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Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua
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A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose
outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible
fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum
fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport
phenomena—as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci. 54, 67 (2012)]—into
its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with
bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated
circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform;
rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature
nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same
circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the
expected temperature differences render experimental execution of the proposed scheme straightforward in
principle. As such, measurement—via experiment or MD simulation—of, say, the temperature difference �T

between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and
bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in
this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during
the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF
paradigm being correct for fluid continua, except for incompressible flows.
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I. INTRODUCTION

Though it is commonly believed that the foundations
of continuum fluid mechanics [1] (and transport processes
in general [2]) rest on firm theoretical and experimental
grounds, this belief is, in fact, unjustified when one includes
situations where the fluid is compressible [3]. That is, the
only experimental data that appear to unequivocally support
the current model of continuum fluid mechanics, namely, the
Navier-Stokes-Fourier (NSF) equations, are those pertaining
to incompressible flows. Indeed, this fact is well known
to gas kineticists [3] concerned, inter alia, with the flow
of rarefied gases, in which field of study there currently
exists no uncontested, generally applicable, macroscopic fluid-
mechanical theory. This lack of a satisfactory hydrodynamic
foundation is compounded by the fact that the traditional
no-slip boundary condition generally imposed upon fluids at
solid surfaces, whether NSF or bivelocity fluids, proves to be
inapplicable when dealing with compressible gases [4].

The lack of a broadly applicable macroscopic fluid-
mechanical theory embracing both incompressible and com-
pressible fluids reflects a major gap in our current under-
standing of the foundations of hydrodynamics. It was in
an attempt to close this gap that the original bivelocity
hydrodynamic model [5] (later modified [6]) came into being.
The current status of that model, based solidly upon the
widely accepted macroscopic principles of linear irreversible
thermodynamics (LIT) [7], was recently summarized [8] in
a comprehensive review of the pertinent literature. (See also
Refs. [9] and [10], which arrive at exactly these same bivelocity
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equations [8], starting, however, from a molecular rather than
macroscopic basis—the former involving the addition of a
stochastic contribution to the collisional term in Boltzmann’s
gas-kinetic equation [11].) According to its macroscopic LIT-
based derivation [8], bivelocity fluid mechanics is applicable
to both liquids and gases. We focus here exclusively on gases
owing to the greater abundance of high-quality experimental
data pertinent to compressible gaseous flows, as well as
because of the relatively large magnitude of compressibility
effects in gases compared with those for liquids. And the larger
the effect, the more readily is the modified theory likely to be
accepted as pertinent to the issues at hand.

The subsequent bivelocity analysis developed herein pre-
dicts (when body forces such as gravity are absent or negligi-
ble) that the temperature of a gas undergoing steady, rigid-body
rotation relative to an inertial reference frame in a circular
cylinder possessing rigid, non-heat-conducting (i.e., insulated)
walls will be nonuniform, with the temperature increasing radi-
ally with distance from the axis of rotation. This nonisothermal
bivelocity prediction runs counter to NSF predictions of
isothermalicity. That is, according to current beliefs, under
these same conditions of thermodynamic isolation from its
surroundings, the temperature will be uniform throughout
the rotating fluid [12,13]. The issue thus focuses on whether
rigid-body rotation occurring in an isolated system constitutes
a thermodynamically reversible process, wherein dissipative
processes (i.e., entropy production) are absent, such as is
predicted to be the case for NSF fluids. Based upon statistical-
mechanical arguments these issues are discussed at length by
Landau and Lifshitz in their treatise on statistical physics [14].

Were temperature gradients discovered, either experimen-
tally or through simulation, to exist within the rotating
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gas—such as will be seen to be the case for the bivelocity
model—the gas would, by definition, presumably be in a state
of thermodynamic disequilibrium. In terms of the possibility
of observing nonuniformities in temperature, the proposed
experiment thus serves to also test the prevailing, and more
general, hypothesis [12–14] that isolated rigid-body fluid
motions constitute states of thermodynamic equilibrium for
all fluids. Even was the temperature distribution predicted by
bivelocity theory to prove quantitatively wrong, experimental
observation of any temperature nonuniformity, whatever its
magnitude or direction, would suffice to discredit the currently
accepted isothermalicity hypothesis ascribed to rigid-body
fluid motions occurring in isolated systems. In turn, this
would refute the claim of their thermodynamically reversible
nature. Furthermore, this nonisothermal finding would also
serve to undermine the prevailing entropy-based criticism
[12,13] of the bivelocity model—according to which any
fluid-mechanical model is, ipso facto, physically incorrect if its
tenets predict the production of entropy during steady, isolated,
rigid-body rotations.

In this present rotating fluid context the proposed experi-
ment, establishing the temperature difference �T between the
gas at the cylinder wall and along the axis of rotation, thus
provides a simple, quantitative test of one of the fundamental
tenets of fluid mechanics, applicable to all fluids, whether
NSF, bivelocity, or otherwise. An approximate, albeit accurate,
perturbation solution of the bivelocity equations for the stated
set of circumstances is derived in subsequent sections of this
paper.

Let R denote the distance from the axis of rotation of the
cylinder, Ro the cylinder radius, and T (R) the temperature
field. A motivating objective in this paper is to calculate the
magnitude of the expected temperature difference

�T := T (Ro) − T (0) (1.1)

on the basis of belief in the principles of bivelocity theory,
and hence to thereby suggest the feasibility of performing
the proposed simulation or experiment over a wide range of
operable test conditions.

II. BIVELOCITY EQUATIONS

Relative to an observer fixed in an inertial reference frame
(i.e., relative to the fixed stars) the conservation equations
governing mass, momentum, and energy transport in all single-
component fluids undergoing steady, time-independent flows
in the absence of body forces are, respectively [8],

∇ · (ρv) = 0, (2.1)

∇ · (ρvv) = −∇ · P, (2.2)

and

∇ · (ρvê) = −∇ · je, (2.3)

in which ρ is the fluid’s density and v the fluid’s mass velocity.
Furthermore,

P = Ip − T (2.4)

is the pressure tensor, in which p is the pressure and T is
the deviatoric or viscous stress (whose negative is equivalent

TABLE I. Bivelocity temperature differences for the noble gases
when C = 1.

