEEDS

A. Newtonian fluids

We first discuss the results with Newtonian fluids in order to
provide a reference to compare with swimming in viscoelastic
fluids. The properties of the fluids used are noted in Table I.
A plot of measured angular speed of the tank �tank versus
the phase velocity �sheet is plotted in Fig. 2(a) for the various
liquids. The Reynolds number Re varies between 0.15 and
1.47 for the viscous corn syrup, and between 0.29 and 2.21
for the light corn syrup. We observe that the speeds in the
higher-viscosity fluids collapse onto a single line with an
intercept close to the origin. The fact that the data can be
described by a line is important validation that we are in the
linear regime in the experiments. The small intercept with the
horizontal axis shown in Fig. 2(a) arises because the viscous
drag of the fluid on the boundary is not sufficient at very
low frequencies to overcome the friction in the bearing on

TABLE I. List of fluids used in the experiments and their properties. The shear rate viscosities of the viscoelastic fluids are shown in Fig. 4.

Label Fluid Kind η (Pa s)

Viscous CS Viscous corn syrup Newtonian 27
Light CS Light corn syrup Newtonian 7
Glycerine Glycerine Newtonian 0.5
Boger PAA and corn syrup Viscoelastic 37
CMC 2% Carboxymethyl cellulose 2% Viscoelastic Shear thinning
CMC 3% Carboxymethyl cellulose 3% Viscoelastic Shear thinning
Polyox 1% Polyethylene oxide 1% Viscoelastic Shear thinning
Polyox 2% Polyethylene oxide 2% Viscoelastic Shear thinning
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FIG. 2. (Color online) (a) The angular speed of the tank �tank

versus rotation speed of the inner cylinder �sheet. The data correspond
to light corn syrup, high-fructose corn syrup, and various ratios of
height h of the fluid in the tank to the average gap R2 − R1. The
data are observed to fall on a line with an intercept close to the origin.
(b) The angular swimming speed of the Taylor swimmer versus phase
velocity in a viscous fluid is described by a linear fit. The friction in
the bearing leads to a vertical offset in measured �swim for glycerin,
which has lower viscosity, but the linear fit has the same slope.

which the tank rotates. Also plotted in Fig. 2(a) are the speeds
corresponding to various heights of the viscous liquids in the
tank. The measured angular speed collapses onto the same
line in all cases. This collapse indicates that the measured
speeds are independent of the height of the sheet immersed
in the fluid and the top and the bottom surfaces of the tank
do not influence the measurements. We further tested the
two-dimensional nature of the fluid flow by using a horizontal
light sheet using a laser to visualize the flow of small tracer
particles. The tracer particles remained on the cross section
of the fluid illuminated by the laser, further indicating the
two-dimensionality of the system.

As can be noted from Eq. (6), the swimming speed increases
linearly with �sheet with the slope given by the geometric factor
gf . When the experimentally measured swimming speed
�swim is then calculated using Eq. (10), and plotted in Fig. 2(b),
it is observed to increase linearly with �sheet consistent with
Eq. (6). The data for viscous corn syrup and light corn syrup
collapse onto the same line. However, while the line passes
close to the origin, a small intercept with the vertical axis
can be noted due to the systematic effect of the friction of
the bearing. We have further investigated this effect by using

glycerin, which has relatively lower viscosity and thus a greater
�tank has to be applied to overcome the friction of the bearing.
We can note that measured �swim for glycerin can be described
by a line with same slope as for the higher-viscosity fluids but
with a higher vertical intercept. Thus, we find that provided
the viscosity of the fluid is large enough, the systematic error
introduced by the friction of the bearing is small. Henceforth,
we discuss swimming speeds for fluids where the effect of
the friction of the bearing on the swimming speed can be
considered negligible.

We compare the measured speeds with those obtained
using calculations using the Stokes equation in terms of
the geometric factor gf in Eq. (6). The linear fit to the
experimental data yields gf (expt) = 0.32. Approximating the
shape of the swimmer with Eq. (1), we calculate gf = 0.36
from Eq. (7). Equation (7) is valid for small deformations
given by Eq. (1) from a circular shape, while the actual belt
has large deformations and is close to an ellipse. Therefore
using COMSOL, we calculated the swimming speed for an
ellipse with dimensions matching the belt; in this case gf =
0.29. Furthermore, as noted in the discussion of Fig. 1(b),
asymmetries are present in the experimental apparatus. To
explore the effect of these asymmetries in our numerical
simulations, we offset the center of the swimmer by 2.5% of
R2, and find using COMSOL gf in the range 0.29 to 0.31, which
is close to the experimentally measured value. We conclude
that the apparatus shows the main features of an ideal Taylor
swimmer including linear dependence on the imposed phase
velocity.