�T (◦C)
ĉp �T (◦C) Numerical

Gas (kJ kg−1 K−1 ≡ 10−3 m2 s−2 K−1) Eq. (6.4) solution

Helium 5.193 0.263 0.264
Neon 1.03 1.33 1.32
Argon 0.520 2.64 2.64
Krypton 0.248 5.53 5.53
Xenon 0.158 8.68 8.66

to the diffuse flux density of momentum). We assume T be
symmetric and traceless (which is equivalent to supposing
that bulk viscosity contributions to the stress are absent).

Appearing in the energy equation (2.3) is the fluid’s specific
(i.e., per unit mass) energy density

ê = û + v2 /2, (2.5)

consisting of specific internal and kinetic energies. According
to NSF theory the energy flux je is given by the constitutive
expression

je = ju + P · v, (2.6a)

in which ju is the diffuse internal energy flux (“heat” flux). On
the other hand, according to bivelocity theory [8],

je = ju + P · vv, (2.6b)

in which vv is the fluid’s volume velocity.
The volume velocity is related to the fluid’s mass velocity

by the expression

vv = v + jv, (2.7)

wherein for gases the diffuse volume flux jv is given constitu-
tively by the expression [8]

jv = C

Pr
υ∇ ln ρ. (2.8)

C is a dimensionless, fluid-property-dependent constant [of
O(1) with respect to the Prandtl number], whose value is
believed to be near unity for all gases (see Table I in Ref. [15]).
The Prandtl number is defined as Pr = υ /α [2], in which
υ = η/ρ is the kinematic viscosity, wherein η is the shear
viscosity. Moreover, α = k /ρĉp is the fluid’s thermometric
diffusivity [2], with k and ĉp, respectively, the gas’s thermal
conductivity and isobaric specific heat.

Comparison of Eqs. (2.6a) and (2.6b) in light of (2.7)
and (2.8) shows that the NSF equations correspond to
circumstances wherein jv = 0, namely, where either C = 0
or where the fluid is incompressible, such that in the latter
case ρ is uniform throughout the fluid.

The rheological constitutive equations governing the re-
spective viscous stresses for NSF and bivelocity fluids are [8]

T = 2η∇v (2.9a)

and

T = 2η∇vv. (2.9b)
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An overline above a dyadic denotes the dyadic’s symmetric
and traceless form, such that for any dyadic D ≡ Dij we have
in Cartesian tensor notation that D̄ij = (1/2)(Dij + Dji) −
(1/3)δijDkk , with δij the Kronecker delta.

III. RIGID-BODY ROTATION

The cylindrical container housing the gas rotates steadily
at an angular velocity � = iz� about the z axis of a circular
cylindrical coordinate system (R,φ,z) affixed to the cylinder,
whose origin R = 0 lies along the cylinder’s symmetry axis,
−∞ < z < ∞. In what follows, the trio (iR,iφ,iz) denotes an
orthonormal right-handed set of unit vectors along each of the
three coordinate axes.

A. Symmetry considerations

By virtue of the anticipated radial symmetry of the
respective solutions of the above equation sets for both NSF
and bivelocity fluids (whose symmetries will be seen at the
conclusion of our paper as having been verified a posteriori),
the functional dependencies of the several hydrodynamic and
other fields appearing therein are as follows:

v = iφv(R), p = p(R), T = T (R),
(3.1)

ρ = ρ(R), û = û(R).

Hence, as a result,

jv = iRjv(R) and vv = iφv(R) + iRjv(R), (3.2)

in which

jv = C

Pr
η

1

ρ

d ln ρ

dR
≡ − C

Pr
η

d

dR

(
1

ρ

)
. (3.3)

In what follows, η will be regarded as a constant, independent
of radial position.

B. Continuity equation

As is readily shown, the continuity equation (2.1) is auto-
matically satisfied as a consequence of the above symmetries,
irrespective of the explicit dependencies of the fluid’s density
ρ and mass velocity v upon R.

IV. MOMENTUM TRANSPORT AND VELOCITY
CONSIDERATIONS

As shown in Appendix A, based upon the radial symmetry
conditions set forth in Eqs. (3.1) and (3.2), the vector
momentum equation (2.2) furnishes the following pair of scalar
equations governing its respective azimuthal and radial φ and
R components:

d

dR

[
1

R

d

dR
(Rv)

]
= 0 (4.1)

and

4

3
η

d

dR

[
1

R

d

dR
(Rjv)

]
= dp

dR
− ρ

v2

R
. (4.2)

A. Velocity boundary conditions

With n = iR the outwardly directed unit normal vector
at a point lying on the surface of the cylinder, the boundary
condition n · v = 0 at R = Ro of no mass flow through its
rigid walls is seen on the basis of (3.11) to be automatically
satisfied. Each point situated on the solid cylinder wall moves
with the velocity � × Ro = iφ�Ro (in which R = iRR). The
no-slip tangential velocity boundary condition imposed on
the fluid in contact with the cylinder wall—whether regarded
as being imposed on the fluid’s mass velocity v in the form
(I − nn) · v = 0 at R = Ro, or on the fluid’s volume velocity
vv in the form (I − nn) · vv = 0 at R = Ro—is seen to be
physically satisfied in both instances by the single requirement
that

v = �Ro for R = Ro. (4.3)

The general solution of the azimuthal momentum equation
(4.1) is v(R) = C1R − C2R

−1. Consequently, the solution
thereof that is free of singularities at the origin and satisfies
the no-slip boundary condition (4.3) is represented by the
rigid-body rotation velocity field

v = �R (∀ 0 � R � Ro). (4.4)

Substitution of (4.4) into (4.2) furnishes the radial momentum
equation:

4

3
η

d

dR

[
1

R

d

dR
(Rjv)

]
= dp

dR
− ρ�2R. (4.5)

B. Torque required to maintain the cylinder’s rotation

With respect to an origin lying along the symmetry axis,
the torque N exerted on a length L of the cylinder wall that is
required to maintain the gas’s steady rotation is, by definition,

N = −
∫ L

z=0

∫ 2π

φ=0
R × (dS · P)|R=Ro

, (4.6)

in which dS = iRdS is a directed element of surface
area, wherein dS|Ro

= Rodφdz. After some algebra (4.6)
reduces to

N = izR2
oL

∫ 2π

φ=0
dφ TRφ

∣∣
R=Ro

.

From Appendix A we have for the present case, where the
radial symmetries (3.1) and (3.2) prevail, that for both NSF
and bivelocity fluids the shear stress is given by the expression

TRφ = ηR
d

dR

( v

R

)
.

Use of Eq. (4.4) in the latter shows that TRφ = 0 for all R.
Hence, N = 0, irrespective of the presence or absence of
a diffuse volume flux jv in the governing fluid-mechanical
equations. Consequently, independently of whether the NSF
or bivelocity equations (if either) is regarded as being the
applicable hydrodynamic equation set resulting in the fluid’s
steady rigid-body rotation, no torque is required to maintain
that fluid motion.
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V. BIVELOCITY ENERGY TRANSPORT

A. Bivelocity energy equation

It is readily shown on the basis of the symmetry conditions
(3.1) and (3.2) that the left-hand side of (2.3) is identically
zero. As such, it follows that ∇ · je = 0 at each point of the
fluid. In turn, with use of (2.6b) it is shown in Appendix A that
in present circumstances the energy equation (2.3) becomes

ju + pjv − 2

3
η
dj 2

v

dR
= 0. (5.1)

Furthermore, the constitutive equation for the diffuse biveloc-
ity internal energy flux in the case of ideal gases is [8]

ju = −k′ dT

dR
, (5.2)

in which

k′ = ĉv

ĉp

k, (5.3)

wherein ĉv is the isochoric specific heat.
As stated earlier, the gas is assumed to obey the ideal-gas

equation of state

p = —R

Mw

ρT, (5.4)

in which —R is the universal gas constant and Mw the gas’s
molecular weight.

B. Bivelocity pressure, temperature, density,
and diffuse volume flux fields

The radial momentum equation (4.5), together with the
energy equations (5.1) and (5.2), the ideal-gas equation of
state (5.4), and the constitutive equation (3.3) for the diffuse
volume flux constitute a set of four equations involving
the four bivelocity fields (p,T ,ρ,jv). These equations are
to be solved simultaneously so as to obtain expressions
for the functional dependences of the preceding four fields
upon R. As discussed in Appendix A, all of the physically
imposed boundary conditions demanded of these fields are
already implicitly satisfied as a consequence of the differential
equations themselves. However, in order to render the solutions
of these equations unique one must also specify (i) the mass
of gas confined in the cylinder (per unit cylinder length) or,
equivalently, the mean density ρ̄ of the confined gas,

ρ̄ = 2

R2
o

∫ Ro

0
ρRdR, (5.5)

and (ii) say, the gas’s mean temperature

T̄ = 2

ρ̄R2
o

∫ Ro

0
ρT RdR. (5.6)

Alternatively, instead of the latter, upon using the ideal-gas law
(5.4) in connection with the term ρT appearing in the above
integrand, and upon defining the mean pressure p̄ as p̄ =
(—R/Mw)ρ̄T̄ , one could, instead, specify the mean pressure

p̄ = 2

R2
o

∫ Ro

0
pRdR (5.7)

in place of the mean temperature.

VI. PERTURBATION SOLUTION OF THE
BIVELOCITY EQUATIONS

Solution of the bivelocity-based mass, momentum, and
energy equations satisfying the set of conditions prevailing
during the proposed experiment or simulation thereof requires
specifying the values of the gas’s physical properties [e.g., η,
ĉp, Mw, C (if known), etc.], as well as the values of the other
parameters governing the problem (e.g., �, Ro, ρ̄, etc.). As
these choices lie within the province of the experimentalist
undertaking the proposed test we make no attempt here to
provide complete solutions of the above four-equation set, i.e.,
solutions valid for arbitrary choices of the specified parame-
ters. However, the perturbation solutions of the field equations
that we subsequently derive in Appendix B prove sufficient
towards providing accurate results for all feasible experimental
conditions likely to be encountered. Alternatively, was that
not to be the case, one would have to solve the pertinent
equation set numerically using the experimentalist’s choice of
parametric values in order to compare theoretical predictions
with experimental results.

According to calculations set forth in Appendix B based
upon bivelocity theory, the gas’s radial temperature distribu-
tion in the cylinder is given for all practical purposes by the
surprisingly elementary expression

T (R) − T (0) = f (C)
(�R)2

2ĉp

, (6.1)

where f (C) is the dimensionless O(1) quantity

f (C) =
[

1

γ

(
1

C
− 1

)
+ 1

]−1

, (6.2)

in which

γ = ĉp

ĉv

(6.3)

is the specific heat ratio. For monatomic gases, γ = 5/3. Note
that, independently of γ , f (C) = 1 when C = 1 and f (C) = 0
when C = 0.

Upon setting R = Ro in (6.1), the sought-after bivelocity
temperature difference (1.1) is found to be

�T = f (C)
(�Ro)2

2ĉp

. (6.4)

A. �T values for the noble gases and for the case where C = 1

By way of example, consider the case of a cylinder of
radius 10 cm rotating with an angular velocity of 5000 rpm
(approximately 2800 g’s). Using specific heat capacity data
for the noble gases (for which ĉp = 20.786/Mw kJ kg−1 K−1),
Table I presents data showing the temperature difference
anticipated for each of these gases based upon Eq. (6.4)
together with the assumption that C = 1. Also shown for
comparison are the exact �T values obtained by solving
the radial momentum and energy equations numerically for
the case C = 1 at a mean temperature of T̄ = 300 K and
a mean pressure of p̄ = 1 atm. Obviously, the approximate
formula (6.4) is quite satisfactory [16]. As measurements of
temperature differences of the respective orders of magnitude
shown in the table are routine, there appears to be no significant
barrier to performing the proposed experimental test.
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B. Attributes of the bivelocity formula (6.4) for �T

Surprisingly, for a specified gas the preceding formula is
independent of the gas’s mean pressure, temperature, and
density, as well as of the density gradient. Nor is Eq. (6.4)
limited to rarefied gases, despite such diluteness having been
required in all previous applications of bivelocity theory [8] in
order to assure a sensible magnitude of the diffuse volume
contribution jv over and above the value jv = 0 for the
comparable NSF case. Equally striking is the fact that Eq. (6.4)
is independent of any and all of the gas’s transport properties,
particularly its viscosity and thermal conductivity. Only
geometric, kinematic, and thermodynamic variables appear
in (6.4). Collectively, these facts are unexpected given that the
constitutive equation (3.3) for the diffuse volume flux—which
is the sole factor distinguishing bivelocity hydrodynamics
from NSF hydrodynamics—depends upon both the viscosity
and density gradient, neither of which contributes directly to
the above �T formula.