B. Viscoelastic fluids

We now discuss the swimming speed of the Taylor swimmer
in various fluids which have been typically used to study
viscoelasticity. A list of the fluids used can be found Table I.
These include two samples of a Boger fluid prepared by mixing
125 ppm polyacrylamide (PAA) in 96.5% viscous corn syrup
to obtain a fluid with constant viscosity as a function of
shear rate. We also use more complex fluids such as aqueous
solutions of carboxymethyl cellulose and polyethylene oxide,
which are representative of biological fluids that are often
shear thinning. Sodium CMC was mixed 2% and 3% by
weight to prepare fluids that we label CMC 2% and CMC
3%, respectively. Polyethylene oxide, commonly known as
Polyox, is a water-soluble polymer; it was mixed 1% and 2%
by weight in water. We find that the Reynolds number for the
viscoelastic fluids used in our experiments varies from 0.05 to
2 for the liquids in our experiments, a range that is similar to
the range for Newtonian liquids.

The measured angular swimming velocity as a function
of phase velocity is shown in Fig. 3. We observe that the
swimming speeds are systematically faster in the Boger fluid
compared to the Newtonian fluid for the same phase velocity.
Thus, the trend observed appears to be qualitatively different
from that found for Olroyd-B fluids in Eq. (8) where swimming
speeds are always lower than that for the Newtonian fluid.
On the other hand, the swimming speed in viscoelastic fluids
which mimic shear thinning and have multiple relaxation time
constants is found to be systematically lower than in the case
of the Newtonian fluid for the same phase velocity.
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FIG. 3. (Color online) (a) Swimming speed as a function of phase
velocity for Boger fluid in comparison to that of Newtonian corn
syrup. Systematically greater swimming speeds are observed in the
Boger fluid. (b) Swimming speed as a function of phase velocity for
Newtonian and viscoelastic fluids. Systematically lower speeds are
observed with prescribed angular frequency.

C. Rheology

To make a more quantitative comparison between our
experiments and the predictions of theory, we measure the
rheology of the fluids with a TA Instruments AR 2000
rheometer. The shear-dependence of the fluids is characterized
by constant shear-rate measurements. Figure 4(a) shows the
shear viscosities of the fluids over a wide range of shear rates γ̇ ,
from 100 to 102 s−1. The Boger fluid here (PAA solution) has
a shear-rate-independent viscosity η = 37.2 ± 0.2 Pa s. The
fluid also exhibits elasticity. The normal stress N is observed
to increase with shear rate γ̇ [see Fig. 4(b)]. The viscoelasticity
can thus be characterized by the first normal stress coefficient
� = N/γ̇ 2 in the limit of vanishing γ̇ [11]. Due to the lack
of experimental accuracy at shear rates below 1 s−1, we
cannot access the regime where � depends quadratically on γ̇ .
Nevertheless, if we use the values measured at the low end of
our experimental regime where we can still obtain the normal
stress value with robustness, we find � = 18.43 Pa s2. Based
on the viscosity of the Newtonian solvent (96.5% viscous
corn syrup), ηs = 26.9 ± 0.5 Pa s, we can estimate the longest
relaxation time as τ = �/[2(η − ηs)] = 0.9 s.

In the cases of CMC and Polyox, the viscosities not only
increase with polymer concentration but also decrease with
shear rate, as shown in Fig. 4(a). Such a shear-thinning feature
suggests that these polymeric solutions are not dilute and
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FIG. 4. (Color online) (a) Viscosity as a function of shear rate
in Boger fluid, CMC 2%, CMC 3%, Polyox 1%, and Polyox 2%.
(b) Normal stress (N ) as a function of shear rate in Boger fluid.

can no longer be characterized by single relaxation times,
as applied to the previous Boger fluids. In this nondilute
region, these polymer suspensions are likely to develop shear-
rate-dependent networks, which are composed of multiple
relaxation modes. To characterize such relaxation modes,
we also perform standard linear rheology measurements
with small oscillatory shear-strain perturbations [12]. The
associated shear moduli are shown in Fig. 5 for a range of
oscillation frequency ω that covers our experimental settings.
Here, the storage modulus G′ gives the component of the
response of the stress that is in phase with the oscillatory strain
and is associated with the solidlike properties of the material.
On the other hand, G′′ is the loss modulus, which governs the
component of the response of the stress which is in phase with
the strain-rate, and is associated with fluidlike properties of the
material. Using rheology models including polymer networks
[13,14], we can potentially estimate the mean relaxation
time τ (ω), associated with few effective relaxation modes
at given frequency ω. In situ, we find that such relaxation
times are not too different from those obtained from a much
simpler “Maxwell’s model” approach, as described in the
following.