Equation (6.4) makes it clear that the numerical value of
the coefficient C entering into Eq. (3.3) constitutes the sole
nonequilibrium (i.e., kinetic) contribution to the above �T

formula. As such, its numerical value is key to the proposed
test. For example, in place of the value C = 1 used in preparing
Table I, had one, instead, set C = 0, thus making jv = 0 (as in
the NSF case), one would have obtained f (C) = 0 and hence
�T = 0, as was to be expected under the circumstances. As
such, bivelocity theory is critically dependent upon the value
of the parameter C. In effect, for a specified choice of gas
the proposed experimental test or simulation is tantamount
to experimentally establishing the value of the constant C

for that particular gas. That is, ideally, the test should involve
experiments performed at different angular velocities, different
mean pressures (or mean densities), etc., in order to establish
whether the experimental value obtained for C is indeed
independent of operating conditions.

The overall physical significance of the preceding findings
in broad general terms, involving issues of the thermodynamic
irreversibility of rigid-body fluid motions, is discussed below
in Sec. VII C.

C. NSF fields

In contrast with the bivelocity fields (p,T ,ρ,jv) whose
solutions are derived in the Appendices, the comparable
NSF fields (p,T ,ρ), corresponding to setting jv = 0 in the
respective mass, momentum, and energy equations, as well as
in the boundary conditions, are given for the present set of
circumstances by the following expressions:

T (R) = const = T (0), (6.5)

p(R) = p(0) exp

[
MwR2

2—RT (0)

]
, (6.6)

and

ρ(R) = ρ(0) exp

[
MwR2

2—RT (0)

]
. (6.7)

The several centerline values represented in the above by
the argument (0) are related through the ideal-gas expression
p(0) = (—R/Mw)ρ(0)T (0). The main feature to be noted here

is embodied in the fact that, for compressible gaseous continua,

�T = 0 for NSF gases, (6.8)

in contrast with (6.4) for bivelocity gases.

VII. DISCUSSION

A. Energy conservation

Despite the presence of dissipative processes (reflected
in the nonzero radial temperature gradient) arising from the
gas’s rotation, the amount of energy E = ∫

V
êρdV contained

within the steadily rotating cylinder’s gaseous domain V

remains constant for all time. This represents an obvious
thermodynamic necessity if our analysis is to prove to be
physically correct. Demonstration of this energy constancy
follows from the fact that with D/Dt = ∂/∂t + v · ∇ the
material derivative, and with use of the continuity equation
∂ρ /∂t + ∇ · (ρv) = 0, one obtains the relation

dE/dt =
∫

V

ρDê/DtdV =
∫

V

[∂(ρê)/∂t + ∇ · (ρvê)]dV .

For the present steady-state case the partial time derivative
contribution appearing in the latter integrand is identically
zero. Moreover, as earlier noted in connection with the left-
hand side of the energy equation (2.3), one has that ∇ · (ρvê) =
0. Together these confirm the constancy, dE/dt = 0, of the
amount of energy E confined within the gas present in the
cylinder.

B. Azimuthal energy flow

Use of the symmetry properties set forth in Eqs. (3.1)
and (3.2) enables the energy flux vector je to be recast into
component form as

je = iRjR
e (R) + iφj φ

e (R), (7.1)

in which, beginning with Eqs. (A13) and (A17), we eventually
find that

jR
e (R) = 0 and j φ

e (R)

= �

(
Rp − 4

3
ηjv

)
, (∀ 0 � R � Ro). (7.2)

The first of these two relations confirms the intuitive expecta-
tion (based jointly upon the gas’s thermodynamically isolated
status and radial symmetry) that there exists no radial flow
of energy. The second relation supports a controversial view,
originally introduced by Müller [17] (see also Ref. [18]),
regarding the apparent existence of an azimuthal energy or
heat flux j

φ
e in rarefied gases undergoing rigid-body rotation,

this despite the absence of an azimuthal temperature gradient
∂T /∂φ. However, whereas Müller and others regard this
phenomenon as constituting a noncontinuum effect, from
our perspective this azimuthal flux prediction is a strictly
continuum concept, arising not from Knudsen number effects
but rather from centrifugal effects, as witness the presence of
the angular velocity multiplier � stemming therefrom.
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C. Entropy production in rotating bivelocity fluids

Critics [12,13] of bivelocity theory have argued, among
other things, that bivelocity theory cannot be correct because
it predicts the continuous generation of entropy in a fluid
undergoing a steady, external force-free, rigid-body rotation
relative to an inertial reference frame. Their remarks refer
only to the case where the fluid is isothermal throughout,
presumably by virtue of the cylinder’s contact with a heat bath
(jointly with the cylinder wall now being heat conducting).
However, was the cylinder wall, instead, to remain non-heat-
conducting, the temperature would still have to be uniform
according to their arguments. This owes to the critics’ belief
that a steadily rotating fluid necessarily constitutes a state of
thermodynamic equilibrium [14].

Viewed thermodynamically rather than fluid mechanically,
the above-cited criticism of bivelocity hydrodynamics is
based upon the implicit belief existing among many fluid
mechanicians that an isolated fluid, when rotating steadily
in an inertial coordinate system, necessarily exists in a
state of thermodynamic equilibrium, the latter representing
a state wherein no entropy is generated as a consequence
of the rotation [19]. That belief, however, represents an
unproved assertion rather than an established fact, since (to
the author’s knowledge) it has never been explicitly confirmed
experimentally.

The generic formula governing the transport of entropy at
a point in a fluid continuum is [8]

ρ
Dŝ

Dt
= −∇ · js + πs, (7.3)

in which ŝ is the specific entropy. Moreover,

D

Dt
= ∂

∂t
+ v · ∇ (7.4)

denotes the material derivative. Also,

js = q
T

(7.5)

is the constitutive equation governing the diffusive flux of
entropy [8], whereas πs is the temporal rate of production of
entropy per unit volume of fluid. On the assumption that ŝ is
radially symmetric, one has in view of (3.11) and (4.4) that
v · ∇ŝ = 0. Furthermore, given the steady-state nature of the
processes under consideration, one has at each point of the
fluid that ∂ŝ /∂t = 0. It therefore follows that

Dŝ

Dt
= 0. (7.6)

Consequently,

πs = ∇ ·
(

q
T

)
. (7.7)

With

Ṡ =
∫

V

πSdV, (7.8)

the temporal rate at which entropy is being produced within
the cylinder, one finds from (7.7), together with use of the
divergence theorem, that

Ṡ = 1

T (Ro)

∮
∂V

dS · q, (7.9)

in which dS ≡ iR dS|Ro
is an element of surface area on the

cylinder wall and T (Ro) is the (uniform) temperature of the
gas along the cylinder surface. As dS|Ro

= LRodφ, where L

is the length of the cylinder, we have from the above that

Ṡ = 2πLRo

T (Ro)
q(Ro). (7.10)

According to bivelocity theory [8], in the absence of body
forces the constitutive equation for the entropic heat flux q,
valid for both gases and liquids, is

q = −k∇T + αβT ∇p. (7.11)

Here, k is the thermal conductivity,

α = k /ρĉp (7.12)

is the thermometric diffusivity, and β = (∂ ln ρ/∂p)T is the
coefficient of isothermal compressibility. For ideal gases one
has that βT = 1, whence (7.11) becomes, in the present
radially symmetric circumstances,

q = k

ĉp

(
1

ρ

dp

dR
− ĉp

dT

dR

)
. (7.13)

Conversion of the nondimensional Eq. (B13) appearing in
Appendix B to dimensional form gives

dT

dR
= f (C)

�2R

2ĉp

+ O(ε2). (7.14)

Similarly, conversion of (B11) from dimensionless to dimen-
sional form yields

dp

dR
= ρ�2R + O(ε2), (7.15)

where, from Eqs. (B5) and (B6), ε is a small dimensionless
number (an inverse Reynolds number) of the order of O(10−6)
for the class of problems envisioned in connection with our
proposed test. Hence, to terms of dominant order,

q = k

ĉp

[
1 − 1

2
f (C)

]
�2R + O(ε2). (7.16)

Introduce the latter into (7.10) while noting that the cylinder
volume is V = πR2

oL and, consequently, that the mass of gas
contained within the cylinder is M = ρ̄V , where ρ̄ is the mean
density, defined in Eq. (5.5). This gives

Ṡ =
[

1 − 1

2
f (C)

]
ᾱM�2

T (Ro)
+ O(ε2), (7.17)

in which ᾱ = k/ρ̄ĉp is the mean thermometric diffusivity. For
the proposed set of circumstances one thus has that

Ṡ = 1 − (1/2)f (C)

1 + f (C)(�Ro)2/4ĉpT̄

(
ᾱM�2

T̄

)
+ O(ε2). (7.18)

Based upon the bivelocity differential equations governing
mass, momentum, and energy transport it is proved [8] for
the choice of phenomenological coefficients entering into
the above calculation that the local entropy production rate
defined by (7.7) satisfies the inequality πs � 0 at each point
of the fluid, irrespective of the choice of boundary conditions
and independent of the nature of the physical problem being
addressed. It thus follows from (7.8) that Ṡ � 0 in general, and
hence certainly in the context of the formula (7.18).

013014-6



PROPOSAL OF A CRITICAL TEST OF THE NAVIER- . . . PHYSICAL REVIEW E 87, 013014 (2013)

According to (7.6) the amount of entropy contained in the
gas confined within the cylinder remains constant in time. As
such, the entropy being generated is not accumulated within
the gas itself, but rather eventually appears in the surroundings
of the rotating cylinder. Thus, the entropy of the Universe
is continually increasing as a result of the gas’s rigid-body
rotation, despite the fact that the fluid itself is not undergoing
any changes in its steady-state status. Since the system is
thermodynamically isolated from its surroundings, this leads
to the conclusion that the Universe’s entropy increase is, in
a fundamental sense, attributable exclusively to the body’s
rotation relative to the fixed stars, irrespective of the specific
processes occurring within the fluid. As a result, it would be
wrong to think of the body as being “isolated” from its sur-
roundings. Rather, because of the nature of centrifugal force,
which according to Mach’s principle arises from the interaction
of a body with all of the other bodies in the Universe, the
gas—being a body—cannot really be regarded as isolated from
its surroundings. It is this Mach-based interaction that appears
to explain the source of the system’s unexpected behavior, both
locally with respect to the anticipated nonuniform temperature
distribution within the body, and globally with respect to the
Universe’s entropy increase occurring outside of the body.

Interestingly, even in circumstances where C = 0, thereby
rendering f (C) = 0 in (7.18), one finds that entropy is
nevertheless being produced at a rate

Ṡ = ᾱM�2

T̄
, (7.19)

despite the fact that Eq. (7.14) shows the temperature of the
gas to be uniform throughout. This surprising result can be
traced to the pressure gradient contribution ∇p = ρ�2R to
the entropic heat flux (7.13) [and hence to the entropy flux js in
Eqs. (7.5) and (7.11)]. Thus, whereas a gravitationally induced
pressure gradient would not result in entropy generation in
circumstances where the fluid was not rotating, a centrifugally
induced pressure gradient gives rise to a rather different
result. With respect to Mach’s principle, the role of the
pressure gradient, which acts parallel to the centrifugal force
in the proposed experiment, can be likened to the similar
role played by the pressure gradient in Newton’s water-filled
rotating bucket experiment—which effect acts parallel to the
gravitational force, and wherein the departure of the water’s
free surface from the horizontal is implicitly attributed to the
interaction of the masses of the water molecules with the rest
of the mass in the Universe.