According to Maxwell’s model for a polymeric liquid with a
single relaxation time, the moduli G′ and G′′ can be expressed
in terms of the oscillation frequency ω as

G′ = ητω2

(1 + ω2τ 2)
(11)
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FIG. 5. (Color online) Rheological properties of the fluids used:
(a) Polyox and (b) CMC.

and

G′′ = ηω

(1 + ω2τ 2)
, (12)

where η is the zero-frequency viscosity, and τ is the relaxation
time. Therefore, we can calculate the relaxation time as

τ = G′

G′′ω
, (13)

provided the liquid has a clear single relaxation time scale. If
there are multiple modes of relaxation, then G′ and G′′ are
sums of terms as above but with η and τ replaced by η(k) and
τ (k), where k runs over the different modes [11]. Because of
a lack of a simple scaling in the plots of G′ and G′′ (shown in
Fig. 5) it is difficult to perform an analysis to extract relaxation
time constants for these fluids.

To have an estimate of the relaxation time scale, we obtain
the relaxation time scale τ from Eq. (13) for that particular
driving frequency. This estimate is also reminiscent of the fact
that only a few modes of relaxation are efficient at a given
oscillation frequency, which can be potentially explained by
more sophisticated models including shear-thinning features
[13,14]. Thus we can calculate the Deborah number De for the
range of angular frequencies and relaxation times spanned
in the experiment using Eq. (9). However, in the case of
shear-thinning fluids it is not possible to determine the effective
relaxation time scale using the same method. In order to
have an estimate of the relaxation time scale, we obtain the
relaxation time scale τ from Eq. (13) for that particular driving
frequency. A similar method was adopted by Shen and Arratia

0 0.4 0.8 1.2 1.6
0

0.5

1

1.5

Deborah Number

Ω
sw

im
N

−N
/Ω

sw
im

N

Polyox 1%
Polyox 2%
CMC 2%
CMC 3%
Equation 3

Boger Fluid

FIG. 6. (Color online) Ratio of non-Newtonian and Newtonian
swimming speeds versus the Deborah number. The theoretical
prediction for the ratio is plotted as 1/(1 + De2). In interpreting this
graph it must be noted that the Boger fluid has a clearly defined
relaxation time and therefore De, but De is not well defined in the
cases of Polyox and CMC as discussed in the text.

in their report [9] with CMC and therefore we present it here
in order to draw comparison with previous work. However,
it is important to note that because G′ and G′′ do not scale
according to the Maxwell model with a single relaxation
constant it is difficult to justify this method in such fluids.

The ratio of swimming velocities of non-Newtonian and
Newtonian fluids is plotted as a function of the Deborah
number in Fig. 6. We observe that the ratio of the speeds
increases with De for the Boger fluid, but decreases for
CMC and Polyox. Thus the behavior partitions along the
lines of the shear-thinning properties of the fluid. Given this
divergent behavior it is difficult to even conclude that the
overall decrease in swimming speeds observed with CMC
and Polyox is even qualitatively consistent with calculations
performed with Olroyd-B fluids. Note that, although the fluids
are shear thinning in nature over a large range of shear rate,
the experimental regime of frequencies happens to be small,
and hence the viscosity of these fluids in that regime does not
seem to vary too much. Also, the fact that the experiments are
performed in a low-Reynolds-number regime minimizes the
chances of viscosity affecting the swimming speed.

It is further interesting to note that the divergent trends
observed in our experiments are consistent with the two other
reports with the two kinds of fluids used in our experiments. Liu
et al. [8] found enhanced swimming speeds with a Boger fluid
in a rotating helical geometry, and Shen and Arratia [9] found
decreasing swimming speed for the case of live C. elegans
swimming in CMC. It is possible that the overall behavior
is governed by nontrivial interactions between viscous and
elastic components that determine swimming speed.

V. CONCLUSIONS

In conclusion, we have designed an apparatus to measure
the speed of a swimmer with a prescribed shape as a function
of phase velocity. The simplicity of our apparatus makes it
an attractive system for measuring swimming speed in non-
Newtonian fluids and making comparisons with the predictions
of theory. For the Newtonian fluids, the measured speeds are

013015-6



SPEED OF A SWIMMING SHEET IN NEWTONIAN AND . . . PHYSICAL REVIEW E 87, 013015 (2013)

found to be in agreement with calculations using the Stokes
equation. However, the measured speeds in the Boger fluid are
in sharp contrast with the form calculated for the Oldroyd-B
model of viscoelastic fluids. Interestingly, the swimming
speeds in more complex viscoelastic fluids are observed to
decrease with concentration and with phase velocity. While
this trend is qualitatively similar to the trend calculated for
Oldroyd-B fluids, the rheology of real non-Newtonian fluids
makes it difficult to form a well-defined Deborah number,
and hence prevents us from drawing quantitative conclusions
about these fluids. Furthermore, although we do not see inertial
effects in our Newtonian fluids, we have not ruled them out in
our experiments with the non-Newtonian fluids. Our results,
which show both increasing and decreasing trends in the
same apparatus with the various viscoelastic fluids, point to

a pressing need for a broad series of experiments, theory, and
numerical simulations in systems with varieties of geometries
before we can fully understand how microorganisms swim in
viscoelastic fluids.
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