In any event, issues of entropy production pertaining to
the bivelocity model are irrelevant in the context of deciding
whether the experimental or simulation data obtained from
the proposed test supports or denies the viability of the
NSF equations for compressible fluid continua. Simply stated,
irrespective of entropy considerations, if the temperature is
found to be nonuniform, the NSF model cannot be correct,
and conversely.

D. Irreversible thermodynamics of rotating fluids

Owing to recognition of the existence of centrifugal forces
it has been known since at least Newton’s time that the laws of
mechanics are not invariant under the rotation of a body relative

to “empty space,” or, more precisely according to Mach,
relative to the “fixed stars.” Despite this knowledge, it appears
to have always been implicitly assumed that the fundamental
principles of irreversible thermodynamics, and hence of fluid
mechanics, were invariant to rigid-body rotations relative to
the fixed stars [14]. Empirical observation of temperature
inhomogeneities during the proposed test would refute this
assumption. Indeed, our proposed test amounts, inter alia, to a
test of the so-called “principle of material frame indifference”
(PMFI) [17,18,20] for fluid continua, according to which the
constitutive responses of such fluids to changes in their respec-
tive states are independent of the observer’s frame of reference.

This validity of this principle has been challenged by
many, the earliest of whom include Müller [17], Edelen and
McLennan [21], and Soderholm [22] (see also Ref. [23]).
However, these challenges were based upon assuming the
validity of Burnett’s [24] (Boltzmann equation-derived) con-
stitutive equations for the heat flux and stress in nonisothermal
gases undergoing steady, rigid-body rotations. However, the
viability of Burnett’s equations have themselves been chal-
lenged [25,26] on various grounds. Moreover, the Burnett
equations, because of their presumed noncontinuum, Knudsen
number dependence, are not viewed as being applicable to
fluid continua. And it is only for fluid continua that the PMFI
is regarded as being applicable. As such, the viability of this
principle cannot, as yet, be regarded as fully disproved.

Our LIT-based bivelocity equations [8] bear a strikingly
close appearance to those of Burnett [24]. However, in contrast
with those of Burnett—and as with all other LIT-based
constitutive equations [7]—our equations are regarded as
describing the behavior only of continua, while not including
noncontinua. This view is confirmed by the independent works
of Dadzie [9] and Meng, et al. [10], each grounded upon its own
molecularly based modification of Boltzmann’s gas-kinetic
equation [11].

Accordingly, was our bivelocity model found to accord
with experiment, this would serve to confirm the failure of the
PMFI. For was the cylinder to be at rest, i.e., not rotating
relative to the fixed stars, no temperature gradients would
presumably be observed, as is surely true in the case of the
NSF equations.

E. Mach number dependence of �T

As is well known, the Mach number, Ma = v/c (with c the
velocity of sound), plays a key role in quantifying the effect of
compressibility on flowing fluid continua. Given the compara-
ble role played by the diffuse volume flux jv in compressible
fluid motions [8] it should not be surprising to find that a
close relation exists between these two different measures of
compressibility. In what follows we establish a correlation
between the two in the context of our proposed experiment.

With vo = �Ro the velocity of the gas in proximity to
the cylinder wall and c̄ =

√
γ —RT̄ /Mw the velocity of sound

at the mean temperature T̄ of the confined gas, one has
that Ma = �Ro

√
Mw/γ —RT̄ . For monatomic gases this yields

Ma =
√

3(�Ro)2/2ĉpT̄ . Comparison with (6.4) gives

�T

T̄
= 1

3
f (C)(Ma)2 (7.20)
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for the relation between the dimensionless temperature dif-
ference �T/T̄ and the Mach number. For example, for the
case Ma = 1, C = 1, and a mean temperature of T̄ = 300 K,
this gives �T = 100 ◦C. It is obviously possible to encounter
significant temperature differences without having to resort to
extreme operating conditions.

VIII. DISCUSSION

A. MD versus DSMC simulations

The proposed test of the NSF equations outlined in
this paper encourages performing either an experiment or a
molecular dynamic (MD) simulation. One might ask, why not
also encourage a comparable direct simulation Monte Carlo
(DSMC) test [27]? The basis for cautioning against its use
in the present context hinges upon the fact that the reliability
of conclusions to be drawn from such a simulation are only
as reliable as the Boltzmann equation is itself a physically
reliable realization of Newton’s laws of motion. That is, was
a problem found to exist with regard to the physical basis
of Boltzmann’s gas-kinetic model in regard to accurately
mirroring the macroscopic physical consequences of Newton’s
mechanical laws applied to collections of molecules—such as
is, in fact, avoided in the course of effecting MD simulations—
a comparable problem would then ensue with respect to the
physical basis of the DSMC conclusions derived therefrom.

In this latter context, recent work by Dadzie, Reese, and
their collaborators [9,10,28–35], as well as that of other
independent researchers [36,37], serving to molecularly mirror
comparable macroscopic bivelocity developments based upon
irreversible thermodynamic principles [8]—point to the fact
that a fundamental problem exists with regard to the current
statistical-mechanical modeling of compressible fluid con-
tinua. This owes to the failure of most existing molecular mod-
els to incorporate diffuse or dissipative (stochastic) volume
transport phenomena within their scope. In turn, as an implied
consequence thereof, a subsequent problem arises with respect
to the lack of completedness of Boltzmann’s equation. Other,
purely macroscopic, nonmolecular analyses [38–40] support
the need for including stochastic, volume-based contributions
to existing molecular models.

In contrast with our cautionary attitude displayed towards
DSMC simulations of Boltzmann’s original collision model,
we see no objection to applying DSMC techniques to the
proposed test at hand when using, say, Dadzie’s stochasti-
cally modified Boltzmann model equation [9] in place of
Boltzmann’s original equation. Indeed, such an undertaking
would presumably offer independent data bearing on the
issue of the validity of the NSF equations for compressible
gaseous continua. For was such a DSMC simulation to predict
a nonuniform temperature distribution this would introduce
further evidence serving to discredit the NSF equations.

B. Rigid-body rotations

Proceeding beyond strictly constitutive issues pertaining
to the NSF and bivelocity models, our proposed test bears,
more generally, upon the viability of the currently accepted,
albeit ad hoc, notion that rigid-body rotations of fluid continua
are necessarily equipollent with states of thermodynamic

equilibrium [14]. This issue impacts, among other things,
on a variety of important physical fields of research. In
short, the present proposal, whose challenges we hope will
be addressed by experimentalists, is expected to stimulate
renewed interest in the foundations of (compressible) fluid
mechanics—especially if temperature gradients in isolated
gases undergoing rigid-body rotations are indeed found to
exist.

C. Rarefied gases

In this paper we have proposed performing a simple class
of experiments and/or MD simulations for gaseous continua.
However, no objective distinction exists between continua
and noncontinua, e.g., rarefied gases. That is, there exists no
definite value of the Knudsen number below which the gas
is a continuum and above which it is a noncontinuum. Thus,
the oft-cited value of Kn = 0.01 [41] at which the transition
is regarded by many as occurring is somewhat arbitrary. That
said, it would be useful to extend our proposed experiment
and simulation to now include rarefied gases in addition to
gaseous continua. While it is already well known [3] that
the predictions of the NSF equations (in conjunction with the
no-slip boundary condition) become increasingly inaccurate
as the Knudsen number increases, it would be of interest to
establish whether under the circumstances of the proposed
experiment and simulation this deviation would also give rise
to a radial temperature variation, comparable to that presently
anticipated for the case of gaseous continua.

Note added in proof. Recently, a molecular dynamics
simulation of the test described herein was effected [42]. The
findings, as evidenced by the nonuniform radial temperature
distributions observed, were consistent with the hypothesis
that the NSF paradigm is indeed invalid for gaseous continua.
Furthermore, these findings were not inconsistent with the
hypothesis that the bivelocity paradigm rather than the NSF
paradigm should be regarded as constituting the fundamental
paradigm underlying continuum fluid mechanics.
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APPENDIX A: COMPONENT FORMS OF THE
BIVELOCITY MOMENTUM AND ENERGY EQUATIONS

1. Momentum

Joint use of Eqs. (2.9b) and (2.7) furnishes the relation

T = Tv + Tj , (A1)

wherein

Tv := 2η∇v and Tj := 2η∇jv. (A2)

In conjunction with the radial symmetry conditions expressed
by Eqs. (3.1) and (3.2), the above relations, when written out
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explicitly, adopt the respective forms

Tv = (iRiφ + iφ iR)ηR
d

dR

(
v

R

)
(A3)

and

Tj = 4

3
η

(
iRiR

djv

dR
+ iφ iφ

jv

R

)
. (A4)

On the assumption that the shear viscosity may be regarded
as constant throughout the flow domain, and hence indepen-
dent of position, the respective divergences of the preceding
deviatoric stresses are found to be

∇ · Tv = iφη
d

dR

[
1

R

d

dR
(Rv)

]
(A5)

and

∇ · Tj = iR
4

3
η

1

R

[
d

dR

(
R

djv

dR

)
− jv

R

]

≡ iR
4

3
η

d

dR

[
1

R

d

dR
(Rjv)

]
. (A6)

Together, these combine to give

∇ · T = iφη
d

dR

[
1

R

d

dR
(Rv)

]
+ iR

4

3
η

d

dR

[
1

R

d

dR
(Rjv)

]
.

(A7)

Furthermore, with use of (3.11) we have by symmetry that
v · ∇v = iRv2 /R. Similarly, from (3.12), ∇p = iRdp/dR.
Introduction of these relations into the momentum equation
(2.2), along with use of the expressions ∇ · P = ∇p − ∇ · T
and (A7), followed by equating corresponding φ and R

components, furnishes the pair of scalar momentum equations
set forth in Eqs. (4.1) and (4.2).

2. Energy

As a consequence of the radial symmetries (3.1) and (3.2)
it follows that the left-hand side of the energy equation (2.3)
is identically zero. In turn, this requires that

∇ · je = 0. (A8)

In present circumstances, namely, with the cylinder both rigid
and non-heat-conducting, the energy flux boundary condition
at the cylinder wall requires that

n · je = 0 at R = Ro. (A9)

From Eqs. (2.6b), (2.4), (2.7), and (A1) we find that

je = q + pv − (Tv + Tj ) · (v + jv), (A10)

where, for simplicity, we have introduced the symbol q =
ju + pj (whose physical significance [8] need not concern us
at this moment). Owing to the respective radially symmetric
natures of ju, p and jv we have that q = iRq(R), in which

q = ju + pjv. (A11)

Furthermore, for the rigid-body motion (4.4) it follows from
Eq. (A3) that

Tv = 0. (A12)

By symmetry, together with use of the relations v = iφ�R,
(A4), and (A12), it follows from (A10) that

je = iφ�R

(
p − 4

3
η
jv

R

)
+ iR

(
q − 2

3
η
dj 2

v

dR

)
. (A13)

Equation (A8) in conjunction with the above relation leads to
the expression

d

dR

[
R

(
q − 2

3
η
dj 2

v

dR

)]
= 0, (A14)

while the boundary condition (A9) requires that

q − 2

3
η
dj 2

v

dR
= 0 at R = Ro. (A15)

Integration of (A14) gives

q − 2

3
η
dj 2

v

dR
= K

R
, (A16)

where K is a constant. Finiteness at the origin requires that
K = 0, whence the energy equation is satisfied for all R by
the relation

q − 2

3
η
dj 2

v

dR
= 0, (∀ 0 � R � Ro). (A17)

Accordingly, the boundary condition (A15) is automatically
satisfied. Insertion of (A11) into the above furnishes the energy
equation set forth in Eq. (5.1).

APPENDIX B: PERTURBATION SOLUTIONS OF THE
BIVELOCITY EQUATIONS

This Appendix furnishes perturbation solutions of the
quartet of bivelocity equations governing the fields (p,T ,ρ,jv)
for the rigid-body rotation of a gas occurring in a thermody-
namically isolated circular cylinder undergoing steady rotation
in an inertial reference frame. From (4.5) the momentum
equation is

4

3
η

d

dR

[
1

R

d

dR
(Rjv)

]
= dp

dR
− ρ�2R, (B1)

in which, from (3.3), the constitutive equation for the diffuse
volume flux is

jv = − C

Pr
η

d

dR

(
1

ρ

)
. (B2)

Furthermore, Eqs. (5.1) and (5.2) combine to furnish the
energy equation

−k′ dT

dR
+ pjv − 2

3
η
dj 2

v

dR
= 0. (B3)

The above trio of equations together with the ideal-gas
equation of state (5.4) are to be solved for the four fields
(p,T ,ρ,j ) as functions of R. All required boundary conditions
have already been satisfied.

1. Nondimensionalization

We begin solving the above quartet of equations by
reformulating them in dimensionless form. With the constants
(p̄,ρ̄,T̄ ) denoting the mean pressure, density and temperature
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as defined in Eqs. (5.5)–(5.7), we introduce the following
dimensionless fields denoted by asterisks:

p = p̄p∗, ρ = ρ̄ρ∗, T = T̄ T ∗, and jv = (ῡ/Ro)j ∗
v .

(B4)

In addition, we define a dimensionless radial distance by the
expression R = RoR

∗. As the mean fields are related to one
another through the dimensional expressionp̄ = (—R/Mw)ρ̄T̄ ,
the corresponding nondimensional fields are related through
the expression p∗ = ρ∗T ∗. In the above, ῡ = η/ρ̄ is the
kinematic viscosity at the mean temperature and pressure
prevailing in the rotating gas.

Subject to a posteriori verification, the dimensionless fields
defined in (B4) are all assumed to be of O(1) with respect to
the small dimensionless parameter

ε = ῡ

�R2
o

� 1. (B5)

The parameter ε will necessarily be very small in all feasible
experiments. For example, in the case of air at room temper-
ature and pressure (for which ῡ = 1.568 × 10−5 m2 s−1) and
for a rotation rate of � = 5000 rpm and a cylinder radius
of R0 = 10 cm (as used in preparing Table I) one finds that
ε = 3.0 × 10−6. As the gas’s velocity at the cylinder wall is
vo = �Ro, the dimensionless parameter ε is seen to be an
inverse Reynolds number,

ε = 1

Re
, (B6)

in which Re = Rovoρ̄/η 	 1. Accordingly, all conceivable
experiments aimed at testing bivelocity theory based upon
our presently proposed protocol necessarily occur at large
Reynolds numbers.

After considerable algebra and rearrangement, the follow-
ing dimensionless forms of Eqs. (B1) and (B3) are obtained:

dp∗

dR∗ = 2Bρ∗R∗ + ε2 8

3
B

d

dR∗

[
1

R∗
d

dR∗ (R∗j ∗
v )

]
, (B7)

dT ∗

dR∗ = Pr
—R

Mwĉv

(
p∗j ∗

v − ε2 4

3
B

d

dR∗ j ∗2
v

)
, (B8)

whereas Eq. (B2) becomes

j ∗
v = − C

Pr

d

dR∗

(
1

ρ∗

)
. (B9)

Appearing in the above expressions is the dimensionless
parameter

B = Mw(�Ro)2

2—RT̄
. (B10)

In arriving at (B8) we have noted that k′ = ĉvη/Pr.
As will be seen, for all feasible experimental configurations

B = O(�T/T̄ ), which parameter we will regard as being of
O(1) with respect to the small parameter ε. We also note
that the dimensionless ratio —R/Mwĉv appearing in (B8) is of
O(1). [For example, for ideal monatomic gases one has that
ĉv = (3/2)(—R/Mw) whence —R/Mwĉv = 2/3.] The parameter
B can be given a simple physical interpretation. From Eq. (4.3)
the quantity (�Ro)2 /2 = v2

o /2 is seen to be the specific kinetic
energy of a molecule of the gas in proximity to the rotating

wall. Furthermore, Mw/—R ≡ m/kB , where m is the mass of a
single molecule of the fluid and kB is Boltzmann’s constant.
Thus (B10) possesses the alternative representation

B = mv2
o /2

kBT̄
.

The numerator and denominator of the above expression are,
respectively, seen to be the mean kinetic energy of a near-wall
molecule and the mean thermal energy of a molecule of
gas within the cylinder. As such B represents a measure
of the relative strengths of the fluid’s kinetic and thermal
energies.

2. Temperature field

Given the above-cited facts, Eqs. (B7) and (B8) become, to
terms of dominant order,

dp∗

dR∗ = 2Bρ∗R∗ + O(ε2) (B11)

and

dT ∗

dR∗ = −C
—R

Mwĉv

[
p∗ d

dR∗

(
1

ρ∗

)]
+ O(ε2). (B12)

The term appearing in square brackets in the preceding
expression can be reformulated as

p∗ d

dR∗

(
1

ρ∗

)
= d

dR∗

(
p∗

ρ∗

)
− 1

ρ∗
dp∗

dR∗ ≡ dT ∗

dR∗ − 1

ρ∗
dp∗

dR∗ .

Consequently, with use of (B11), Eq. (B12) becomes

dT ∗

dR∗ = χ

1 + χ
2BR∗ + O(ε2), (B13)

in which the constant χ denotes the dimensionless parameter

χ = C
—R

Mwĉv

. (B14)

Integration of (B13), followed by subsequent conversion of
the resulting expression to dimensional form, gives

T (R) − T (0) = 1

(ĉv/C) + (—R/Mw)

(�R)2

2
+ T̄O(ε2).

(B15)

For the case of ideal gases one has from thermodynamics that
ĉp = ĉv + —R/Mw. Thus,

T (R) − T (0) = f (C)
(�R)2

2ĉp

+ T̄O(ε2), (B16)

where f (C) is the dimensionless O(1) quantity

f (C) =
[

1

γ

(
1

C
− 1

)
+ 1

]−1

(B17)

in which

γ = ĉp

ĉv

(B18)

is the specific heat ratio. Note that f (C) = 1 when C = 1 and
f (C) = 0 when C = 0.
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Upon setting R = Ro in (B16), the sought-after temperature
difference (1.1) is found to be

�T = f (C)
(�Ro)2

2ĉp

+ T̄O(ε2). (B19)

With ε = O(10−6) one sees for a mean temperature of, say,
T̄ = 300 K, that any correction to the dominant term in the
above expression is completely negligible for virtually all
conceivable experiments.
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